

The Constitution of Algorithms

Inside Technology

Edited by Wiebe E. Bijker, Trevor J. Pinch, and Rebecca Slayton

A list of books in the series appears at the back of the book.

The Constitution of Algorithms

Ground- Truthing, Programming, Formulating

Florian Jaton

The MIT Press
Cambridge, Mas sa chu setts
London, England

© 2020 Mas sa chu setts Institute of Technology

This work is subject to a Creative Commons CC- BY- NC- ND license.

Subject to such license, all rights are reserved.

The open access edition of this book was made pos si ble by generous funding from
Arcadia— a charitable fund of Lisbet Rausing and Peter Baldwin.

This book was set in Stone Serif and Stone Sans by Westchester Publishing Services.
Printed and bound in the United States of Amer i ca.

Library of Congress Cataloging-in-Publication Data

Names: Jaton, Florian, author. | Bowker, Geoffrey C., writer of foreword.
Title: The constitution of algorithms : ground-truthing, programming, formulating /
 Florian Jaton ; foreword by Geoffrey C. Bowker.
Description: Cambridge, Massachusetts : The MIT Press, [2020] | Series: Inside
 technology | Includes bibliographical references and index.
Identifiers: LCCN 2020028166 | ISBN 9780262542142 (paperback)
Subjects: LCSH: Algorithms--Case studies. | Computer programming--Case studies. |
 Algorithms--Social aspects. | Mathematics--Philosophy.
Classification: LCC QA9.58 .J38 2020 | DDC 518/.1--dc23
LC record available at https://lccn.loc.gov/2020028166

10 9 8 7 6 5 4 3 2 1

To Fanny

Foreword ix

Acknowl edgments xi

Introduction 1

I Ground- Truthing 27

 1 Studying Computer Scientists 31

 2 A First Case Study 51

II Programming 87

 3 Von Neumann’s Draft, Electronic Brains, and Cognition 93

 4 A Second Case Study 135

III Formulating 197

 5 Mathe matics as a Science 203

 6 A Third Case Study 237

Conclusion 283

Glossary 291

Notes 299

References 325

Index 365

Contents

Algorithms pervade our lives. They are po liti cal, cultural, and social facts
that have become central to all parts of our existence over the past fifty
years. Certainly, we had their forerunners before: endless checklists, safety
protocols, and rules of conduct— each designed to take us out of ourselves
and align our bodies, our selves with a bureaucratic or technical machine
(in Foucault’s better term, a set “dispositifs techniques”). Bureaucracy makes
us act like machines, algorithms seek to make us into machines.

A corollary is that if we want to do fundamental social science and envi-
sion new forms of po liti cal life we need to go where the action is. We need
to get to know algorithms from the inside. They did not parachute down
from another planet to invade us (much as it may feel like this): they are
 human, fallible creations. The difficulties here are that social scientists and
po liti cal actors often don’t really understand the technical stakes, and sym-
metrically the computer scientists don’t really get the social stakes.

This is precisely why this book is so impor tant. It is a foundational text
for exploring algorithms as a new form of social actor. How do algorithms
get constructed to be effective actors; how do humans get constructed so
that they create algorithms which surpass human understanding? Jaton’s
quest here has been fearless: go where the questions are, and locate the
technical, social, and po liti cal issues on their home ground. As I read this
book, I was constantly delighted as when reading a fine novel by not know-
ing what was going to come next (von Neumann architecture, tests for
nascent computer engineers)— but by immediately feeling a sense of inevi-
tability once the steps were taken.

I’ve been playing with a vision latterly of humans becoming progres-
sively more irrelevant to the operation of our po liti cal economy: we do
what we can but are increasingly interstitial. There is little doubt that we

Foreword

Geoffrey C. Bowker

x Foreword

are creating machines that are more intelligent than we are and algorithms
that know us better than we do ourselves. That’s just fine. But how much
richer and more beautiful a world we will create if we suffuse our algorithms
with our own deeply held values created over thousands of years?

This book is not just for computer scientists or for social studies of sci-
ence scholars: it speaks to some of the fundamental questions of human
existence in this epoch. It provides tools and concepts for us to co- engineer
our world (our planetary system, our species, our computers).

Chapeau! Florian. Happy reading all.

More than politeness, it is a matter of intellectual integrity to warmly thank
 those who helped me become the author of this book. To begin with, I
would like to express my deepest gratitude to the members of the computer
science laboratory who let me follow their day- to- day activities. Having
an ethnographer around for more than two years must have been an odd
experience. Yet I could not have wished for more comprehension toward
my research topic and patience toward my clumsiness. It goes without say-
ing that this inquiry could not have been written without the support of
 these brilliant computer scientists who quickly became my colleagues and
friends.

If I enjoyed spending time in this computer science laboratory, it was
also thanks to its director. By giving me an office, providing me with insight-
ful feedback, and asking me to actively participate in the daily life of her
laboratory, Sabine Süsstrunk of the Swiss Federal Institute of Technology
Lausanne (EPFL) im mensely facilitated my integration. I simply could never
have dreamed of a better interdisciplinary collaboration.

My mentor Dominique Vinck has given me so many valuable tips,
insights, and feedback throughout this inquiry that I wish I could have
applied the following seal on the cover of this document: Dominique
Vinck Inside®. It has been a privilege to be the student of such an inspiring
professor.

This book also benefited from the insights of my colleagues at the
Institute of Social Sciences of the University of Lausanne. Marc Audétat,
Lola Auroy, Nicolas Baya Laffite, Boris Beaude, Luca Chiapperino, Laetitia
Della Bianca, Olivier Glassey, Sara Guzmán, Anna Jobin, Nicky Lefeuvre,
Pierre- Nicolas Oberhauser, Francesco Panese, Andréas Perret, Jessica Pidoux,

Acknowl edgments

xii Acknowl edgments

Margarita Rodriguez, Yohana Ruffiner, Marie Sautier, Romina Seminario,
Tatiana Smirnova, Léa Stiefel, and Mylène Tanferri Machado: they all
greatly contributed to my intellectual education. And I would like to extend
a special thank you to Alexandre Camus, who, besides having given me great
suggestions, has also stood for my fears, rants, and sudden bursts of joy (and
despair).

To transform what was then a cumbersome thesis into an acceptable
book, I benefited from a postdoctoral research stay at the Centre de Soci-
ologie de l’Innovation of Mines Paristech, PSL Research University. And
without the precise advice and comments of Félix Boilève, Jérôme Denis,
Quentin Dufour, Liliana Doganova, Evan Fisher, Clément Gasull, Cornelius
Heimstädt, Antoine Hennion, Brice Laurent, Fabian Muniesa, Émilie Perault,
David Pontille, Mathieu Rajaoba, and Loïc Riom, this book would contain
many more weaknesses than it has today. I also warmly thank Nassima
Abdelghafour, Madeleine Akrich, Marie Alauzen, Mathieu Baudrin, Victoria
Brun, Béatrice Cointe, Jean Danielou, Catherine Lucas, Alexandre Mallard,
Morgan Meyer, Florence Paterson, Mathilde Pellizzari, Vololona Rabeharisoa,
Roman Solé- Pomies, Sophie Tabouret, Félix Talvard, Carole- Anne Tisserand,
Didier Torny, Frédéric Vergnaud, and Alexandre Violle for having welcomed
me to their wonderful research center.

Easily distressed by administrative duties, I have been lucky to benefit
from the help of amazing secretaries throughout my PhD and postdoctoral
grants. To a great extent, it is thus thanks to Françoise Behn, Marianna
Schismenou, Alba Brizzi, and Joëlle de Magalhaes that I could fi nally pro-
duce this document.

Funding is integral part of research. Thus I thank the Swiss National
Science Foundation for its financial support throughout the completion
of this work. Funding such a fundamental research proj ect at the intersec-
tion of philosophy and computer science was for sure a risky investment.
I cannot, of course, decide whether this work keeps the numerous prom-
ises I made to get both my PhD (POLAP1 148948) and postdoctoral grants
(P2LAP1 184113). I can only assert that over the past few years, a great part
of my vital energy was dedicated to the accomplishment of this proj ect. I
also wish to extend my thanks to the Société Académique Vaudoise for its
generous support between October and December 2018.

From 2016 to 2017, I spent a year abroad at the EVOKE Lab and Studio
of the University of California, Irvine (UCI) as part of my PhD program.

Acknowl edgments xiii

With regard to this formative experience, I must start by thanking Myles,
Kyle, Dave, and Laura Jeffrey who never stopped considering me as part
of their Californian family. I am also very grateful to my UCI colleagues at
that time— Anja Bechmann, Roderic Crooks, Simon Penny, John Seberger,
and Aubrey Slaughter— who greatly helped the completion of the book’s
second, third, and fourth chapters. And what can I say about the amazing
collections of the University of California Libraries? Without the daily invis-
ible work of University of California librarians, I could not have accessed
the crucial references I needed to propose, I hope, innovative propositions.
However, this Californian experience would have been impossible without
the unconditional support of Geoffrey C. Bowker who believed in this proj-
ect from the very beginning.

Obviously, this document benefited from the support of MIT Press, Inside
Technology Series. In this regard, I want to thank the series’ editorial staff
for their kindness and unfailing availability throughout the publication
pro cess. I am also grateful to the anonymous reviewers and copyeditors who
contributed to making this work better that it initially was. Of course, and
this concerns all those who helped me to produce this book; all mistakes
and low passes remain mine.

My close friends have helped, supported, and inspired me so much during
my not-yet-really-started academic career that it will be unfair not to name
them. Thus from the bottom of my heart, I want to thank Julien Bugnon,
Gabriel Buser, Frédéric Clerc, Loïs de Goumoëns, Christophe Durant, Simon
Duvoisin, Antoine Favre, Vincent Klaus, Nicolas and Vanessa Krieg, Naïke
and Stéphane Lévy, Mathieu and Nancy Morier, Marco Picci, Coralie Pittet,
Estelle and Vincent Rossire, Mathias Schild, Lucas Turrian, Nicolas Vautier,
and Élise Vinckenbosch. It is a real privilege to be your friend.

As this work is the direct product of their unconditional affection, I
fi nally wish to express my deepest gratitude to my mother, Katia; my father,
Jean- Pierre; my sister, Laure; my brother, Damien; and my niece, Lina. And
to Fanny, who lovingly supports me in the vicissitudes of intellectual life:
Thank you for bringing infinite light.

For critics and advocates alike, if we want to know algorithms, we may need to
live with them.

— Seaver (2013, 11)

Let us start this introduction in medias res, in the middle of things:

Rearrangement 1

The election of Donald Trump in November 2016 was quite surprising:
how could such a controversial figure reach the White House? The rea-
sons, of course, are innumerous. But what if one of them was Facebook
(Lapowsky 2016)? After all, Trump supporters never stopped using this
platform to spread out disputed contents. What if voters were brain-
washed by the “fake news” Facebook contributed to diffusing? What if
this extensive interlinking participated in Trump’s advertisement and
fund rais ing? However harsh this claim might be, it seriously harms the
image of the web application that would rather help to “connect people”
than to build border walls (Isaac 2016). It seems then that monitoring
needs to be increased, even though it may contradict some assumptions
Mark Zuckerberg elevates as precepts (Zuckerberg 2016). The main tar-
get is the “News Feed,” the spine of the application that displays stories
posted by Facebook users. What about slightly modifying how News Feed
automatically selects new stories to make it ignore “low quality posts”?
This may help restore Facebook’s public image, at least for a little bit, at
least for a little while. And after several months of in- house research and
testing, a new algorithm is made operational that— based on frequen-
cies of posts and URLs of links— identifies spam users and automatically

Introduction

2 Introduction

deprioritize the links they share (Isaac and Ember 2016). According to one
of Facebook’s vice presidents, this new method of computation should
significantly reduce the diffusion of “low quality content such as clickbait,
sensationalism, and misinformation” (Mosseri 2017).

Rearrangement 2

Planet Mars is a distant location. But hundreds of millions of kilo meters
did not dishearten the US National Aeronautics and Space Administra-
tion (NASA) from sending the robotic rover Curiosity to explore its sur-
face. On May 6, 2012, the costly vehicle safely lands on Gale Crater.
Quite a feat! Amazing high- resolution pictures are soon available on
NASA’s website, showing the world the jagged surface of this cold and
arid planet. Of course, Curiosity is far more than a remote- controlled car
taking exotic pictures. It is a genuine laboratory on wheels with many
high- tech instruments: two cameras for true- color and multispectral imag-
ing, two pairs of monochrome cameras for navigation, a robotic arm
with an ultrahigh- definition camera, a laser- induced spectrometer, solar
panels, two lithium- ion batteries, and so on (Jet Propulsion Laboratory
2015). Yet there is an obvious cost to this amazing remote- controlled
laboratory: it needs to move its 350 kilograms (low gravity considered).
The sharp, rocky surface of Mars does not alleviate the constant efforts
of Curiosity’s wheels, irremediably wearing down. And in January 2014,
the situation becomes alarming (Webster 2015): Is there a way to extend
the lifetime of Curiosity’s wheels? After much research, a new driving
algorithm becomes operational in June 2017 that uses real- time data
from the navigation cameras to adjust Curiosity’s speed when it comes
to sharp Martian pebbles (Good 2017). By reducing the load of Curios-
ity’s leading and middle wheels up to 20 percent, this new method of
computation for navigation is considered a serious boost for the mission
(Sharkey 2017).

Rearrangement 3

Israeli secret ser vices in the West Bank are used to dismantling organ-
izations they define as terrorist by means of preventive actions and intim-
idation. But what about individuals who commit attacks on a whim? Just
like several police departments in the United States (Berg 2014), Israeli

Introduction 3

secret ser vices are now supported by a security software whose algorithm
generates profiles of potential attackers based on aggregated data posted
on social media. Yet while several US civil courts are seriously consid-
ering the harmful bias of these new methods of computation (Angwin
et al. 2016; Liptak 2017), Israeli military justice as applied to suspected
Palestinian “attackers” prevents them from having any sort of legal pro-
tection. Thanks to the ability of the West Bank military commander to
stamp administrative detentions, these “dangerous profiles” can be sen-
tenced to a renewable six- month incarceration without any possibility of
appeal. Many Palestinians targeted by this state- secret technology “have
served long years without ever seeing a court” (Gurvitz 2017).

Rearrangement 4

How can people be made to eat more Nutella? It has not been easy these
recent years for the Italian brand of choco late spread. When palm oil
production threatened remote orangutans, only a small fraction of citi-
zens was eager to criticize its use in Nutella’s recipe. But in May 2016,
as soon as palm oil is suspected of speeding up the spread of cancer
among Nutella consumers, there starts to be a worrying drop in sales
(Landini and Navach 2017). For Nutella, something needs to be done to
reconnect with the stomachs of its customers. What about a fresh new
marketing campaign? In collaboration with advertising agency Ogilvy &
Mather Italia, seven million uniquely designed Nutella jars are soon pro-
duced and sold in rec ord time (Nudd 2017). At the heart of this success-
ful marketing move lies an algorithm that computes a carefully selected
set of colors and figures to generate unique pop patterns (Leadem 2017).

States of affairs change. In November 2016, News Feeds of Facebook users
 were subjected to spammers diffusing hoaxes and “fake news” that are pre-
sumed to have played a role in the election of Donald Trump. One month
 later, these News Feeds temporarily became monitored lists of stories worth
being read. Similarly, Curiosity’s weight together with sharp Martian peb-
bles first seriously affected the robot’s wheels, thus compromising the initial
duration of the mission. Yet a few years later, several changes in the loco-
motion system slowed down this unexpected wear. In another case, Israeli
secret ser vices were at first powerless against attacks that were not prepared

4 Introduction

within dismantable cell organ izations. Yet these ser vices soon were able
to identify suspects and put them in jail without any kind of legal proce-
dure. Fi nally, Nutella was first an old- fashioned choco late spread whose
 recipe included orangutan- endangering and cancer- related palm oil. It then
became, temporarily, a trendy pop product. For better or worse, collective
configurations are rearranged, thus forming new states of affairs; relation-
ships between humans and nonhumans are reconstituted, thus temporarily
establishing new networks. According to this ontological position that is
often called “pro cess thought,”1 the collective world is constantly reshaped
in this way.2

That being said, we may wish to comprehend some of the dynamics
of these messy rearrangements (RTs). After all, as we all have to coexist on
the same planet, getting a clearer view of what is going on could not hurt;
documenting a tiny set of the innumerous relationships that shape the
world we inhabit may equip us with some kind of navigational instrument.
Together, where do we go? What are we doing? What is going on? These are
impor tant, legitimate questions.

To address these questions, two approaches are generally used. Broadly
speaking, the first approach consists in postulating the existence of aggre-
gates capable of inducing states of affairs. Depending on academic tradi-
tions, such aggregates take dif fer ent names: they are sometimes called
“social forces,” “fields and habitus,” “economic rationality,” or “social struc-
tures,” among many other variations. These differently named yet a priori
postulated aggregates are all pretenders to the definition of the social (or
society), an influential yet evanescent matter that supposedly surrounds
individuals and orientates their actions. The scientific study of this matter
and the states of affairs it engenders is what I call the science of the social or,
more succinctly, social science.

The second approach— the one this book embraces— consists in consider-
ing the social not as an evanescent matter surrounding individuals but as the
small difference produced when two entities come into contact and tempo-
rarily associate with each other (Latour 2005).3 This approach assumes that
 every new connection between two actants— humans (Bob, the president,
Mark Zuckerberg) or nonhuman entities (a wheel, a virus, a document)—
makes a small difference that can, sometimes, be accounted for. If we accept
calling “social” the small difference produced when two actants temporally

Introduction 5

associate with each other, we may call “socio- logy” the activity that consists
in producing specialized texts (log os) about these associations (socius).4 Our
initial four RTs are small examples of such an activity: Facebook, Curiosity,
Israeli secret ser vices, and Nutella temporarily associate themselves with new
actants, and the blending of these new connections contributes to the for-
mation of new configurations summarized within a text. Had I added several
rearrangements and accounted for their constitutive associations a bit more
thoroughly, I would have produced a genuine so cio log i cal work. On the con-
trary, had I invoked some hidden force to explain these reconfigurations;
had I attributed the modifications of each state of affairs to some a priori pos-
tulated aggregate (e.g., economic rationality, society, culture), I would have
produced a small work of social science. This distinction between sociology
and social science will accompany us throughout this book. It is thus impor-
tant to keep in mind that the pre sent volume is—or, at least, is intended to
be— a so cio log i cal work.

With these clarifications in mind, let us have a closer look on our four
small so cio log i cal RTs. What do we see? We quickly notice that each RT
is affected by an “algorithm,” for now loosely defined as a computerized
method of calculation. These four algorithms can be considered entities—or
actants—as they all produce differences within specific configurations. In
that sense, these algorithms are fundamentally not dissimilar to the other
actants they, at some point, associate with. In RT1, there is Facebook, Don-
ald Trump, spams, supporters, News Feed, a new algorithm, a Facebook
vice president, and many other actants that, together, rearrange some state
of affairs. In RT2, there is Mars, NASA, sharp pebbles, a navigational algo-
rithm, lithium- ion batteries, and many other actants that, together, rear-
range some state of affairs. The same is true of RT3 and RT4: algorithms are
actants among many other actants.

Yet a closer look nonetheless suggests that the algorithms of our RTs pos-
sess characteristics that make them not completely akin to, say, sharp Mar-
tian pebbles or lithium- ions batteries. Contrary to such “firm” actants, the
algorithms of our RTs appear more fluid; they seem to be able to move very
quickly and make connections with other actants that were at first remote
from each other. In RT1, Facebook’s new algorithm can, in the end (and yet
temporarily), associate itself with News Feeds of millions of users located
all around the world almost instantaneously. In RT2, NASA’s algorithm can

6 Introduction

reach Mars to make Curiosity’s wheels cope with, potentially, all sharp Mar-
tian pebbles. In RT3, the algorithm used by Israeli secret ser vices can clas-
sify thousands of social media texts sent by hundreds of thousand people
located throughout a two- thousand square- mile territory. In RT4, Ogilvy &
Mather Italia’s algorithm can create millions of uniquely designed patterns
instructing Nutella’s packaging factories in Italy and France. It seems then
that these algorithms can circulate and link up initially sparse actants in a
very short amount of time. This is a nontrivial characteristic. To underline
 these algorithms’ fluidity (they circulate), swiftness (they are fast), and dis-
tributivity (they are si mul ta neously scattered and united), let us temporar-
ily categorize them as devices, a special category of actant that, according to
phi los o pher Gilles Deleuze, is “tangled, multi- linear ensembles [that] trace
pro cesses that are always at disequilibrium, sometimes coming close to each
other, sometimes getting distant from each other” (Deleuze 1989, 185).

If we continue considering our four RTs, we also quickly notice that each
of these fluid, swift, and distributed devices called algorithms contributes
to modifying a network of relationships. In every RT, one algorithm—
well supported by many other entities (researchers, data, tests, computers,
etc.)— participates in making Facebook less subject to the spread of hoaxes
(RT1), Curiosity’s wheels a bit more durable (RT2), Palestinians definitely
more “jailable” (RT3), and Nutella temporarily more salable (RT4). Along
with all the entities they are associated with, these methods of calculation
seem then to participate in changing power dynamics: Facebook, Curios-
ity’s wheels, Israeli security ser vices, and Nutella become temporarily stron-
ger than Trump- spamming supporters, sharp Martian pebbles, West Bank
potential “terrorists,” and palm oil scandals, respectively.

Scholars of Science and Technology Studies (STS)— a subfield of sociology
and social science that aims to document the co- constitution of science,
technology, and the collective world5— are nowadays prone to analyze
algorithms’ propensity to modify power dynamics in, for example, labor
markets (Kushner 2013; Steiner 2012), surveillance strategies (Introna 2016;
Introna and Wood 2002; Kraemer, van Overveld, and Peterson 2010), cor-
porate finance (Lenglet 2011; MacKenzie 2014; Muniesa 2011a), cultural
habits (Anderson 2011; Hallinan and Striphas 2014), or interpersonal rela-
tionships (Beer 2009; Bucher 2012). These scholars’ works are of the most
importance as they raise and maintain wakefulness with regard to what

Introduction 7

computerized methods of calculation do. Yet I must warn the reader right
from the start: what algorithms do is not the main topic of this book.

However, as soon as one takes seriously into consideration the banal
fact that objects and devices wear down and change, that “they break, mal-
function and have to be constantly mended, retrofitted and repurposed”
(Domínguez Rubio 2016, 60), thorough so cio log i cal studies of what algo-
rithms do should be coupled with the studies of the maintenance and
repair work required to keep them doing what they do. Whereas mainte-
nance and repair work is currently receiving the attention of an increas-
ing number of studies (e.g., de la Bellacasa 2011; Domínguez Rubio 2014,
2016; Denis and Pontille 2015; Lea and Pholeros 2010; Strebel, Bovet, and
Sormani 2018), very few have specifically explored the work required to
keep algorithms doing what they do (but see Crooks 2019). It is a shame
since the differences algorithms produce should be, at least in princi ple,
proportional to the work required to make them continue to produce such
differences in constantly evolving situations. If we continue to draw upon
our four initial RTs, we can for example imagine that to keep on protecting
users from spammers, Facebook’s new monitoring algorithm may need to
be actualized to detect unexpected forms of trolling (RT1). Similarly, if Curi-
osity’s balance of weight happens to change— such as if it loses a piece of
equipment— the par ameters of its driving algorithm will have to be modi-
fied (RT2). In a similar vein, due to the progressive accumulation of small
differences in the computer equipment of Israeli secret ser vices, the soft-
ware package allowing the new security algorithm to effectively compute
social media data and generate profiles will have to be slightly updated
(RT3). Fi nally, for its algorithm to keep on supporting effective marketing
coups, Ogilvy & Mather Italia will need to keep on convincing its clients
that consumers are attached to singular products (RT4). In short, we can
make the fair assumption that without constant efforts to make algorithms
keep on fitting with constantly changing situations (and vice versa), these
devices will not produce differences for very long. Although the work nec-
essary to preserve the agency of algorithms (Introna 2016) is surely more
and more common in con temporary economies, it remains poorly docu-
mented. Unfortunately, I will not contribute to filling in this gap; despite
the need for such studies to better understand the collective world we live
in, this book does not deal with the maintenance of algorithms.

8 Introduction

What is this book’s topic, then? We have quickly seen that, from a so cio-
log i cal standpoint, algorithms can be considered two kinds of entities:
devices that do things and devices that need things in order to keep on
 doing what they do. Both views are, I believe, of great significance. Yet my
work follows a dif fer ent path. Instead of starting from algorithms as devices
and studying their agency or need for maintenance, this book starts from
unrelated entities (e.g., documents, people, desires) and tries to account
for how they come into contact to form, in the end, devices we may call
“algorithms.” In short, I am studying what is happening before algorithms
become fluid, swift, and distributed devices. Of course, things are not so
clear- cut; as we will see, projections on both agency and maintenance
requirements of future algorithms may impact on their constructions.
Moreover, already constructed algorithms participate in the formation of
new algorithms. But still, it is impor tant for the reader to understand that
I will mainly inquire into the practical activities by which algorithms are
progressively assembled in assignable locations rather than what they may
suggest or require once they are assembled.

Negative Invisibilities

Already at this point, a question may arise: Why is it impor tant to account
for the formation pro cesses of algorithms? Why spending time and energy
writing— and reading— about their constitution? Are there not other things
to do than making the activities by which algorithms come into existence
vis i ble?

Certainly. As Star and Strauss (1999) have suggested, some activities need
to remain provisionally invisible— that is, not accounted for— other wise the
results of these activities may lose some of their capacities. The circus is one
example: making publicly vis i ble the infrastructure and training practices
required to design and master, say, a Cirque du Soleil trapeze act may nega-
tively affect the act itself. Won der, surprise, or enchantment would poten-
tially be counteracted by the down- to- earth and uncertain operations that
enabled the act. Here, a so cio log i cal account would take the risk of spoiling
the act; it may lower the act’s capacity to act.6 Following the distinction
made by Star and Strauss (1999, 23), the relative invisibility of the trapeze
act is, in that sense, positive: it helps the product of these circus practices
to be, by lack of a better term, adequate. The lack of any publicly available

Introduction 9

account and the presence of secrecy help the act become an act, just as they
help the public become the public of the act. In such a very specific situa-
tion, one may assume there is a mutual desire to believe in mastery.

But as soon as there are controversies about the products of some prac-
tices, the terms of their adequacy are disputed; when some capacity to act
is put into question, disagreements about its formation need to be con-
fronted. Let us, for example, imagine that the same Cirque du Soleil trapeze
act leads to an accident. If disputes arise about this accident, there will
be requests to make vis i ble the practices that contributed to producing it.
From being positively invisible, the practices required to do this trapeze act
would become negatively invisible: for the dif fer ent parties of the dispute
to become able to negotiate, empirical accounts of how this act comes into
existence will become necessary. What does the Cirque du Soleil need to
perform this controversial act? Which ele ments could be changed to re adjust
this fragile assemblage? In short, in order to propose compromises, in order
to better compose, disputants will benefit from empirical accounts of the
practices of trapeze;7 documenting what performers and entertainers cher-
ish and fear and what they are attached to might allow constructive dissen-
sions about the agency of what they produce to unfold.

Despite its obvious limits, this small imaginary example indicates that the
request for visibility is somewhat correlated with the rise of controversies.
When there are controversies over the products of practices, these products
cannot be considered adequate anymore: positive invisibilities may thus
switch to negative invisibilities that themselves call for empirical accounts—
which can take the form of so cio log i cal investigations—on which disputes
may arise and negotiations unfold. Of course, these accounts are very risky
as they inherently speak in the name of individuals (Latour 2005, 121–140).
To make vis i ble what communities of practice need and cherish, and what
they are attached to, the so cio log i cal account that may establish common
grounds for further contentious negotiations would need to overcome many
 trials: Does the account make vis i ble the actants that are crucial to the work
of the prac ti tion ers? Do surprising but empirically supported connections
unfold? Does the account propose new grips for collective composition?
A single “no” to any one of these questions would make the so cio log i cal
account fail to fulfill its initial commitment.

What about algorithms? Not so long ago, these devices attracted little
attention. They were certainly involved in changing power relations, but

10 Introduction

 these pro cesses were not, or only to a limited extent, public issues. Things
began to change in the late 1990s when sociologists started to question the
discourse on empowerment and information accessibility put forward by
the promoters of web technologies.8 Hoffman and Novak (1998) showed,
for example, that the accessibility and use of web technologies in the United
States were largely function of racial differences. Lawrence and Giles (1999)
stressed that, contrary to the promotional rhe toric of almost unlimited
access, the search engines available in the late 1990s were only able to index
a small and oriented fraction of the web. In the same vein, Introna and Nis-
senbaum (2000) underlined the under ground— and potentially harmful—
influence of the heuristics used for the classification of URLs by these same
late-1990s search engines. The post-9/11 period that followed focused on
criticisms of biases in programs and algorithms— the term appeared at that
time in the critical lit er a ture9— for surveillance and preventive detection.
In his study of the social implications of data mining technologies, Gandy
(2002) warned, for example, that they are the gateway to rational discrimi-
nation, potentially strengthening correlative habits between social status
and group membership. From a po liti cal economy perspective, Zureik and
Hindle (2004) discussed biometric algorithms’ propensity to trivialize social
profiling, categorization, and exclusion of national groups. Another exam-
ple is the work of Introna and Wood (2004): their analy sis of facial recog-
nition algorithms highlighted the potential biases of these devices, which
 were often, at that time, presented as impartial. This line of so cio log i cal
research led, at the beginning of the 2010s, to numerous investigations
on discriminations (e.g., Kraemer, van Overveld, and Peterson 2010; Gil-
lepsie 2014 Steiner 2012) and invisibilizations (Bucher 2012; Bozdag 2013)
induced by the use of algorithms.

This research direction has continued in recent years, with increasingly
comprehensive works revealing the contrasting, and often questionable,
effects of algorithms on con temporary socie ties (e.g., Crawford and Calo
2016; Noble 2018; O’Neil 2016; Pasquale 2015). These awareness- raising
efforts were also reported in the press, further making algorithms matters of
public concern (e.g., Mazzotti 2017; Risen and Poitras 2017; Smith 2018). This
dynamic— too complex to be thoroughly dealt with in this introduction10—
has led to the current situation where the collective world is steadily affected
by controversies over algorithms. A quick look at the news, at the time of
writing, suffices to remind us of it. UK police is about to use a new algorithm

Introduction 11

to identify online hate crime on social media (Roberts 2017)? This soon trig-
gers hostile reactions from the nonprofit organ ization “Big Brother Watch,”
ready to “fight any attempt to curb free speech online” (Parker 2018). A new
algorithm is published in an academic journal that can presumably deduce
 people’s sexuality from photo graphs of faces (Levin 2017)? The Gay & Lesbian
Alliance Against Defamation soon condemns such a “dangerous and flawed
research that could cause harm to LGBTQ people around the world” (Ander-
son 2017).11 Facebook’s algorithm continues to bombard a grieved woman
by parenting ads after the stillbirth of her son (Brockell 2018)? Thousands
of tweets soon denounce gender bias from tech companies (Mahdawi 2018).
 Every week, a new dispute arises regarding the consequences— actual or
potential—of new algorithms, often preceded by changing attributive nouns
such as big data, machine learning, or more recently, artificial intelligence.

The intended relevance of this book should be considered in the light of
the current controversies over the agency of algorithms. Following in the
footsteps of authors such as Bechman and Bowker (2019), Barocas and Selbst
(2016), and Grosman and Reigeluth (2019)—to whom I shall return later in
the book—my aim here is to propose intellectual tools to prepare the elabora-
tion of compromises. The invisibility of the practices under lying the devel-
opment of algorithms can indeed no longer be considered positive: as they
are the object of repeated disputes, it is now certainly impor tant, or at least
in ter est ing, to document the practical pro cesses that enable them to come
into existence. Roughly put, if sociology has looked, with a certain success,
at the effects of algorithms, it is now time for it to inquire into the causes of
 these effects, however distributed and multiple they may be. A gap needs to
be filled in; by means of empirical accounts of how computer scientists and
engineers nurture algorithms, some risky yet refreshing grounds for con-
structive disputes may be provided.12 The needs, attachments, and values
of those who design algorithms—as documented by my limited so cio log-
i cal account— may contradict other needs, attachments, and values. But
at least, in these days of controversies, parties in dispute may slowly start
to negotiate, as Walter Lippmann says, “ under their own colors” (1982,
91). Yet before considering how I intend to effectively run this inquiry into
the practical formation of algorithms, I quickly need to further specify its
po liti cal dimension. To do so, I shall now make a quick detour by discussing
the unconventional term “constitution” I use here to qualify my venture.

12 Introduction

Why “Constitution” (And Not Simply “Construction”)?

At the beginning of this introduction, I asserted that the collective world is
constantly rearranged: heterogeneous entities never stop associating with
each other, the blending of these associations temporarily establishing new
states of affairs. From this (debatable) ontological position, it follows that
the world is not “out there,” ready to be grasped from some outside stand-
point. Instead, according to this pro cessual ontology, the world is always
becoming; it is the active product of associations between human and non-
human actants.

Yet one may rightly argue that every thing is not always reinvented. While
some associations bring about ephemeral actants (e.g., a cry of joy, tears of
sadness, laughs at some joke), some other associations bring about actants
that are more enduring. Many entities that populate/generate the collective
world are of this sort: Mark Zuckerberg, the planet Mars, West Bank jails,
Nutella jars— just to mention some entities we encountered in our small ini-
tial RTs— are quite enduring entities. Such actants, thanks to their ability to
live on beyond the here and now of their instantiation, may in turn associate
themselves with other actants, thus contributing to the continuous genera-
tion of the collective world. Such relatively stable actants possess some dura-
bility that allows them to bring about and orient what is becoming.

If we continue considering differences among actants, we quickly notice
that some durable actants can move from one place to another more or less
easily. Let us keep on using familiar entities to illustrate this point. If we
consider the planet Mars and West Bank jails, these entities appear rather
static. It is difficult for them to associate with actants capable of making
them deviate from their initial trajectories: without impor tant mobilization
efforts, the planet Mars and West Bank jails will just stay where they are.
This is not quite the case for Mark Zuckerberg who, once associated with
actants such as “shoes,” “cars,” or “roads,” can markedly change his initial
trajectory and, in turn, associate himself with other actants that were at
first distant from him. Yet, largely due to his body envelope, Mark Zucker-
berg’s relative mobility is rather costly: in order for him to somehow keep
on being Mark Zuckerberg, in order for him to maintain most of his dura-
bility while he is moving, he would need to associate with many other
actants (e.g., oxygen, food, space for his legs, coffee breaks) protecting him
from being too much altered. In the case of Nutella jars, the story is a bit

Introduction 13

dif fer ent. They too need to associate with other actants to deviate from
their initial trajectories (e.g., supply chain man ag ers, railway lines, sale con-
tracts, delivery people). But contrary to Mark Zuckerberg, one can make the
fair assumption that Nutella jars’ alteration is slower: due to their proper
materiality, due to their own medium, they can, for example, be stored,
piled up, and handled without being significantly transformed. Among our
exemplary durable entities, Nutella jars seem then the most durable and
mobile: when compared to the planet Mars, West Bank jails, or even Mark
Zuckerberg— and when provided adequate associations— these jars can
move from one place to another without being too much altered.

When cumulated, durability and mobility are nontrivial characteris-
tics: entities that combine both abilities are more likely to associate with
other entities, thus actively contributing to the generation of the collective
world. But a very special category of entities cumulates another ability that
makes them certainly the most world- generative of all. These entities go by
dif fer ent names: Jack Goody calls them “graphical objects” (1977); Bruno
Latour and Steve Woolgar call them “inscriptions” (1986, 43–91); Dorothy
Smith calls them “accounts” or “documents” (1974). But no matter how
 these are labeled, sociologists have long emphasized on these actants’ fasci-
nating capacity to be durable and mobile and to carry with them some char-
acteristics of other actants—or of other associations between actants. This
is essentially what texts, tables, graphs, or drawings do: thanks to the pres-
ence and constant maintenance of specific habits, rules, and technologies—
what Jérôme Denis (2018) calls scriptural infrastructures— these often durable
and mobile inscriptions can host some aspects of actants and associations
and pre sent them again (re- present) somewhere else. This scriptural trans-
port of (part of) actants— that itself necessitates many other actants to
unfold— may in turn create a link between what has happened and what
is to become. This sounds like an odd statement, but such a phenomenon
is in fact very common: Every time I read a New York Times article, a con-
nection is made between what has happened in the past (some events)
and what is happening now (me, considering this event and, eventually,
reacting to it). Of course, this connection, this link has been formatted in
order to be hosted in the specific materiality of the inscription I am con-
sidering (here, the newspaper article). Such a link is thus always a partial,
but potentially faithful, in- formed version of what has happened. When
I’m reading the New York Times, I don’t see mi grants struggling to reach

14 Introduction

Eu rope in horrendous conditions; I see a flat surface with words that re-
present me those mi grants; this re- presentation triggering in me feelings of
helplessness, shame, and despair, evanescent actants that will, in turn, con-
tribute to the continuous generation of the collective world (though quite
insignificantly). To qualify inscriptions’ capacity to carry some properties
of actants- associations and establish formatted yet generative connections
between times and locations, I shall use the term “re- presentability.” More
than just being durable and mobile actants, inscriptions are thus also re-
presentable: they can— together with suitable infrastructures— carry, trans-
port, and display properties that are not only theirs.

Durability, mobility, re- presentability: these are capacities not to be under-
estimated. Inscriptions, despite their often- modest appearances (lists of num-
bers, drawings, articles, tables, graphs), greatly participate in the shaping of
our world. A new molecule appears that revolutionizes our understanding
of the human hypothalamus? As well documented by Latour and Woolgar
(1986), such an association- prone actant derives, to a large extent, from
inscriptions assembled, accumulated, compiled, and compared within and
between laboratories. A new management technique starts to align corpo-
rate activities to a single arbitrary standard? As proposed by Thévenot (1984)
and Yates (1989), such Taylorist normalization— and its consequences—
heavi ly relies on mea sures, coding, and equity methods whose scriptural
circulation allows the centralization of control over the workers. A new
algorithm is published that may ignite original ave nues of research in digi-
tal image pro cessing? As I will try to show throughout this book, the for-
mation of such an actant owes a great deal to the production, circulation,
transformation, and compilation of many dif fer ent types of inscriptions.
We will more thoroughly examine the world- generative capacity of inscrip-
tions in due time (especially in chapters 4, 5, and 6). For now, suffice it to
say that these durable, mobile, and re- presentable actants contribute a lot
to what is constantly happening.

But what ever their generative power, “inscriptions” do not exist by
themselves: they obviously need to be produced before they start to circu-
late. In that sense, every inscription needs to be inscribed. Extracting some
aspects of associations (or “events”; at this point, both terms are equivalent)
and re- presenting them on flat, durable media is not at all evident: What
part of the event shall be kept and written down? What language shall be
used? What protocol shall be followed to later compare this inscription

Introduction 15

with some others and produce, in turn, new compiled inscriptions? Consid-
ering the world- generative potential of inscriptions, these are major issues,
most of time supported by orga nizational and professional practices with
their own goals, rules, and princi ples that every day engage hundreds of
millions of people and instruments. This oriented work consisting in pro-
ducing inscriptions and, eventually, capitalizing on their world- generative
potential is what Dorothy Smith (1974) calls “the fabric of documentary
real ity.”13 And this fabric is highly po liti cal.

To illustrate her point, Smith takes the a priori mundane example of
birth certificates. Inscribing a birth on a report is, in fact, not evident nor
neutral. It is the product of an orga nizational and professional practice that
shapes births and their accounts in very peculiar terms, very dif fer ent from,
say, how mothers and fathers may want to remember it. As she put it:

“Jessie Franck was born on July 9th, 1963” appears maximally unequivocal in this
re spect. But as we examine how it has been fabricated it becomes apparent that its
character as merely a rec ord is part of how it has been contrived. Every thing that
a mother and a father might want to have remembered as how the birth of Jessie
Franck was for them is stored elsewhere and is specifically discarded as irrelevant
in the practices of the recording agency. The latter is concerned only to set up
a certified and permanent link between the birth of a par tic u lar individual—an
 actual event, and a name and certain social coordinates essential to locating that
individual— the names of her parents, where she was born, etc. (Smith 1974, 264)

Birth certificates are very selective— they only keep a very small part of
birth events— and this se lection is oriented toward the potential of such
concise inscriptions— their features can, in turn, be used for identification
purposes or government statistics. Moreover, as being inscriptions that can
be remobilized in other spaces, birth certificates and their desired purposes
make a specific version of births that will, in many cases, impose on other
concurrent versions. Despite their very partial and partisan origins, these
circulating inscriptions will form a fulcrum for other inscriptions, progres-
sively establishing formal, factual, and so- called “neutral” versions of births.

This po liti cal aspect of inscription practices which aim to make partial
partisan versions of events does not only concern administration. The
power of Smith’s argument lies in that it is also applicable to any inscription
as it is materially impossible to fully inscribe an event in all its subtleties:
choices need to be made regarding what will be kept (and formatted) and
what will be ignored. What inscriptions gain as world- generators also lose
as world- betrayers, the latter being even a condition to the former.14

16 Introduction

With these ele ments in mind, let us now come back to this pre sent book.
Have I not said it intends to be a so cio log i cal work? Have I not said it
intends to account for associations that progressively form devices we call
algorithms? At this point, these assertions can be further specified. Sociol-
ogy, as a professional activity that consists in producing specialized texts
(log os) about associations (socius), does not escape what I shall now call
“Dorothy Smith’s law”: however descriptive it is, sociology brings into
being—by means of inscriptions— partial realities to the detriment of other
realities. What is true for administrators (Desrosières 2010), economists
(MacKenzie, Muniesa, and Siu 2007), or scientists (Latour 1987) is also true
for sociologists: while describing realities by means of texts, they also enact
 these realities.

As Law and Urry (2004, 396) well summarized it, there is no innocence:15
a text, however faithful— and some texts are definitely more faithful than
 others—is also a wishful accomplishment. I must then admit that what I
intend to do in this book is not only describing what happens in par tic u lar,
algorithm- related, situations: due to this book’s very existence as a textual
inscription, it is also an attempt at enacting a world to the detriment of
other enacted worlds. My gesture is thus analytical and po liti cal: it aims to
produce a descriptive account of how algorithms come into existence—we
can keep that— but also, and in the same movement, to propose a new ver-
sion of their realities. The motivation behind this analytico- political move
 were presented in the previous section: in these days of controversies over
the agency of algorithms, a refined— yet formatted and thus intrinsically
 limited— account of their inner components may establish grounds for
constructive disputes about and with algorithms.

To come back to the title of this section, I assume the classical notion of
“construction” does not well express such a venture. Construction has been
for sure a useful term for sociology as it has equipped many valuable cri-
tiques of naturalized matters: studies on the construction of gender (Lorber
and Farrell 1991), patriarchy (Lerner 1986), or maternity (Badinter 1981),
just to mention some classics, have all been wonderfully liberating. But
considering recent developments in STS and sociology in general, it appears
that construction suffers from being two- faced: while it well expresses its
descriptive aspirations— showing how results have been produced—it also
tends to hide its po liti cal claims— generating realities to the detriment of
 others.16 Due to its propensity to hide “Dorothy Smith’s law” under the

Introduction 17

cover of analytical ambitions, I consider it wiser to renounce using the term
“construction” to qualify my overall gesture.

I am not the first sociologist to dismiss construction. It is in fact quite
a popu lar move, motivated by more or less the same arguments as pre-
sented above. Law and Urry (2004) prefer to use “enactment” as it better
expresses the performativity of descriptive ventures. Latour (2013), inspired
by Souriau ([1943] 2015), has recourse to “instauration” as it underlines the
fragility of practical, succeeding assemblages. Ingold (2014), in the wake
of Rorty (1980), gives priority to “edification” as it stresses the continu-
ous and never fully achieved aspect of what is about to happen. All these
notions are surely in ter est ing alternatives to construction. But at the risk of
feeding in a so cio log i cal jargon already well supplied, I choose here to use
the notion of “constitution” as it has the significant advantage of contain-
ing natively a double signification: a pro cess by which something occurs
as well as a document advocating for rights and prerogatives. Here lies an
in ter est ing tension that may recall the assumed ambivalence of my gesture:
describing and contesting. Moreover, as a constitution is never fixed once
and for all (it can be amended, completed, abolished), the notion forces us
to recognize the necessary incompleteness of my venture, the three activi-
ties that I try to put into existence here— ground- truthing, programming,
and formulating (more on this later, obviously)— must be considered partial
and temporary. Many more gerund articles, as long as they are supported
by empirical materials, can be potentially added to the pre sent constituent
act of algorithms.

For all these reasons, this book’s title The Constitution of Algorithms should
be understood as the putting into text and existence— si mul ta neously
empirical and activist—of what algorithms shall be. At the very end of the
inquiry, in light of the accounted ele ments, I will come back to the implica-
tions of this analytical/insurrectional gesture in a section borrowing from
Antonio Negri’s (1999) work on “constituent power.” For now, let us just
note and accept this ambivalence by using the term constitution, a con-
stant reminder of this inquiry’s bi polar ity.

A Laboratory Study

At this point, I have no other choice than to ask the reader to follow me—at
least temporarily—in assuming that in these days of controversies over the

18 Introduction

agency of algorithms, the invisibility of the work required to design, shape,
and diffuse them is negative as it prevents disputing parties from having
common grounds for negotiations. Let us also assume that one way to pro-
pose such grounds, and thus to suggest constructive disputes and composi-
tion attempts, could be to conduct so cio log i cal inquiries in order to make
vis i ble the work practices required to make algorithms come into existence.
Let us fi nally assume that this volume is an attempt at such an inquiry that,
in its capacity as a world- generative inscription, cannot but be a partial,
partisan, and open- ended (while also faithful and empirical) constitution
of algorithms. If we accept these debatable assumptions, the next question
could be: How can I effectively run such a partial, empirical, and activist
inquiry? On what materials can I ground it?

It would be tempting to use readily available sources, such as the many
academic papers and manuals describing the internal workings of algo-
rithms. This is in fact what several STS scholars have done in some very
in ter est ing works.17 However, I have reasons to believe that the sole use of
 these sources surreptitiously contributes to the perpetuation of the negative
invisibility of algorithms’ components. Regarding computer science papers
published in academic journals, it would, of course, be incorrect to say that
this lit er a ture is erroneous: on the contrary, it attests to what is about to,
perhaps, become scientifically true.18 But as many impor tant science stud-
ies have shown, these scientific publications tend to report the results of
pro cesses, not the practical activities that led to those results. Under these
conditions, it is problematic to solely use academic publications to make
the formation of algorithms vis i ble since these documents are themselves
supported and framed by unstated ele ments. Michael Lynch (1985) well
summarized this prob lem inherent in the analy sis of scientific publications:

[Methods sections of scientific research papers] supply step- by- step maxims of
conduct for the already competent practitioner to assimilate within an indefinite
mix of common sense and unformulated, but specifically scientific, practices of
inquiry. These unformulated practices are necessarily omitted from the domain of
study when science studies rely upon the literary residues of laboratory inquiry as
the observable and analyzable presence of scientific work. (Lynch 1985, 3)

Moreover, for entangled reasons we will cover throughout this book, authors
of academic papers tend also to defend their algorithms against concur-
rent algorithms. A claim published in a scientific journal is indeed directed
against other claims and is intended to obtain the reader’s support. Hence

Introduction 19

the importance of captation techniques that aim “to lay out the text so
that wherever the reader is there is only one way to go” (Latour 1987, 57).
 These conviction habits and the additional necessity they provide— essential
ele ments to establish objective constructions— tend to purify the scientific
accounts of algorithms of the many disparate ele ments that have contrib-
uted to their textual existence. When relying on these documents to analyze
computerized methods of calculation, it is therefore the hesitations, doubts,
and “infra- ordinary” equipment and writings that tend to escape the ana-
lyst’s gaze.19

But what about the numerous manuals that teach us how to design
algorithms?20 Do they not provide descriptions of how to assem ble com-
puterized methods of calculation? Are they not, in that sense, connectors
between algorithms and the collective world they contribute to shaping?
 These pedagogical resources are certainly crucial to inculcate students and
newcomers with the basic components of computerized methods of cal-
culation, which are essential to their so cio log i cal analy sis. Yet, as Lucy
Suchman (1995) reminded us, these resources are, by definition, normative
accounts of how work should be done, not of how work is effectively done.
This is a crucial but often forgotten precision: “[These] normative accounts
represent idealization and typifications. As such, they depend for their
writing on the deletion of contingencies and differences” (Suchman 1995,
61). Instead of accounting for what it is being done during mundane situ-
ations, manuals account for what ought to be done. They are (impor tant)
peremptory recipes, not empirically grounded accounts of practices.21 This
is, I believe, the main limitation of con temporary studies that rely mainly
upon textbooks and classes on algorithmic design: they inform about how
con temporary pedagogues want algorithms to be constructed, not on how
 these algorithms are constructed on a day- to- day basis. Instead of getting
closer to computer scientists by accounting for their work, these studies,
other wise very in ter est ing, tend to move them further away.22

Academic papers and manuals are therefore sources that should be han-
dled with precautions. But how to reach what these sources, which remain
useful and impor tant, contribute to keeping out of sight? How to get a
higher definition, yet still intrinsically limited, picture of the work required
to assem ble algorithms? Fortunately, for this very specific purpose, I can
rely on a proven STS analytical genre often labeled “laboratory study.” The
first such studies appeared in the 1970s, mostly in the United States. In a

20 Introduction

sense, the collective (Western) world was at that time not so dissimilar to
the one we are experiencing today: controversies about types of agencies
 were arising continuously. But instead of algorithms, these controversies
mostly concerned scientific facts often developed in life science, physics,
and neurology. For many reasons that are too entangled to be discussed
in this introduction,23 several scholars felt the need to deflate the delusive
aspect of scientific facts by so cio log i cally accounting for mundane prac-
tices of natu ral scientists trying to manufacture certified knowledge (Col-
lins 1975; Knorr- Cetina 1981; Lynch 1985; Latour and Woolgar 1986). The
method of these scholars was quite radical: in reaction to the authoritative
precepts of epistemology, these authors borrowed from ethnography its
in situ analytical perspective to document “the soft underbelly of science”
(Edge 1976). As Latour and Woolgar put it:

We envisaged a research procedure analogous with that of an intrepid explorer
of the Ivory Coast, who, having studied the belief system or material production
of “savage minds” by living with tribesmen, sharing their hardship and almost
becoming one of them, eventually returns with a body of observations which he
can pre sent as a preliminary research report. … We attach par tic u lar importance
to the collection and description of observations of scientific activity obtained in
a par tic u lar setting. (1986, 28; emphasis in the original)

Instead of starting from scientific theories, minds, or “laws of Reason,”
 these laboratory ethnographers— who actively participated in the launch-
ing of Science and Technology Studies— de cided to start from mundane
actions and work practices to document and make vis i ble how scientific
facts were progressively assembled. Several other monographs accounting
for the practices of physicists (Traweek 1992; Sormani 2014) and design
engineers (Vinck 2003) followed the seminal 1980s laboratory studies, each
time providing insightful new results. We will cover some of these results in
due time. For now, suffice it to say that the pre sent so cio log i cal inquiry is
based almost entirely on these works. But what does that concretely imply?

It first implies locating places where individuals work daily to assem ble
algorithms. For my case, this localization exercise was not very difficult
as I was institutionally close to a Eu ro pean technical institute with about
twenty computer science laboratories working every day to propose new
algorithms and to make them circulate in broader academic and indus-
trial networks. A more arduous task was to convince the director of one
 these laboratories to let me describe the practical shaping of algorithms as

Introduction 21

an “intrepid explorer.” Fortunately, institutional movements related to the
establishment of a new institute of digital humanities enabled me to share
my research ambitions with a computer science professor open to inter-
disciplinarity.24 And after several trials, I could be part of her laboratory of
digital image pro cessing for two and half years, from November 2013 to
March 2016. These were no passive moments: as required by the analytical
genre of laboratory studies and also by the rules of the laboratory to which
I was affiliated as full member, I had to participate in the life of the labora-
tory and thus become somewhat competent. Although the skills I progres-
sively acquired certainly did not make me become a computer scientist,
they were nonetheless crucial for speaking adequately about issues that
mattered to my new colleagues. But participating and discussing were not
enough: I also had to write down, collect, and compile what I did, saw, and
discussed. Very concretely, this implied taking a lot of notes. Discussions,
meetings, pre sen ta tions, actions: every thing I experienced had, ideally, to
be written down, referenced in notebooks and computer documents to be
 later retrieved, compared, sampled, and analyzed. This full- time data com-
pilation work implied one last move: after my stay within the computer sci-
ence laboratory— during which I participated in proj ects, held discussions
with colleagues, observed what they did, wrote down as much as I could,
and made pre sen ta tions about my preliminary results (pro cesses that have
deeply transformed me and the sociology I now do)— I had to return to
my own community of research to more thoroughly work on the collected
materials and write an investigation report that, progressively, has become
the pre sent book.

But these all- too- basic ele ments— that will be more thoroughly presented
in chapter 1— elude one impor tant question: How to effectively account
for, and thus write down and analyze, what computer scientists do as they
try to shape new algorithms within their laboratory? How to experience,
capture, and analyze their actions?

Courses of Action

As soon as one is convinced of, and enabled to, undertake a laboratory
study to document—in a partial yet faithful way— the constitution of algo-
rithms, one quickly lands in uncharted territory. If there are laboratory
studies of life sciences, physics, medicine, or brain sciences, very little has

22 Introduction

been published on computer science work.25 The cost of entry and the time
required to carry out this type of investigation certainly contributed to this
situation. But it is also pos si ble that a peculiar habit of thought partici-
pated in this disinterest. Indeed, for entangled reasons I will try to tackle in
chapters 3 and 5, the fair assumption that computer code and mathe matics
actively contribute to the shaping of computerized methods of calculation
is often doubled with the not- so- fair assumption that both code and mathe-
matics have no, or little, empirical thickness. This assumed evanescence of
the ingredients of algorithms contributes, in turn, to making them appear
inscrutable. This common habit— that Ziewitz (2016) associated with an
“algorithmic drama”26— may have discouraged sociologists from entering
sites where algorithms are shaped, diffused, and maintained: Why bother
trying to inquire into these places since every thing happens in the heads of
 those who work there?

But like any ethnographer involved in the daily work of a scientific
laboratory— trying to participate, talk adequately, and compile empirical
materials— I quickly realized that very few things could be attributed to the
brains of my colleagues, however clever they were. Of course, they never
 stopped doing things— writing on scratch paper, comparing graphs, typing
on keyboards, inspecting databases, moving their mouse cursors, taking cof-
fee breaks— that at first appeared unrelated. But as I stubbornly accounted
for these things in my logbooks, I soon realized that the succession of these
small elementary “blocks” of action sometimes ended up forming bigger
accomplishments: a database, a script, a complete program, an algorithm.
By remaining continuously with my new colleagues in their laboratory,
conscientiously writing down observations and even recording some work
sequences (with their prior authorization), I was soon forced to admit
that what we call “practice” is in fact a term without opposite (Latour 1996).
In the artificial setting of my laboratory study, accounting for as many
associations as pos si ble, I soon realized that the much- debated distinction
between “theory” and “practice” was an artifact. In the laboratory, there
 were only practices whose successions ended up sometimes forming “data-
bases,” “computer programs,” “mathematical models,” or “algorithms.” A
little- equipped retrospective look on these trajectories could easily ignore
their importance. But once I managed to slow these trajectories down
and patiently account for them— sometimes with the help of those who

Introduction 23

 were realizing them— I realized that I could almost do without any internal
“abstract” cognitive mechanisms.

Following the seminal work of Jacques Theureau (2003), I shall use the
term courses of action for these accountable chronological sequences of ges-
tures, looks, speeches, movements, and interactions between humans and
nonhumans whose articulations may end up producing something (a piece of
steel, a plank, a court decision, an algorithm, etc.).27 Sticking to this generic
definition is crucial as it will help us resist the supposed abstraction of com-
puter science work: what ends up being called a “mathematical model,”
“code,” or even “algorithm” must be, one way or another, the product of
accountable courses of action unfolding within specific situations and car-
ried out by assignable actants. Moreover, I shall include under the generic
term “activity” courses of action unfolding in dif fer ent times and locations
that yet lead to related achievements. In this volume, an activity will then
be understood as a set of intertwining courses of actions sharing common finali-
ties. The three parts of this volume are all adventurous attempts to pre sent
activities taking part to the formation of algorithms; hence their respective
titles ending with ing: ground- truthing, programming, formulating.

This leads to one potential limitation of courses of action as laboratory
studies allow them to be accounted for. I mentioned earlier that trajectories
must often be slowed down to identify the courses of action whose articula-
tion may lead to the formation of something. This slowing down is salutary
as it allows many crucial shaping actions to unfold. But it also has one flaw:
it forces one to proceed very slowly. As a consequence, any small a priori
mundane course of action may unfold on a dozen pages, thus limiting the
number of cases.28

Three Gerund Parts (But Potentially More)

I hope the reader has gotten a sense of why I de cided to make this inquiry,
how I tried to conduct it, and where it may eventually lead. But before
diving in this exploratory study, I shall briefly pre sent the three parts of
this book that, following my action- oriented methodology, are all gerunds:
ground- truthing, programming, formulating.

Part I mainly deals with the work required to define prob lems capable
of being solved computationally. In chapter 1, I pre sent the overall setting

24 Introduction

of the inquiry and introduce basic notions in digital image pro cessing and
standard algorithmic study. In chapter 2, I go directly to the heart of the
 matter and follow a group of young computer scientists trying to publish one
of their algorithms. During this first case study of image pro cessing in the
making, we will encounter what computer scientists call “ground truths”: ref-
erential repositories that work as material bases for algorithms. The centrality
of ground truths and of the work required to build them make me assert that,
to a certain extent, we get the algorithms of our ground truths.

Part II tries something that has rarely been attempted: considering com-
puter programming as a practical, situated activity. In chapter 3, I propose
historical and conceptual reasons why programming has resisted— and
still resists— ethnographic scrutiny. At the end of the chapter, I focus on
the computational meta phor of the mind, the main conceptual stumbling
stone preventing any close analy sis of computer programming practices.
In chapter 4, building on notions and concepts introduced in the previ-
ous chapters, I carefully describe computer programming courses of action
I attended during my laboratory study. Besides opening new ave nues of
research, this second case study leads, inter alia, to the following proposi-
tion: a programmer may never solve any prob lem.

In part III, I consider the role of mathe matics in the formation of algo-
rithms. In chapter 5, I first build on STS- inspired inquiries into mathe matics
to pre sent mathematical practices as stakeholders of scientific activity. I
then use this unconventional view on mathe matics to define formulat-
ing as the activity of translating entities until they acquire the same form
as previously- defined mathematical objects. In chapter 6, I build on these
theoretical arguments to account for courses of action that successfully
formulated some of the relationships among the data of a ground- truth
database. This third and last case study will also make us appreciate some
of the numerous links between ground- truthing, programming, and formu-
lating activities, entangled pro cesses that, sometimes, leads to the shaping
of algorithms. These ele ments will fi nally allow me to touch on the topic
of machine learning and artificial intelligence, here considered audacious
yet costly attempts at automating formulating practices. In the conclusion,
I develop some corollaries of the empirical and theoretical ele ments this
inquiry unfolded.

Although ground- truthing, programming, and formulating activities fol-
low each other in the pre sent volume, they do not necessarily do so in the

Introduction 25

“real” life of action. In places such as the computer science laboratory we
 will soon get to know, these activities form a whirlwind pro cess whose ele-
ments influence each other in a dance of agency (Pickering 1995). Moreover,
even though this book’s narrative thread is sequential— with subsequent
chapters sometimes referring to previous ones— one may browse through
it in dif fer ent ways. Readers interested in ethnographic accounts may, for
example, jump from one case study to another before eventually coming
back to more theoretical pieces such as chapters 3 and 5. Readers who favor
conceptual ventures may wish to go the other way round, starting with intel-
lectual matters before coming back to down- to- earth accounts of practices.
Of course, curious readers without specific expectations may also follow the
book’s thread, starting from chapter 1 and ending with the conclusion.

As mentioned earlier, it is impor tant to keep in mind— almost like a
mantra— that these three activities forming an empirical and partisan ver-
sion of what algorithms shall be are not fixed nor exclusive. Even though
they form, I believe, a refreshing and faithful conception of how algorithms
come into existence, the precise ecol ogy of algorithms would clearly benefit
from further investigations. There are surely many more activities contrib-
uting to the formation of algorithms that future ethnographies and case
studies will, hopefully, unfold. In that sense, although this volume does
intend to bring about an alternative action- oriented constitution of algo-
rithms, my arguments should also be considered preliminary propositions
asking for further considerations.

At any rate, inscriptions make worlds only when read: at this point, my
main concern is that readers— sociologists interested in the constitutive
relationships of algorithms; computer scientists curious about an alterna-
tive action- oriented account of their work; or in fact, anyone concerned
about the power, and beauty, of algorithms— are intrigued enough to come
with me to explore some of the things that are happening in a computer
science laboratory.

I Ground- Truthing

The fact that techniques mediate advances suggests a way in which mathemati-
cal prob lems that arise in society are ultimately in some relationships with the
techniques which that society has forged. This, in turn, suggests that mathemati-
cians, like socie ties, can only pose those questions to which a potentiality of a
response exists.

— Ritter (1995, 72)

The introduction presented the rationale of this inquiry. Now, obviously,
the hard work begins: effectively doing it! We will start smoothly though,
with two straightforward chapters. Chapter 1 specifies the overall setting of
the inquiry: a well- respected computer science laboratory that specializes
in digital image pro cessing; I shall call it “the Lab.” I start by presenting
its environment and some aspects of its organ ization as well as its place,
modest but substantive, in the heterogeneous ecosystem of computer sci-
ence industry. I will also consider methodological matters and discuss the
notion of algorithm as it is generally presented in the specialized lit er a ture.
Chapter 2 starts in the middle of things at the Lab’s cafeteria during a work-
ing session where the Group— three young computer scientists— tries to
coordinate the development of a new algorithm. After a quick parenthesis
where I pre sent the basic issues at stake, we will closely follow this proj ect,
meeting along the way entities called “ground truths” whose importance in
the constitution of algorithms we will learn to appreciate. The last section
of chapter 2 will be a brief summary.

This inquiry took place in a Eu ro pean technical institute (ETI) between
November 2013 and February 2016. This public school was integral part of
the global academic landscape and hosted more than five thousand under-
graduate and twenty- five hundred gradu ate students in five faculties: basic
sciences, engineering, life sciences, architecture, and computer science.
In this investigation, I will mainly focus on the computer science faculty
(CSF), one of the most renowned within the ETI for its ability to attract
foreign students and professors, to raise impor tant research funds, and to
engage in numerous partnerships with the industry.

Over the time of this inquiry, the CSF employed nearly forty professors
supervising the training of more than 780 undergraduate and 550 gradu ate
students. The CSF professors were supported in their teaching activities by
around 250 doctoral students who were also working on the completion of
their PhD theses, generally over four years. Research among CSF members
was extremely varied, ranging from theoretical computer science and hard-
ware architecture to machine learning and signal pro cessing. Significant
 human and material resources were invested to gird the whole domain of
computer science and take active part to its development.

Teaching, research, and administrative activities of the CSF were mainly
located in six buildings linked to each other by a system of paths, foot-
bridges, and under ground passages. Within this complex, the most recent
building (inaugurated in 2004) served as a nerve center, housing most of the
laboratories, the best equipped conference rooms, and the faculty’s cafete-
ria, highly prized for its breathtaking view of the surroundings (figure 1.1).
Opposite the CSF’s main building, on the other side of a small road, was
another complex of buildings housing around one hundred start- ups and

1 Studying Computer Scientists

32 Chapter 1

spin- offs as well as several offices of large companies and ser vice provid-
ers. Created in the 1990s, this innovation area had the explicit purpose
of bringing fundamental research outputs closer to the industry, accord-
ing to dynamics of scientific valorization close to those analyzed by Lili-
ana Doganova (2012). Members of this innovation area often interacted
with members of the CSF during both formal and informal events, many of
which took place in the CSF main building.

However, the vast majority of CSF students did not launch start- ups at
the end of their training programs. Rather, they tended to be hired by large
national and international technology companies. This was particularly true
for doctoral students whose research funds were frequently supported by large
companies such as Google, IBM, NEC, or Facebook following calls for proj-
ects, thus creating multiple and regular professional connections. Visiting
trips and internships were also routinely or ga nized within technology com-
panies as part of master’s and doctoral programs. This was another distinctive
feature of CSF: within the ETI, CSF students had the greatest employability.

But public money nonetheless constituted the main financial resource
for ongoing research proj ects. Here, too, the CSF seemed to have a strategic

Figure 1.1
The CSF main building. On the left and right sides of the central patio, lines of offices
and seminar rooms. In the center of the image, in air- conditioned rooms with
glazed win dows, three server farms store local programs, experiments, and databases.
On the top floor, illuminated, one can discern the entrance to the faculty cafeteria.

Studying Computer Scientists 33

advantage within the ETI, heavi ly capitalizing on and participating in pub-
lic speeches reporting the advent of a new industrial revolution around
big data, machine learning, and artificial intelligence. In addition, thanks
to the CSF’s reputation as a potential trainer of a new generation of digital
entrepreneurs (with several iconic pre ce dents participating in this reputa-
tion), its financing requests could play the renewal of industry card, a goal
explic itly put forward by national research funding agencies. Relative to its
size within the ETI, the CSF was thus one of the faculties to which the most
public research funds were allocated.

Although the CSF hosted cutting- edge computer equipment, its premises
remained open most of the time. From 7 a.m. to 7 p.m., apart from incon-
spicuous surveillance cameras placed in sensitive areas such as server farms,
no special security procedures were in place. Unlike, for example, Vincent-
Antonin Lépinay’s (2011) analy sis of General Bank’s trading rooms, my
ethnographic inquiry was largely conducted in an open environment with
no explicit surveillance mechanisms. For example, it was common to meet
tourists who came to visit and photo graph the high- tech architecture of
the CSF premises. From 7 p.m. to 7 a.m., the security system was comple-
mented by two night watchmen and locked entrance doors (with alarms)
for those without an access card.

Nevertheless, while the CSF premises remained open most of the time, I
of course needed institutional support to collaborate with computer scien-
tists and document their courses of action. Without an e- mail address and
an account within the administrative system, it was, for example, impos-
sible to connect to the CSF servers or use advanced software, both constitut-
ing the basic infrastructure of most ongoing proj ects. Moreover, given the
deliberately small size of most of the CSF laboratories (around twenty col-
laborators under the supervision of a professor), it was impossible to blend
into the mass and investigate in a hidden way.

As a Science and Technology Studies (STS) sociologist without any for-
mal training in computer science, I first had difficulty raising the interest of
the CSF professors as my research questions appeared too abstract and their
impact too uncertain. Fortunately, at some point I had the opportunity to
surf on a broader institutional movement seeking to bring the CSF closer to
the faculty of human sciences (FHS) of a neighboring university to which I
was then affiliated. In early 2013, with the stated desire to penetrate cultural
spheres, the ETI’s management started to invest in the establishment of a

34 Chapter 1

center for digital humanities. As this movement involved the recruitment
of new teaching and research staff, it quickly created links between human-
ity scholars of FHS— some of them STS- inspired— and computer scientists of
ETI, and it was in this context of disciplinary rapprochement that I met the
director of a laboratory that specialized in digital image pro cessing. After
several furtive yet decisive exchanges, I obtained her support to apply for a
national fellowship promoting interdisciplinary research. Following several
se lection rounds, my application was fi nally retained in September 2013,
therefore committing me to run a four- year FHS- CSF doctoral proj ect with
the stated ambition of carry ing out an ethnographic inquiry into the for-
mation of algorithms.1 This dual institutional affiliation allowed me to be
officially accredited as full member of CSF’s image- processing laboratory
for a period of two- and- a- half years. From November 2013 to March 2016, I
had not only the same rights as any laboratory member, notably in terms of
research infrastructure, but also the same prerogatives, notably in terms
of pre sen ta tion of results. While these conditions of investigation were at first
quite tough— after all, I had initially no experience in computer science—
they gave me the unique opportunity to stay, observe, and work for what I
 will from now on call “the Lab.”

The Lab

The Lab was located on the third floor of the CSF main building. Typical of
the organ ization of the CSF, it was centered upon the tutelary figure of a full
professor, the director of the Lab. The director was assisted by a secretary
dealing with administrative issues that were often complex due to the high
proportion of collaborators who came from abroad (especially from Persia,
India, and China).2 Among these collaborators, one postdoc student stayed
at the Lab for one- and- a- half years. An invited scholar also had a desk and
took active part in teaching and research activities. Members of spin- offs,
sometimes related to the innovation area mentioned earlier, also stayed
within the Lab for the duration of their fund raising, ranging from one to
two years. It was not uncommon for these spin- off collaborators to make
pre sen ta tions at Lab seminars (more on this later), though in these situa-
tions the other collaborators were required to re spect an unofficial “nondis-
closure arrangement.” Some collaborators in between two research contracts
 were also sometimes hired as “scientists,” a temporary position allowing

Studying Computer Scientists 35

them to pursue their ongoing work in decent conditions. However, most
of the Lab’s members were PhD students aged from twenty- three to thirty
years old and generally holders of four- year employment contracts, at the
end of which they were asked to submit doctoral theses allowing them
to become doctors of computer science. During my time in the Lab, the
number of PhD students varied from six to ten and depended on the num-
ber of submitted theses and awarded research contracts. In parallel to their
research activities, these students also had to work as teaching assistants for
bachelor’s and master’s classes, including those given by the Lab’s director.
All in all, for the two- and- a- half years of my collaboration, the Lab hosted
between ten and sixteen people, including myself.

Like many CSF professors, the director continuously tried to establish
community dynamics within her Lab. This involved, for example, bringing
cakes and biscuits to encourage informal chatting at the end of the weekly
Lab meetings, during which one or two collaborators presented their work
in pro gress. Two Lab dinners at nearby restaurants were also or ga nized each
year; one around Christmas, the other at the end of June. Echoing a cor-
porate outing, a two- day excursion was or ga nized during the summer as
well. The Lab’s PhD students also contributed to this dynamic by frequently
organ izing “after- work” outings to the school pub on their own initiative.
All these facilitation efforts effectively created and maintained relation-
ships among collaborators, many of whom had initially arrived in the Lab
without knowing anyone in the area.

To some extent, the architectural organ ization of the Lab also partici-
pated in these community dynamics as the seven offices, generally occu-
pied by two researchers facing each other, were each aligned along the same
hall (see figures 1.2 and 1.3). The Lab also had a private cafeteria that pro-
vided tables, chairs, fridges, and coffee machines. As we will see later, this
cafeteria was often used as a meeting point, even though the Lab had its own
seminar room.

If these community dynamics, greatly encouraged by the Lab’s direc-
tor, did contribute to creating an enriching work environment, then they
also went along with managerial aspects. For example, attendance and con-
tribution to Lab meetings were mandatory, with each collaborator being
required to make at least one pre sen ta tion per semester. In addition, similar
to corporate settings, collaborators were required to inform the secretary in
the event of illness or incapacity, thus suggesting they should be at the Lab

36 Chapter 1

Figure 1.2
The Lab’s hall. On the left, behind closed doors, the Lab’s cafeteria and seminar room.
On the right, seven offices most of the time occupied by two researchers.

Figure 1.3
Inside one of the Lab’s offices. Two researchers were generally facing each other, though
they were behind one to three large monitors.

Studying Computer Scientists 37

 every working day unless other wise specified. Moreover, scientific collabo-
rators were asked to meet with the director at least once every two weeks to
inform her of their research pro gress. This allowed the director to have an
actualized view on the ongoing proj ects while committing collaborators to
sharing results, questions, prob lems, or doubts with her.

This leads us to one central ele ment penetrating many aspects of the
Lab: researchers were asked to produce outputs. This incentive to produce
tangible results derived from a broader dynamic, now common to research
institutions desiring to achieve, and maintain, the heights of the academic
rankings of world universities (Espeland and Sauder 2016). Although most
of the CSF laboratory directors held stable academic positions, they none-
theless had to be accountable for the per for mance of their research teams as
the category of output having the greatest impact on these evaluations were
articles published in peer- reviewed journals and conferences. Most of the
research efforts I attended and participated in were then directed toward
this very specific goal: publishing peer- reviewed articles. Despite its close
relations with the tech industry and its effective support for the launch of
spin- offs, the Lab was, in that sense, mainly academic- paper oriented.

But what was the content of the peer- reviewed articles that members of
the Lab sought to publish in academic journals and conference proceed-
ings? What was the Lab working on? The research field of the Lab was
existentially linked to the advent of a piece of equipment called the charge-
coupled device (CCD). The history of the CCD’s development, from its
patented concept at Bell Labs in the late 1960s to the many norms and stan-
dards that supported its industrialization during the 1990s, is a long and
tortuous story.3 In addition, a precise understanding of its now- stabilized
internal functioning would require foundations in solid- state physics.4 For
what interests us here— superficially understanding the main topic of the
Lab’s academic papers—we can just focus on what CCDs and their dif fer ent
variations such as complementary metal- oxide semiconductors (CMOSs)5
allowed the Lab to do (i.e., the potentialities these devices suggest).

In a nutshell, through the translation of electromagnetic photons into
electron charges as well as their amplification and digitalization, CCDs and
CMOSs—as industrially produced devices supported by many standards—
enable the production of digital images constituted of discrete square ele-
ments called pixels.6 Or ga nized according to a coordinate system allowing the
identification of their locations within a grid, these discrete pixels— assigned

38 Chapter 1

eight- bit red, green, and blue values in the case of color images (see figure 1.4)—
have the ability to be pro cessed by computer programs that are themselves,
most of time, inspired by certified mathematical statements. Many terms of
the former sentence will be discussed at length in the following chapters.
For now, it is enough to comprehend that in each of the seven offices of the
Lab as well as in many other scientific and industrial locations, pictures of
buildings, shadows, mountains, smiles, or elephants—as produced by stan-
dardized CCDs and CMOSs— were also considered two- dimensional signals
that could be pro cessed by means of computerized methods of calculation.7
The design and shaping of these methods, their pre sen ta tion within aca-
demic papers, and their expression as computer programs able to automati-
cally compute the constitutive ele ments of digital photo graphs (often called
“natu ral images”) was the main research focus of the Lab.8 This specific area
of practice was and is generally called “two- dimensional digital signal pro-
cessing” or, more succinctly, “image pro cessing” or “image recognition” (when
it deals with recognition tasks).

Even though spending time and energy assembling computerized meth-
ods of calculation capable of pro cessing CDD- and CMOS- derived pixels in

0

x axis

y axis

1

2
3

4

5

6

7

0 1 2 3 4 5 6 7 8

Pixel (5;1), color
(225;240;221)

Pixel (7;4), color
(138;151;225)

Pixel (1;3), color (225;240;247)

Figure 1.4
Schematic of the pixel organ ization of a digital photo graph as enabled by industri-
ally produced and standardized CCDs and CMOSs. The schematic on the right is an
imaginary zoom of the digital photo graph on the left. Every pixel is identified by its
location within a coordinate system (x/y). Moreover, assuming the image on the left
is a color image, each pixel is described by three complementary values, commonly
referred to as a red, green, and blue (RGB) color scheme. As most standard computers
now express RGB values as eight- bit memory addresses (e.g., one byte), these triplets
can vary from zero to 255 or, in hexadecimal writing, from 00 to FF.

Studying Computer Scientists 39

meaningful ways might at first sound esoteric, such an activity plays an impor-
tant role in con temporary economies.9 This is to be related with the unpre-
ce dented production, circulation, and accessibility of digital photo graphs:10
thanks to image- processing algorithms, these numerous two- dimensional
signals have become traces potentially indicating habits, attributes, prefer-
ences, and desires. Instead of a noisy, expansive stream of inscrutable data,
the many digital photo graphs produced and shared every day have turned
into valuable assets (Birch and Muniesa 2020) with the advent of image pro-
cessing and recognition. This is a phenomenon whose magnitude must be
grasped. Giant technology ser vices companies such as Facebook, Google,
Amazon, Apple, IBM, or Microsoft all have laboratories whose members work
 every day to manufacture new algorithms to commercially exploit the infi-
nite potential of digital photo graphs, tangible expressions of what users,
clients, and partners are assumedly attached to.11 Nation- states are not to
be left out either; power ful public agencies also massively invest in image
pro cessing to make use of the capabilities of digital photo graphs for security,
control, and disciplinary purposes.12 In recent years, similar to what Hine
(2008) described for the case of biological systematics, image pro cessing has
been seen as a resource in control and planning and, to this end, has increas-
ingly become the object of strategic policy concern and support.

All this may sound gloomy. However, image pro cessing is inextricably
a fascinating research area with many dedicated academic journals13 and
conferences.14 The research issue is indeed appealing: how to make box- like
computing machines see and possibly use their formalist ecol ogy to make
them detect, recognize, and reveal things that we, as bipedal mammals,
cannot grasp with our organic senses? Huge academic efforts are invested
 every day in the development of algorithms capable of manipulating CCD-
and CMOS- enabled pixels to make computers become genuine visual equip-
ment. It is impor tant to note, however, that a clear- cut boundary among
image- processing groups cannot be easily drawn: academic researchers are
funded by public agencies but also by private companies that themselves
are sometimes solicited by public agencies that then take part in the devel-
opment of industrial products. For better or worse, these heterogeneous
actants associate with each other and cooperatively participate in the devel-
opment and worldwide diffusion of image- processing algorithms through
computing devices. And at its own level, the Lab was participating in this
highly collective endeavor.

40 Chapter 1

Yet one may rightly object that a sixteen- person academic laboratory
for image pro cessing such as the Lab is not akin to, say, a giant technology
ser vices com pany such as Google or a power ful state agency such as the
National Security Agency. How dare I treat on the same level a small yet
respected academic institution welcoming an ethnographer interested in
the manufacture of algorithms and gigantic actors attached to secrecy and
daily contributing to the progressive establishment of a “black box society”
(Pasquale 2015)? It is true that impor tant differences exist between an algo-
rithm as an academic proposition and an algorithm as a commercial product
or an actual control device (notably in terms of optimization and software
implementation). Nevertheless, it is crucial to specify that academic contri-
butions such as those of the Lab do irrigate the work of large industrial and
state actors. These connections are often made vis i ble during in- house talks
where alumni working in the industry are invited to discuss their ongoing
proj ects in academic settings. During my stay at the Lab, I attended many
such talks and was at first surprised to find that behind a priori impressive
affiliations such as Google Brain or IBM Watson lay a computer scientist not
so dissimilar to the ones I daily interacted with, saying more or less the same
 things, and working in teams of similar proportions (though for a signifi-
cantly dif fer ent salary). For example, in November 2015, the director of the
Lab invited an Instagram employee—an alumnus of the Lab—to talk about
their new browsing system whose main components derived from a paper
published in the Proceedings of the 2014 IEEE Conference on Computer Vision
and Pattern Recognition. In June 2014, a former Lab member working for
NEC in a five- person team also presented her ongoing algorithmic proj ect
as deriving from a series of papers presented at the 2013 Eu ro pean Confer-
ence on Computer Vision in which she participated. Other people— mostly
from IBM and Google— also took part in these “invited talks” or ga nized by
the Lab and neighboring CSF signal- processing laboratories, most of the
time mentioning and using state- of- the- art publications.15 Actors who were
officially part of the industry appeared then closely connected to the aca-
demic community, working in teams of similar size, participating in the
same events, and sharing the same references. Better still, this continuous
interaction between academic laboratories such as the Lab and the gigantic
tech industry was a two- way street: companies like Google, Facebook, and
Microsoft also or ga nized academic events, sponsored international confer-
ences, and published papers in the best- ranked journals (see figure 1.5).16

D
ee

p
R

es
id

ua
lL

ea
rn

in
g

fo
r

Im
ag

e
R

ec
og

ni
tio

n

K
ai

m
in

g
H

e
X

ia
ng

yu
Zh

an
g

S
ha

oq
in

g
R

en
Ji

an
S

un
M

ic
ro

so
ft

R
es

ea
rc

h
{k

ah
e,

v-
xi

an
gz

,v
-s

hr
en

,j
ia

ns
un

}@
m

ic
ro

so
ft

.c
om

A
bs

tr
ac

t

D

ee
pe

r
ne

ur
al

 n
et

w
or

ks
 a

re
 m

or
e

di
ffi

cu
lt

to
 t

ra
in

.
W

e
pr

es
en

t
a

re
si

du
al

 l
ea

rn
in

g
fr

am
ew

or
k

to
 e

as
e

th
e

tr
ai

ni
ng

of

 n
et

w
or

ks
 t

ha
t

ar
e

su
bs

ta
nt

ia
lly

 d
ee

pe
r

th
an

 t
ho

se
 u

se
d

pr
ev

io
us

ly
.

W
e

ex
pl

ic
itl

y
re

fo
rm

ul
at

e
th

e
la

ye
rs

 a
s

le
ar

ni
ng

re
si

du
al

fu

nc
tio

ns

w
ith

re

fe
re

nc
e

to

th
e

la
ye

r
in

pu
ts

,
in

-
st

ea
d

of

le
ar

ni
ng

un

re
fe

re
nc

ed

fu
nc

tio
ns

.
W

e
pr

ov
id

e
co

m
pr

eh
en

si
ve

 e
m

pi
ric

al
 e

vi
de

nc
e

sh
ow

in
g

th
at

 th
es

e
re

si
du

al

ne
tw

or
ks

 a
re

 e
as

ie
r

to
 o

pt
im

iz
e,

 a
nd

 c
an

 g
ai

n
ac

cu
ra

cy
 f

ro
m

co

ns
id

er
ab

ly
 in

cr
ea

se
d

de
pt

h.
 O

n
th

e
Im

ag
eN

et
 d

at
as

et
 w

e

0
1

2
3

4
5

6
0

1020

ite
r.

 (1
e4

)

training error (%)

0
1

2
3

4
5

6
01020

ite
r.

 (1
e4

)

test error (%)

56
-la

ye
r

20
-la

ye
r

56
-la

ye
r

20
-la

ye
r

Fi
g

u
re

1.
Tr

ai
n

in
g

er
ro

r
(l

ef
t)

an
d

te
st

er
ro

r
(r

ig
h

t)
o

n
C

IF
A

R
-1

0
w

it
h

20
-l

ay
er

an
d

56
-l

ay
er

“p
la

in
”

ne
tw

or
ks

.T
he

de
ep

er
ne

tw
or

k
ha

s
hi

gh
er

tr
ai

ni
ng

er
ro

r,
an

d
th

us
te

st
er

ro
r.

S
im

ila
r

ph
en

om
en

a
on

Im
ag

eN
et

is
pr

es
en

te
d

in
Fi

g.
4.

Fi
gu

re
 1

.5
Ex

am
pl

e
of

 a
n

 a
ca

de
m

ic
 p

ap
er

 p
ub

lis
h

ed
 b

y
an

 in
du

st
ri

al
 r

es
ea

rc
h

 te
am

. T
h

is
 p

ap
er

 d
ea

lin
g

w
it

h
 d

ee
p

n
eu

ra
l n

et
w

or
ks

 fo
r

im
ag

e
re

co
gn

i-
ti

on
 w

on
 t

h
e

be
st

 p
ap

er
 a

w
ar

d
of

 t
h

e
20

16
 I

EE
E

C
on

fe
re

n
ce

 o
n

 C
om

pu
te

r
V

is
io

n
 a

n
d

Pa
tt

er
n

 R
ec

og
n

it
io

n
. T

h
ou

gh
 c

op
yr

ig
h

te
d

by
 t

h
e

In
st

it
ut

e
of

 E
le

ct
ri

ca
l a

n
d

El
ec

tr
on

ic
s

En
gi

n
ee

rs
 (I

EE
E)

 (t
h

e
of

fi
ci

al
 e

di
to

r
of

 th
e

co
n

fe
re

n
ce

’s
 p

ro
ce

ed
in

gs
),

 it
s

co
n

te
n

t i
s

fr
ee

ly
 a

va
ila

bl
e

in

th
e

ar
X

iv
 . o

rg
 r

ep
os

it
or

y.
 S

ou
rc

e:
 H

e
et

 a
l.,

 2
01

6.
 R

ep
ro

du
ce

d
w

it
h

 p
er

m
is

si
on

 f
ro

m
 I

EE
E.

42 Chapter 1

Nonetheless it remains true that academic publications are not commer-
cial products; if university and industrial laboratories both publish papers
presenting new image- processing algorithms, then these methods are rarely
workable as they are. To become genuine goods capable of making impor-
tant differences in the collective world, they must take part in wider pas-
sivation and valuation pro cesses that will significantly modify their initial
properties (Callon 2017; Muniesa 2011b). Depending on their circulation
within differentiated networks, some computerized methods of calcula-
tion initially designed by industrial or academic image- processing laborato-
ries can thus remain very specialized and intended for ad hoc purposes (e.g.,
superpixel segmentation algorithms), whereas others can become widespread
and industrially implemented in broader assemblages such as digital cameras
(e.g., red- eye- removal algorithms), expensive software, and large informa-
tion systems (e.g., text- recognition algorithms, compression schemes, or fea-
ture clustering). However, before they may circulate in broader networks and
hybridize to the point of becoming parts of larger systems, image- processing
algorithms first need to be designed, discussed, and shared among a heteroge-
neous research community in which the Lab played an active role. Whether
widespread or specialized, image- processing algorithms— also sometimes just
called “models” within the computer science community— first need to be
nurtured, trained, evaluated, and compared in places like the Lab.

Developing image- processing algorithms and publishing them in peer-
reviewed academic journals and conferences was thus a central activity within
the Lab, and it was this activity that I intended to account for. Yet I still had to
find a way to document the courses of action that took place there.

Collecting Materials

Thanks to my interdisciplinary research contract, I was part of the Lab for
two- and- a- half years. Just as any other collaborator, I had a desk, an e- mail
address, and an account within the administrative system. Yet despite these
optimal conditions for ethnographic investigation, it would be an under-
statement to claim that the first days were difficult: every thing happening
around me seemed at first out of reach. Fortunately, the rules of the Lab that
I had to observe quickly allowed me to experience assignable situations. I
divided these situations progressively into seven dif fer ent yet interrelated

Studying Computer Scientists 43

types whose systematic account and referencing ended up constituting my
corpus of field data.

The first type of situation I experienced was the Lab meetings I mentioned
 earlier. During these weekly meetings, the Lab’s members gathered in a small
conference room to attend and react to pre sen ta tions of works in pro gress.
 Every PhD student (me included), postdoc, spin- off member, or invited
scholar were asked to make at least one pre sen ta tion each semester. These
meetings turned out to be crucial to my inquiry for at least three reasons.
First, they helped me identify the research topics of my new colleagues. I
could then use this information to initiate discussions with them in more
informal settings. Second, Lab meetings allowed me to pre sent my research
proj ect as well as some of its preliminary propositions in front of the whole
Lab. These mandatory exercises thus forced me to put my exploratory intu-
itions to the test and, often, retrofit them. Third, these situations gave me
opportunities to share doubts and needs as in September 2015 when I used
this tribune to publicly ask for help in my attempts to better document com-
puter programming practices (more on this in chapter 4). Yet although these
Lab meetings were essential to the advancement of my inquiry, most of the
data I will use in the following chapters were not collected during these situa-
tions. Indeed, as these meetings mostly dealt with results of ongoing research
proj ects within the Lab, the empirical pro cesses and courses of action that led
to these results were generally not at the center of the discussions.

The second type of situation was conferences or ga nized by the Lab and
neighbored signal- processing laboratories. As mentioned earlier, some of
 these conferences were invited talks where alumni working in the industry
came to discuss ongoing proj ects. Other conferences were closer to tradi-
tional keynotes and gave the floor to prominent researchers, mainly from
academic institutions. Though, again, I do not directly use data collected
from these conferences in the empirical chapters, these events were none-
theless crucial situations to experience and account for as they allowed me
to identify current debates in computer science and better appreciate some
of the relationships between research and industry.

A third type of situation I experienced was the so- called Group meet-
ings in which I participated between November 2013 and June 2014. These
Group meetings were part of an image- processing proj ect to which the Lab’s
director had assigned me, and they were precious for my ethnographic

44 Chapter 1

inquiry as they made me encounter what computer scientists call ground
truths— inconspicuous entities that are yet central to the formation of algo-
rithms. These entities will be introduced in chapter 2 and will accompany
us throughout the rest of the book.

A fourth type of situation took place at the office desks of the Lab. Finding
appropriate ways to account for these “desk situations” was an impor tant
felicity condition of this inquiry as it was at these precise moments and loca-
tions that courses of action crucial to the actual construction of algorithms
often took place. I had the chance to follow and account for such desk situ-
ations during a small part of the image- processing proj ect to which I was
assigned between November 2013 and June 2014 (more on this in chapter 6)
as well as during several computer programming episodes that took place
between September 2015 and February 2016 (more on this in chapter 4).

A fifth type of situation was the numerous classes and tutorials in which
I participated throughout my time at the Lab. From basic signal- processing
classes to advanced Python programming tutorials, a significant part of
my time and energy was dedicated to learning the language of computer
science. Even if I do not directly use ele ments I saw in classes or during
tutorials in the following case studies, these situations nonetheless greatly
helped me speak with my computer scientist colleagues. Though quite time
consuming— again, I had initially no experience in computer science—
these learning activities were crucial prerequisites to interact adequately
with my fellow workers about issues that mattered to them.

A sixth type of situation was the semi- structured interviews I conducted
throughout my stay at the Lab. These interviews were initially exploratory
in nature and aimed to give me a better understanding of how my col-
leagues saw their work. However, as the investigation progressed, I instead
used interviews as retroactive tools to revisit with Lab members the events
for which I could only partially account. This helped me fill in some of the
many gaps in my data.

Fi nally, a seventh generic type of situation was the informal discussions I
had daily with the Lab’s members. Although I conducted twenty- five semi-
structured interviews, these were clearly not as valuable as the numerous con-
versations I had during coffee breaks, lunches, Christmas parties, corporate
outings, or after- work sessions at the pub. Besides facilitating my integration
within the Lab, these situations helped me share what I was experiencing and
documenting. During these informal moments, I could, for example, discuss

Studying Computer Scientists 45

past pre sen ta tions, recently published papers, ongoing proj ects, forthcoming
programming operations, or unclear ele ments I had seen in class.

From November 2013 to April 2016, I spent most of my working time in
and around the Lab, switching among these seven types of situations and
trying to account for them in my logbooks the best I could. At the end of
the day, sometimes until late in the eve ning, I used a text editor to clean
up these notes, classify them according to an increasingly consistent taxon-
omy, and reference them to the paper pages from which they derived (see
figure 1.6). This collecting and referencing system was at first very messy
as the number of situational categories increased to the point of no lon-
ger being relevant and my single initial Word document became increas-
ingly cumbersome. However, after a couple of months, I could identify the
seven dif fer ent yet interrelated situational categories I have just presented,
and thanks to the computer programming skills I progressively acquired
through classes and tutorials, I de cided to stick to individual .txt files whose
content could be browsed by simple yet power ful Python programs I started
to draft (see figure 1.7). Once systematized, this ad hoc data management
plan more or less nimbly allowed me to juggle my digitized data while main-
taining access to the original paper notes.

In April 2016, after a small farewell party, I left the Lab with around one
thousand pages of handwritten notes; two thousand .txt files; a dozen mod-
ulable Python scripts; and hundreds of audio, image, and movie record-
ings as well as numerous half- finished analytical propositions. And with all
 these empirical materials literally under my arm, I (temporarily) exited my
field site, asking myself serious questions about the significance of all this.

A Torturous Interlude

Ethnography is a transformative experience. Encountering worlds and writ-
ing about them— what is the point of even trying such an odd exercise?
Computer science now gives me comfort. And as for my former sociolo-
gist peers, what will they think of this new me? I cannot talk anymore.
Hell of a journey, significant metamorphosis: “I understand, and since I
cannot express myself except in pagan terms, I would rather keep quiet,”
someone said a long time ago. Yet words shall be written, promises kept,
and something not forgotten: my new “new” colleagues (the former ones)
have all gone through similar journeys. After all, we are in the same shaky

l
-
m
e
e
t
i
n
g_
1
4
1
1
0
6_
n
k
_
d
e
e
p
-
l
e
a
r
n
i
n
g-
o
n
-
m
a
n
u
s
c
r
i
p
ts
_
l
4

-
2
7
-
3
8
.
t
x
t

N
K
'
s

p
r
o
j
e
c
t

i
s

p
a
r
t

o
f
a
b
r
o
a
d
e
r

d
i
g
i
t
a
l
i
z
a
t
i
o
n

p
r
o
j
e
c
t
o
n
l
i
t
e
r
a
r
y
h
a
n
d
w
r
i
t
t
e
n
m
a
n
u
s
c
r
i
p
t
s
(
c
f
.

d
i
s
c
u
s
s
i
o
n_
1
4
1
0
1
3_
n
k
_
g
r
o
u
n
d-
t
r
u
t
h-
f
o
r-
d
e
e
p-

l
e
a
r
n
i
n
g_
l
3
-
7
4
-
8
0
)
;
h
e
h
a
s
a
l
r
e
a
d
y
e
n
h
a
n
c
e
d
t
h
e

p
a
g
e
l
a
y
o
u
t
o
f
h
i
s
c
o
r
p
u
s
a
n
d
d
e
s
i
g
n
e
d
a
m
o
d
e
l
f
o
r

t
e
x
t-
l
i
n
e
e
x
t
r
a
c
t
i
o
n.

H
e
n
o
w
w
o
r
k
s
o
n
f
e
a
t
u
r
e

e
x
t
r
a
c
t
i
o
n.

T
h
e
s
t
a
t
e
d
g
o
a
l
h
e
r
e
i
s
:

-
i
n
v
e
s
t
i
g
a
t
e
c
h
a
n
g
e
s
o
f
h
a
n
d
w
r
i
t
i
n
g
s
t
y
l
e

-
i
n
v
e
s
t
i
g
a
t
e
m
o
d
e
l
s'

t
o
l
e
r
a
n
c
e
t
o
h
a
n
d
w
r
i
t
i
n
g

v
a
r
i
a
b
i
l
i
t
y

-
i
d
e
n
t
i
f
y
w
r
i
t
e
r
s
f
r
o
m
t
h
e
i
r
h
a
n
d
w
r
i
t
i
n
g

s
t
y
l
e

I
n
s
h
o
r
t,

t
h
e
m
a
i
n
q
u
e
s
t
i
o
n
i
s
:
i
s
i
t
p
o
s
s
i
b
l
e
t
o

f
i
n
d/
c
o
m
p
u
t
e
f
e
a
t
u
r
e
s
t
o
i
d
e
n
t
i
f
y
d
i
f
f
e
r
e
n
c
e
s
i
n

t
h
e
h
a
n
d
w
r
i
t
t
e
n
s
t
y
l
e
o
f
a
w
r
i
t
e
r?

Fi
gu

re
 1

.6
Ex

ce
rp

t
fr

om
 o

n
e

of
 m

y
lo

gb
oo

ks
 a

n
d

it
s

tr
an

sl
at

io
n

 in
to

 a
 .t

xt
 fi

le
. O

n
 t

h
e

le
ft

, n
ot

es
 t

ak
en

 d
ur

in
g

a
La

b
m

ee
ti

n
g

on
 N

ov
em

be
r

16
, 2

01
4.

O

n
 t

h
e

ri
gh

t,
 t

h
e

tr
an

sl
at

io
n

 o
f

 th
es

e
n

ot
es

 i
n

to
 a

 .t
xt

 f
ile

. T
h

e
n

am
e

of
 t

h
e

fi
le

 s
ta

rt
s

w
it

h
 “

l-
 m

ee
ti

n
g,

”
th

us
 i

n
di

ca
ti

n
g

it
 r

ef
er

s
to

 a
 L

ab

m
ee

ti
n

g.
 T

h
e

se
co

n
d

se
ct

io
n

,
“1

41
10

6,
”

re
fe

rs
 t

o
th

e
da

te
 o

f
th

e
lo

gb
oo

k
en

tr
y.

 T
h

e
th

ir
d

se
ct

io
n

,
“n

k,
”

re
fe

rs
 t

o
th

e
in

it
ia

ls
 o

f
th

e
co

l-
la

bo
ra

to
r

th
e

n
ot

e
co

n
ce

rn
s.

 T
h

e
fo

ur
th

 s
ec

ti
on

, “
de

ep
- l

ea
rn

in
g-

 on
-m

an
us

cr
ip

ts
,”

 r
ef

er
s

to
 t

h
e

ti
tl

e
of

 t
h

e
pr

e s
en

 ta
 ti

on
. T

h
e

fi
ft

h
 a

n
d

la
st

se

ct
io

n
 (

l4
–2

7–
38

)
in

di
ca

te
s

th
e

lo
ca

ti
on

 o
f

th
e

or
ig

in
al

 n
ot

e,
 h

er
e

in
 lo

gb
oo

k
n

um
be

r
4,

 f
ro

m
 p

ag
e

27
 t

o
pa

ge
 3

8.

Studying Computer Scientists 47

boat, trying to write faithful so cio log i cal documents from scattered empiri-
cal data. But how can I do justice to my limited yet empirical materials,
distorted voices of those for whom I proposed to become the spokesperson
(without any mandate)? I lack every thing: a history, a medium, a language.
Where do I start? Maybe in the middle of things, as always. Back to fun-
damentals, to practices, to courses of action. Read and reread classics; dive
again and again into my materials while sharing them with my colleagues
who are gradually becoming pairs again (how could I have forgotten that?).
Half- relevant things start to emerge— almost- analytical propositions. What
data can make them bloom in a written document? Not even a fraction, an
infinitesimal quantity: tiny snapshot of an enlightened world. Accountable
activities start taking shape on text pages. But are they still readable? Inscrip-
tions only make worlds when read. Conceptual shortage: both computer
science and sociology may not have the means to confront the manufac-
ture of algorithms. The slightest little programming sequence soon sug-
gests the rewriting of computers’ history; any small formula demands an
alternative philosophy of mathe matics (what a cluttered topic!). We walk
around with eyes wide shut. Gradually, though, patterns emerge: courses of
action become vectors tracing genuine, accountable activities; an impres-
sionist draft from which adversarial lines appear: they may be power ful
but not inscrutable. How could we start composing with algorithms? The
hope is so dim, and the means so limited. “A voice cries out in the desert,”
and so on and so on. Enough laments: the whole thing is driven by issues

1. import OS
2. import mmap
3.
4. for i in os.listdir(“/Users/florianjaton/logbook"):
5. if i.endswith(“txt”):
6. f = open(i)
7. s = mmap.(f.fileno(), 0, access=mmap.ACCESS_READ)
8. if s.find(“ground truth” and “NK”) != -1:
9. file = open(“0_list-entries”, “a”)
10. file.write(i)
11. file.write(“\n”)

Figure 1.7
Example of a small Python script used to browse the content of the .txt files. This
script, working as a small computer program, makes the computer list the names of
the .txt files whose content include the keywords “ground truth” and “NK” in a new
document named “0_list- entries.”

48 Chapter 1

more impor tant than my small personal trou bles. And I guess I must now
validate my return ticket to propose a partial- yet- empirical constitution of
algorithms, somehow.

Algorithm, You Say?

 Going through the previous, unusual section, I hope the reader could
appreciate that writing an ethnographic document about the shaping of
algorithms can somewhat be tortuous— even more so when one realizes
that in computer science the notion of algorithm is rarely problematic! As a
sociologist and ethnographer interested in the manufacture of algorithms,
I indeed landed in an academic field whose most illustrious figures have
dedicated— and still dedicate— their lives to the study of algorithms. To
many computer science professionals then, the fuss about “what an algo-
rithm is” is overhyped; as one colleague suggested me on my first week
in the Lab, taking the local undergraduate course in “algorithmic study”
may allow me to complete my research in rec ord time… In order to specify
my analytical gesture, it is thus impor tant to look at this well- established
computer- science- oriented take on algorithms to consider the pre sent work
as an original complement to it.

When browsing through the numerous— yet not infinite— computer sci-
ence manuals on algorithmic study, one notices algorithms are defined in
quite a homogeneous way. Authors typically start with a short history of
the term17 before quickly shifting to its general con temporary acceptation
as a systematic method composed of dif fer ent steps.18 Authors then specify that
the rules of an algorithm’s steps should be univocal enough to be imple-
mented in computing devices, thus differentiating algorithms from other a
priori systematic methods such as cooking recipes or installation guides. In
the same movement, it is also specified that these step- by- step computer-
implementable methods always refer to a prob lem they are designed to
solve.19 This second definitional ele ment assigns algorithms a function, allow-
ing computers to provide answers that are correct relative to specific prob-
lems at hand.

Right after these opening statements, computer science manuals tend to
or ga nize these functional step- by- step computer- implementable problem-
solving methods around “inputs” and “outputs.” The functional activity
of algorithms is thus further specified: the way algorithms may provide

Studying Computer Scientists 49

right answers to defined prob lems is by transforming inputs into outputs.
This third definitional movement leads to the standard well- accepted con-
ception of algorithm as “a procedure that takes any of the pos si ble input
instances and transforms it to the desired output” (Skiena 2008, 3).20

 These a priori all- too- basic ele ments are, in fact, not trivial as they push
ahead with an evaluation stance and frame algorithms in a very oriented
way. Indeed, by endowing itself with problems- inputs and solutions- outputs,
this take on algorithms can emphasize on the adequacy relation between these
two poles. The study of algorithms becomes then the study of their effective-
ness. This overlooking position is fundamental and penetrates the entire field
of algorithmic study whose scientific agenda is well summarized by Knuth:
“We often are faced with several algorithms for the same prob lem and we
must decide which is best” (1997a, 7; italics added).21 From this point, algo-
rithmic analyses can focus on the elaboration of meta- methods that allow
the systematization of the formal evaluation of algorithms.

Borrowing from a wide variety of mathematical branches (e.g., set the-
ory, complexity theory), methods for analyzing algorithms as proposed by
algorithmic students can be extremely elegant and power ful. Moreover, in
the light of the significant advances in terms of implementation, data struc-
turation, optimization, and theoretical understanding, this standard concep-
tion of algorithms as more or less functional interfaces between inputs and
outputs— themselves defined by specific prob lems— certainly deserves its
high respectability. However, I believe this standard conception has some lim-
its that, in these days of controversies over algorithms, are impor tant enough
to suggest complementary alternatives that yet still need to be submitted.

First, the standard conception of algorithms overlooks the definition of
the prob lems that algorithms are intended to solve. According to this view,
prob lems and their potential solutions are already made, and the role of
algorithmic studies is to evaluate the effectiveness of the steps leading to
the transformation of inputs into outputs. Yet it is fair to assume that prob-
lems and the terms that define them do not exist by themselves. As it is
shown in chapter 2 of this book, for example, prob lems are delicately irri-
gated products of problematization pro cesses engaging habits, desires, skills,
and values. And these collective pro cesses greatly participate in the way
algorithms—as problem- solving devices— will further be designed.

The second limit is linked to the first one: if one considers problemati-
zation as part of algorithmic design, the nature of the competition among

50 Chapter 1

algorithms changes. The best algorithms are not only the ones whose for-
mal characteristics certify their superiority but also the ones that managed
to associate with their prob lems’ definitions the procedures capable of eval-
uating their results. By concentrating on formal criterions— without taking
into account how these formalisms participated in the initial shaping of the
prob lems at hand— the standard conception of algorithms tends to cover
up the evaluation infrastructure and politics of algorithms. As shown in
chapter 2, for example, evaluative procedures do not necessarily follow the
design of algorithms; they also, sometimes, precede and influence it.

Third, the actual computerization of the iterative methods is not consid-
ered. Even though the standard conception of algorithms rightly insists on
the centrality of computer code for the optimal execution of algorithms,
this insistence takes the shape of programming methodologies that do not
consider the experience of programming as it is lived at computer termi-
nals. According to this standard conception of algorithms, writing num-
bered lists of instructions capable of triggering electric pulses in desired
ways is mainly considered a means to an end. But as it is shown in chap-
ters 4 and 6 of this book, programming practices—by virtue of the collec-
tive pro cesses they require in order to unfold— also sometimes influence
the way algorithms come into existence.

Fourth, little is said about how mathematical statements end up being
enrolled for the transformation of inputs into outputs and how this enroll-
ment affects the considered algorithms. To the standard conception of
algorithms, mathematical statements appear out of the blue, ready to be
scrutinized by means of other mathematical statements capable of evaluat-
ing their effectiveness. Yet as the chapter 6 of this book indicates, enroll-
ing mathematical statements in order to operate the transformation of
inputs into outputs is a problematic pro cess in its own right, and again,
this impacts the nature of algorithms. The initial conception of the dataset
and its progressive problematization, reor ga ni za tion, and reduction engage
expectations and anticipations that fully participate in the ecol ogy of algo-
rithms in the wild.

The pre sent work therefore intends to open up algorithms and extend
them to pro cesses that they are attached to but whose standard conception
prevents from appreciating. If this venture does not, of course, aim to con-
test the results of algorithmic studies, it intends to enrich it with grounded
so cio log i cal considerations.

Let us start this ethnographic inquiry into the constitution of algorithms
with a first dive into the life of the Lab. More precisely, let us start on Novem-
ber 7, 2013, at the Lab’s cafeteria. At that time, I had only been at the Lab
for a few days. During my first Lab meeting, I introduced myself as an eth-
nographer who had four years to submit a PhD thesis on the practical shap-
ing of algorithms. Reactions had been courteous, although tinged with some
indifference. Attention went up a notch when the director told the invited
postdoc CL, the third- year PhD student GY, and the first- year PhD student BJ
that I would take part to their ongoing proj ect. It is this proj ect we will follow
in this first case study centered around several Group meetings, collective
working sessions where CL, GY, and BJ (and myself) tried to coordinate the
submission of a paper on a new algorithm.1

Entering the Lab’s Cafeteria

Around 3 p.m. on November 7, 2013, I (FJ) entered the Lab’s cafeteria for
the first Group meeting. By that time, the Group and the topic of the proj-
ect had already been defined: previous discussions among the Lab asso-
ciates agreed that a new collective publication in saliency detection was
relevant regarding the state of the art as well as the expertise of CL, GY,
and BJ. Naturally, as any ethnographer freshly landed on his field site, I
was terribly anxious: Would I live up to the expectations? Would they help
me understand what they do? My participation in the proj ect was clearly a
top- down decision as the Lab’s director had assigned me to the proj ect to
help me properly start my inquiry. Would the Group welcome me? I tried
to read some papers on saliency detection that CL previously sent me but

2 A First Case Study

52 Chapter 2

I was confused by their tacit postulates. How would it be pos si ble to detect
this strange thing called “saliency” since what is impor tant in a digital
image certainly varies from person to person? And what is this odd notion
of “ground truth” that the papers’ algorithms seem to rely on? “Ground”
and “truth”: for an STS scholar, such a conjunction sounded highly prob-
lematic. As soon as I entered the Lab’s cafeteria though, the members of
the Group presented me with the ambitions of the proj ect and how they
intended to run it:2

Group meeting, the Lab’s cafeteria, November 7, 2013

CL: “So you heard about saliency, right?”

FJ: “Well, I’ve read some stuff.”

CL: “Huge topic, but basically, when you look at an image, not every thing
is impor tant usually, and you focus only on some ele ments. … What we
try to do basically, it’s like a model that detects ele ments in an image that
should attract attention. … GY’s worked on a model that uses contrasts to
segment objects and BJ has a model that detects faces. We’ll use them as a
base. … For now, most saliency models only detect objects and don’t pay
attention to faces. There’s no ground truth for that. But what we say is
that faces are also impor tant and usually attract directly the attention. …
And that’s the point: we want to include faces to saliency, basically.”

GY: “And segment faces. Because face detectors output only rectangles. …
 There can be many applications [for the model], like in display or com-
pression for example.”

Many questions immediately arose. How and why is it impor tant to focus
on “ele ments that should attract attention”? Why is it problematic not to
have a “ground truth” to detect “multiple objects and faces”? And what is
a ground truth anyway? Why is it related to “saliency” and its potential
industrial applications? Already at this early stage of the inquiry, the mean-
dering flows of ethnography somewhat deprive us from our landmarks. To
follow the Group and become able to fully explore these materials, some
more equipment is obviously needed. I will thus temporally “pause” the
account of the Group’s proj ect and consider for a while the sociohistorical
background of saliency detection that underlies the Group’s framing of its
proj ect. Once these introductory ele ments are acquired, I will be come back
to this first Group meeting.

A First Case Study 53

Backstage Ele ments: Saliency Detection and Digital Image Pro cessing

“Saliency” for computer scientists in image pro cessing is a blurry term with
a history that is difficult to track. The term “saliency” was gradually created
by straddling dif fer ent— yet closely related— research areas. One point of
departure could be the 1970s when explicative models developed in cogni-
tive psy chol ogy and neurobiology3 started to schematize how the human
brain could quickly handle an amount of visual data that is far larger than
its estimated pro cessing capabilities (Eason, Harter, and White 1969; Lappin
and Uttal 1976; Shiffrin and Gardner 1972).4 After many disputes and con-
troversies, a rough agreement about the overall pro cess of humans’ “selec-
tive visual attention method” had progressively emerged that distinguishes
between two neuronal pro cesses of selecting and gating visual information
(Itti and Koch 2001; Heinke and Humphreys 2004).5 On the one hand,
 there is a task- independent and rapid “bottom-up visual attention pro cess”
that selects con spic u ous stimuli such as color contrasts, feature orienta-
tions, or spatial frequency. On the other hand, there is a slower “top- down
visual attention pro cess” that operates selectively based on tasks to accom-
plish. The term “saliency map” was proposed by Koch and Ullman (1985)
to define the final result of the brain’s bottom-up visual attention pro cess.

In the 1980s, the way that cognitive psychologists and neurobiologists
theorized two dif fer ent “paths” for the brain to pro cess light signals— one
fast and generic, the other slower and task- specific— inspired scientists whose
machines face a similar prob lem in computer vision: the stream of sampled
digital signals that emanated from CCDs were too large to be pro cessed all
at once. From this point, two dif fer ent classes of image- processing detection
algorithms have progressively been shaped. The first class was inspired by the
assumed bottom-up schematic pro cess of visual attention and tried to detect
“low- level features” inscribed within the pixels of a given image, such as
intensity, color, orientation, and texture.6 Through the academic efforts of
Laurent Itti and Christof Koch in the 2000s (Itti, Koch, and Niebur 1998;
Itti, Koch, and Braun 2000; Itti and Koch 2001; Elazary and Itti 2008; Zhao
and Koch 2011), the term “saliency” was progressively assimilated into this
first class of algorithms that became labeled saliency- detection algorithms.
The second class of image- processing detection algorithms was inspired by
the assumed top- down schematic pro cess of visual attention and is based
on “high- level features” that have to be learned by machines according to

54 Chapter 2

specific metrics (e.g., face or car detection). This often involves automated
learning procedures and the management of increasingly large databases
(Grimson and Lozano- Perez 1983; Lowe 1999).

Despite differences in terms of substratum, both high- level and low- level
detection algorithms were, and are, bound to the same construction work-
flow that consists of five interrelated and problematic steps:

1. The acquisition of a finite dataset.

2. On the data of this dataset, the manual labeling of clear targets, defined
 here as the ele ments (faces, cars, salient regions) the desired algorithm
 will be asked to detect.

3. The construction of a database gathering the unlabeled data and their
manually labeled counter parts. This database is usually called “ground
truth” by the research community.

4. The design of the algorithm’s calculating properties and par ameters based
on a representative part of the ground- truth database.

5. The evaluation of the algorithm’s per for mances based on the rest of the
ground- truth database.

To illustrate this schematic workflow, let us hypothesize the existence of φ,
a standard detection algorithm in image pro cessing. The very existence of
φ depends upon a finite set of digital images for which human workers have
previously labeled targets (e.g., faces, cars, salient regions). The unlabeled
images and their manually labeled counter parts are then gathered together
within a database to form the ground truth of φ. To design and code φ, the
ground truth is randomly split into two parts: the “training set” and the
“evaluation set.” The designers of φ would use the training set to extract for-
mal information about the targets, often with help of mathematical expres-
sions. Once formulated and translated into machine- readable code, the
algorithm φ is tested on the evaluation set to see how well it detects targets
that were not used to design its properties. From its confrontation with the
evaluation set, φ produces a precise number of outputs that can be qualified
 either as “true positives,” “false negatives,” or “false positives,” thanks to the
previous human- labeling work. Out of this comparison between manually
designed targets and automatically produced outputs, statistical mea sures
such as precision (the fraction of detected items that were previously defined
as targets) and recall (the fraction of targets among the detected items) can
be obtained to compare and rank competing algorithms (see figure 2.1).

A First Case Study 55

One drawback of high- level detection algorithms is that they are task-
specific and cannot by themselves detect dif fer ent types of targets: a face-
detection algorithm will detect faces, a car- detection algorithm will detect
cars, a plane- detection algorithm will detect planes, and so on.7 Yet, one of
the benefits of such high- level detection algorithms is that the definition of
their targets (faces, cars, planes) often involves minor ambiguities for those
who design them: cars, faces, or planes have rather unambiguous character-
istics that facilitate agreement. Targets and ground truths can then be man-
ually shaped by computer scientists in order to train high- level detection
algorithms. Moreover, these ground truths can also serve as referees among
competing high- level detection algorithms as they provide precision and
recall metrics. The subfield of face detection with its numerous ground truths
and algorithmic propositions provides a paradigmatic example of a highly

Figure 2.1
Schematic of precision and recall mea sures on φ. In this hy po thet i cal example, φ
(grey background) detected thirty targets (true positives) but missed eigh teen of them
(false negatives). This per for mance means that φ has a recall score of 0.62. The algo-
rithm φ also detected twelve ele ments that are not targets (false positives), and this
makes it have a precision score of 0.71. From this point, other algorithms intended to
detect the same targets can be tested on the same ground truth and may have better
or worse precision and recall scores than φ.

ELEMENTS DETECTED BY = true positives

= false positives

= false negatives

Precision =

Recall =

+
=

30
42

= 0.71

+
=

30
48

= 0.62

TARGETS OF

56 Chapter 2

developed and competitive topic in image pro cessing since at least the 2000s
(see figure 2.2).

In the 2000s, unlike research in high- level detection, low- level saliency
detection had no “natu ral” ground truth allowing the design and evalua-
tion of computational models.8 At that time, if the task- independent and
adaptive character of saliency detection was theoretically in ter est ing for
automatic image cropping (Santella et al. 2006), adaptive display on small
devices (Chen et al. 2003), advertising design, and image compression (Itti
2000), the absence of any ground truth that could allow the training and
evaluation of computational models prevented saliency detection from
being an active topic in digital image pro cessing. As Itti, Koch, and Niebur
(1998) confessed when they tested the very first saliency- detection algo-
rithm on natu ral images:

Results Reported in Terms of Percentage Correct Detection (CD) and Number
of False Positives (FP), CD/FP, on the CMU and MIT Datasets

Face detection system CMU-130 CMU-125 MIT-23 MIT-20

Schneiderman & Kanade—Ea [170] 94.4%/65
90.2%/110
92.3%/8
93.6%/7
94.8%/7

84.5%/8

89.4%/3
91.5%/1
94.1%/3

79.9%/5
94.1%/64
74.2%/20
72.3%/6
87.1%/0

Schneiderman & Kanade—Wb [170]
Yang et al.—FA [217]
Yang et al.—LDA [217]
Roth et al. [157]
Rowley et al. [158] 86.2%/23

86%/8Feraud et al. [42]
Colmenarez & Huang [22] 93.9%/8122
Sung & Poggio [182]
Lew & Huijsmans [107]
Osuna et al. [140]
Lin et al. [113]
Guand Li [54]

aEigenvector coefficients.
bWavelet coefficients.

Figure 2.2
An exemplary comparison table among high- level face- detection algorithms. Two
ground truths are used for this comparison table from Car ne gie Mellon University
(CMU) and the Mas sa chu setts Institute of Technology (MIT). On the left, a list of
algorithms named according to the papers in which they were proposed. In this
 table, the ‘Percentage of Correct Detection’ (CD) indicates the recall values and the
‘Number of False Positives’ (FP) suggests the precision values. Source: Hjelmås and
Low (2001, 262). Reproduced with permission from Elsevier.

A First Case Study 57

With many such [natu ral] images, it is difficult to objectively evaluate the model,
 because no objective reference is available for comparison, and observers may disagree
on which locations are the most salient. (Itti, Koch, and Niebur 1998, 1258; italics
added)

Saliency detection in natu ral images is an equivocal topic not easily expressed
in a ground truth. Whereas it is usually straightforward (and yet time con-
suming) to define univocal targets for training and evaluating high- level
face- detection or car- detection algorithms, it is far more complex to do so
for saliency- detection algorithms because what is considered as salient in a
natu ral image tends to change from person to person. While in the 2000s
saliency- detection algorithms might have been promising for many indus-
trial applications, no one in the field of image pro cessing had found a way to
design a ground truth for natu ral images.

In 2007, Liu et al. proposed an innovative solution to this issue and cre-
ated the very first ground truth for saliency detection in natu ral images.
Their shift was smart, costly, and contributed greatly to framing and estab-
lishing the subfield of saliency detection in the image- processing lit er a ture.
Liu et al.’s first move was to propose one pos si ble scope of saliency detection
by incorporating concepts from high- level detection. According to them,
instead of trying to highlight salient areas within digital images, compu-
tational models for saliency should detect the most salient object within a
given digital image. They thus framed the saliency prob lem as being binary
and one- off object related. According to them, to get around the impasse
of saliency detection, saliency- detection algorithms should distinguish one
salient object from the rest of the image:

We incorporate the high- level concept of salient object into the pro cess of visual
attention in each respective image. We call them salient objects, or foreground
objects that we are familiar with. … We formulate salient object detection as a
binary labelling prob lem that separates a salient object from the background.
Like face detection, we detect a familiar object; unlike face detection, we detect a
familiar yet unknown object in an image. (Liu et al. 2007, 1–2)

Thanks to this refinement of the concept of saliency (from “anything that
first attracts attention” to “the one object in a picture that first attracts
attention”), Liu et al. could or ga nize an experiment in order to construct
legitimate targets to be retrieved by computational models. They first ran-
domly collected 130,099 high- quality natu ral images from internet forums
and search engines. Then they manually selected 20,840 images that fit

58 Chapter 2

with their definition of the saliency prob lem: images that, according to
them, contained only one salient object. This initial se lection operation
was crucial as it excluded images with several potential salient objects. The
result was an initial dataset of no complex pictures with mixed features (see
figure 2.3).

They then proceeded in two steps. First, they asked three human workers
to manually draw a rectangle on what they thought was the most salient
object in each image. For each image, Liu et al. then obtained three dif fer-
ent rectangles whose consistencies could be mea sured by the percentage of
shared pixels. For a given image, if its three rectangles were more consis-
tent than a chosen threshold (here, 80 percent of pixels in common), the
image was considered as containing a “highly consistent salient object”
(Liu et al. 2007, 2). After this first se lection step, their dataset called α con-
tained around thirteen thousand images.

For the second step, Liu et al. randomly selected five thousand highly
consistent salient- object images from α to create a second dataset called β.
They then asked nine other human workers to label the salient object of
 every image in β with a rectangle. This time, Liu et al. obtained for every
image nine dif fer ent yet highly consistent rectangles whose average sur-
face was considered their “saliency probability map” (Liu et al. 2007, 3).
Thanks to this constructed social agreement, the five thousand saliency
probability maps—in a computer science perspective, tangible matrices con-
stituted of specific numerical values— could then be considered the best
solutions to the saliency prob lem as they framed it. The whole ground
truth— the database gathering the natu ral images and their corresponding

Figure 2.3
Samples from Liu et al.’s dataset. Pictures contain one centered and contrastive ele-
ment. Source: Microsoft Research Asia (MSRA) public dataset, Liu et al. (2007).

A First Case Study 59

saliency probability maps— became the material base on which the desired
algorithm could be developed. By constructing this ground truth, Liu et al.
defined the terms of a new prob lem whose solutions could be retrieved by
means of calculating methods.

The shift here was not trivial. Indeed, by organ izing this survey, invit-
ing people into their laboratory, welcoming them, explaining the topic to
them, writing the appropriate computer programs to make them label the
images, and gathering the results in a proper database in order to statisti-
cally pro cess them, Liu et al. transformed their initial reduced conception
of saliency detection into workable and unambiguous targets with specific
numerical values. At the end of this laborious pro cess, Liu et al. could ran-
domly select two thousand images from set α and one thousand images
from set β to construct a training set (Liu et al. 2007, 5–6) to analyze the
shared features of their constructed- yet- sound- by- virtue- of- agreement tar-
gets. Once the adequate numerical features were extracted from the targets
of the training set and implemented in machine- readable language, they
used the four thousand remaining images from set β to statistically mea sure
the per for mances of their algorithm. Further, and for the very first time,
they also could compare the detection per for mances of their algorithm with
two competing algorithms that had already been proposed by other labora-
tories but that could not have been evaluated on natu ral images before due
to the lack of any “natu ral” targets related to saliency. Besides the actual
completion of their saliency- detection algorithm, the great innovation of
Liu et al. was then to redefine the saliency prob lem so that it could allow
per for mance evaluations (see figure 2.4).

By publishing their paper and also publicly providing their ground truth
online, it is not an exaggeration to say that Liu et al. established a newly
assessable research direction in image pro cessing. A costly infrastructure
had been put together, ready to be reused to support other competing algo-
rithmic propositions with perhaps better per for mances according to Liu
et al’s ground truth and the definition of saliency it encapsulates. Their
publication was more than a paper: it was a paper that allowed other papers
to be published as they provided a ground truth that could be used by other
researchers as long as they properly quote the seminal paper and accept the
ground truth’s restricted— yet operational— definition of saliency.9

Another impor tant paper for saliency detection— and therefore also for
the Group’s proj ect that we shall soon continue to follow— was published

Fi
gu

re
 1

4.
 C

om
pa

ri
so

n
of

 d
iff

er
en

t a
lg

or
ith

m
s.

 F
ro

m
 le

ft

to
 r

ig
ht

: F
G

, S
M

, o
ur

 a
pp

ro
ac

h,
 a

nd
 g

ro
un

d-
tr

ut
h.

0
0.

1
0.

2
0.

3
0.

4
0.

5
0.

6
0.

7
0.

8
0.

91

Pr
ec

is
io

n
R

ec
al

l
F-

m
ea

su
re

0
0.

1
0.

2
0.

3
0.

4
0.

5
0.

6
0.

7
0.

8
0.

91

Pr
ec

is
io

n
R

ec
al

l
F-

m
ea

su
re

(a
) p

re
ci

./r
ec

al
l,

im
ag

e
se

t A
(b

) p
re

ci
./r

ec
al

l,
im

ag
e

se
t B

0510152025303540

0510152025303540

1
2

3
1

2
3

1
2

3
1

2
3

(c
) B

D
E,

 im
ag

e
se

t A
(d

) B
D

E,
 im

ag
e

se
t B

Fi
gu

re
 1

2.
 C

om
pa

ri
so

n
of

 d
iff

er
en

t a
lg

or
ith

m
s.

 (a
-b

) a
nd

 (c
-d

) a
re

re

gi
on

-b
as

ed
 (p

re
ci

si
on

, r
ec

al
l,

an
d

F-
m

ea
su

re
) a

nd
 b

ou
nd

ar
y-

ba
se

d
(B

D
E—

bo
un

da
ry

 d
is

pl
ac

em
en

t e
rr

or
) e

va
lu

at
io

ns
. 1

. F
G

. 2
.

S
M

. 3
. o

ur
 a

pp
ro

ac
h.

Fi
gu

re
 2

.4
Pe

r f
or

 m
an

ce
 e

va
lu

at
io

n
s

on
 L

iu
 e

t
al

.’s
 g

ro
un

d
tr

ut
h

.
O

n
 t

h
e

le
ft

,
a

vi
su

al
 c

om
pa

ri
so

n
 a

m
on

g
th

re
e

di
f f

er
 en

t
sa

lie
n

cy
- d

et
ec

ti
on

 a
lg

o-
ri

th
m

s
ac

co
rd

in
g

to
 t

h
e

gr
ou

n
d

tr
ut

h
. O

n
 t

h
e

ri
gh

t,
 h

is
to

gr
am

s
th

at
 s

um
m

ar
iz

e
th

e
st

at
is

ti
ca

l p
er

 fo
r m

an
ce

s
of

 t
h

e
th

re
e

al
go

ri
th

m
s.

 I
n

 th

es
e

h
is

to
gr

am
s,

 t
h

e
gr

ou
n

d
tr

ut
h

 c
or

re
sp

on
ds

 t
o

th
e

y
ax

is
, t

h
e

be
st

 p
os

 si
 bl

e
sa

lie
n

cy
- d

et
ec

ti
on

 p
er

 fo
r m

an
ce

 t
h

at
 e

n
ab

le
s

th
e

ev
al

ua
-

ti
on

. S
ou

rc
e:

 L
iu

 e
t

al
. (

20
07

, 7
).

 R
ep

ro
du

ce
d

w
it

h
 p

er
m

is
si

on
 f

ro
m

 I
EE

E.

A First Case Study 61

in 2008 by Wang and Li. To them, even though Liu et al. (2007) were right
to frame the saliency prob lem as a binary prob lem, their bounding- box
ground truth remained unsatisfactory as it could well evaluate inaccurate
results (see figure 2.5). To refine the mea sures of Liu et al.’s very first ground
truth for saliency detection, Wang and Li randomly selected three hundred
images from β dataset and used a segmentation tool to manually label the
contours of each of the three hundred salient objects. What they proposed
and evaluated then was a saliency- detection algorithm that “not only cap-
tures the rough location and region of the salient objects, but also roughly
keeps the contours right” (Wang and Li 2008, 965).

From this point, saliency detection in image- processing was almost set:
even though many algorithms exploiting dif fer ent low- level pixel informa-
tion were later proposed (Achanta et al. 2009; Chang et al. 2011; Cheng
et al. 2011; Goferman, Zelnik- Manor, and Tal 2012; Shen and Wu 2012;
Wang et al. 2010), they were all bound to the saliency prob lem as defined
by Liu et al. in 2007. And even though other ground truths have later been
proposed in published papers (Judd, Durand, and Torralba 2012; Movahedi
and Elder 2010) to widen the scope of saliency detection (notably by propos-
ing images with two objects that could be decentered), Liu et al.’s seminal
framing of saliency detection as a binary object- related prob lem remained
unchallenged. And when the Group started their proj ect in November 2013,

(a) (b) (c) (d) (e)

Figure 2.5
Image (a) is an unlabeled image of Liu et al.’s ground truth; image (b) is the result of
Wang & Li’s saliency- detection algorithm; image (c) is the imaginary result of some
other saliency- detection algorithm on (a); and image (d) is the bounding- box target
as provided by Liu et al.’s ground truth. Even though (b) is more accurate than (c), it
 will obtain a lower statistical evaluation if compared to (d). This is why Wang & Li
propose (e), a binary target that matches the contours of the already defined salient
object. Source: Wang and Li (2008, 968). Reproduced with permission from IEEE.

62 Chapter 2

Liu et al.’s problematization of the saliency prob lem was continuing to sup-
port a competition among algorithms that differentiated themselves by
speed and accuracy (see figure 2.6).

With this brief history of saliency in image pro cessing, we are better
equipped to follow the Group as it tries to construct its own innovative
saliency- detection algorithm. Social surveys, salient objects whose contours

Image Ground
Truth

Ours CB LR SVO RC CA GB SER

Figure 9. Comparison of different methods on the ASD, SED and SOD datasets. The first three rows are from
the ASD dataset, the middle three rows are from the SED dataset, the last three rows are from the SOD dataset.

Table 1. Comparison of average execution time (seconds per image).
Method Ours CB SVO RC LR CA GB SER FT LC SR IT
Time(s) 0.105 1.179 40.33 0.106 11.92 36.05 0.418 25.19 0.016 0.002 0.002 0.165
Code Matlab Matlab Matlab C++ Matlab Matlab Matlab C++ C++ C++ C++ Matlab

Figure 2.6
2013 comparison table between different saliency-detection algorithms. The number of
competing algorithms has increased since 2007. Here, three ground truths are used for
per for mance evaluations: ASD (Achanta et al. 2009), SED (Alpert et al. 2007), and SOD
(Movahedi and Elder 2010). Below the figure, a table compares the execution time of
each implemented algorithm. Source: Jiang et al. (2013, 1672). Reproduced with permis-
sion from IEEE.

A First Case Study 63

define the targets of competing algorithms, ground truths bound to a binary
problematization of saliency, promising industrial applications: the stage we
are about to explore is supported by all of these ele ments, constraining the
members of the Group in the shaping of their proj ect as well as providing
them opportunities for further reconfigurations.

Reframing Saliency

If, at the beginning of the chapter, the Group’s explanations appeared quite
cryptic, the previous introductory review should now enable us to under-
stand them critically. Let us thus look at the same excerpt once again:

Group meeting, the Lab’s cafeteria, November 7, 2013

CL: “So, you heard about saliency, right?”

FJ: “Well, I’ve read some stuff.”

CL: “Huge topic, but basically, when you look at an image, not every thing
is impor tant usually, and you focus only on some ele ments. … What we
try to do basically, it’s like a model that detects ele ments in an image that
should attract attention. … GY’s worked on a model that uses contrasts
to segment objects and BJ has a model that detects faces. We’ll use them
as a base. … For now, most saliency models only detect objects and don’t
pay attention to faces. There’s no ground truth for that. But what we say is
that faces are also impor tant and usually attract directly the attention. …
And that’s the point: we want to include faces to saliency, basically.”

GY: “And segment faces. Because face detectors output only rectangles. …
 There can be many applications [for the model], like in display or com-
pression for example.”

According to the Group, saliency- detection models should also take human
 faces into account as faces are impor tant in human attention mechanisms.
Moreover, investing this interstice within saliency detection would be a
good opportunity to merge some of the Group’s recent researches on both
low- level segmentation and high- level face detection. The idea to combine
high- level face detection with low- level saliency detection derived from
previous image- processing papers (Borji 2012; Karthikeyan, Jagadeesh, and
Manjunath 2013) inspired themselves by studies in gaze prediction (Cerf,
Frady, and Koch 2009), cognitive psy chol ogy (Little, Jones, and DeBruine
2011), and neurobiology (Dekowska, Kuniecki, and Jaśkowski 2008). But the

64 Chapter 2

Group’s ambition here was to go further in the saliency direction as framed
by Wang and Li (2008), after Liu et al. (2007), by proposing an algorithm
capable of detecting and segmenting the contours of faces. In order to accom-
plish such subtle results, the previous work done by GY on segmentation and
BJ on face detection would constitute a precious resource to work on.

The Group also wanted to construct a saliency- detection model that
could effectively pro cess a larger range of natu ral images:

Group meeting, the Lab’s cafeteria, November 7, 2013

GY: “But you know [to FJ], we hope the algorithm could detect multiple
objects and faces. Because in saliency detection, models can only detect
like one or two objects on simple images. They don’t detect multiple
salient objects in complex images. … But the prob lem is that there’s no
ground truth for that. There’s only ground truth with like one or two
objects, and not that many faces.”

In many cases, natu ral images not only capture one or two objects dis-
tinguished from a clear background; pictures produced by users of digital
cameras— according to the Group— are generally more cluttered than those
used to train and evaluate saliency- detection algorithms in the wake of Liu
et al. (2007). Indeed, at least in November 2013, saliency detection was
becoming a research area where algorithms were more and more efficient
only on those— rare— natu ral images with clear and untangled features. But
the Group also knew that this issue was intimately related to the then avail-
able ground truths for saliency detection that were all bound to Liu et al’s
restricted initial definition of saliency that only fit simple images. From this
point, as the Group wanted to propose a model that could detect a dif fer ent
and more subtle saliency, it had to construct the targets of such saliency;
as it wanted to propose a model that could calculate and detect multiple
salient features (objects and faces) in more complex and realistic images,
it had to construct a new ground truth that would gather complex images
and their corresponding multiple salient features.

The Group’s desire to redefine the terms of the saliency prob lem did
not come ex nihilo. When Liu et al. did their research on saliency in 2007,
it was difficult for computer scientists to or ga nize large social surveys on
complex images. But in November 2013, the growing availability of crowd-
sourcing ser vices enabled new potentialities:

A First Case Study 65

Group meeting, the Lab’s cafeteria, November 7, 2013

GY: “But we want to use crowdsourcing to do a new ground truth and
ask people to label features they think are salient. … And then we could
use that for our model and compare the results, you see?”

In broad strokes, crowdsourcing— a contraction of “crowd” and “outsourc-
ing” initially coined by journalist Howe (2006)—is “a type of participative
online activity in which an individual, an institution, a non- profit organ-
ization, or a com pany proposes to a group of individuals of varying knowl-
edge, heterogeneity, and number, via a flexible open call, the voluntary
undertaking of a task” (Estellés- Arolas and González- Ladrón- de- Guevara
2012, 195). In November 2013, this ser vice was offered by several com-
panies such as Amazon (via Amazon Mechanical Turk), ClickWorker, or
Employment Crossing (via ShortTask), whose own application program-
ming interfaces (APIs)10 recommended surveys to registered online con-
tingent workers mainly located in the United States and India. Once a
worker submits their completed task— which can vary greatly in time and
complexity— the organ ization that designed the survey (e.g., a research
institution, a com pany, an individual) can decide on its validity. If the task
is considered valid, the worker receives from the crowdsourcing com pany
the amount of money initially indicated in the open call. If the task is con-
sidered not valid, the worker receives nothing and has, most of the time, no
possibility of appeal. As the moral economy of crowdsourcing has recently
been the object of critical so cio log i cal studies, it is necessary to devote a
short sidebar to it.

Contingent work has long supported industrial efforts. As, for example,
documented by Pennington and Westover (1989), the textile industry as it
developed in England in the 1850s relied heavi ly on off- site manufactur-
ing operations, often referred to as “industrial homework.” Women and
 children living in the countryside, operating as proto- on- demand workers,
 were asked to make crucial finishing touches too fine for the machines of
the time. Almost si mul ta neously, a similar phenomenon was taking place
in the United States, particularly in the Pittsburg, Pennsylvania, area: even
though it was often seen as a reminiscence of a pre industrial era that was
doomed to dis appear, “piecework” or ga nized on a commission basis in part-
nership with rural house holds was a necessary lever for the scaling up of
mass manufacturing (Albrecht 1982). And if trade unions did later manage,

66 Chapter 2

through painful strug gles, to somewhat improve the working conditions
of employees (e.g., US Fair Labor Standards Act in 1938, French Accords de
Matignon in 1936), these improvements mostly concerned full- time work
carried out on designated production sites that was mostly reserved for
white male adults. The concessions made to salaried workers during the
first half of the twentieth century thus mostly concerned those who ben-
efited from visibility and proximity: contingent work, which was scattered,
not very vis i ble, little valued, and considered unskilled, continued to pass
 under the radar. To this— and to many other things that are beyond the
scope of this sidebar11— was later added a more or less explicit corporate
strategy of circumventing unionization and work regulations (which were
already reserved for specific trades) based notably on the growing avail-
ability of information and communication technologies. This strategy of
“fissuration of the workplace” (Weil 2014), well in line with the financial-
ization of Western economies,12 helped to further promote outsourcing:
instead of depending on employees benefiting from statutory logic, it has
become preferable and valued to depend on remote worldwide networks
of contingent staff. And crowdsourcing, as distributed computer- supported
on- demand low- valued work, can be seen as the continuation of contin-
gent work’s support to and modification of industrial capitalism. As Gray
and Suri (2019, 58) noted: “ Those on- demand jobs today are the latest itera-
tion of expendable ghost work. They are, on the one hand, necessary in the
moment, but they are too easily devalued because the tasks that they do are
typically dismissed as mundane or rote and the people often employed to
do them carry no cultural clout.”13

Let us come back to the Lab. In November 2013, like most people, the
Group was not aware of the dynamics under lying generalized outsourcing
and devaluation of contingent labor as supported by con temporary crowd-
sourcing pro cesses. An indication of this unawareness could be found in the
term “users” the Group often employed to refer to the anonymous workers
engaged in this new form of precariat.14 For the Group, at that moment,
the estimated benefits of crowdsourcing were huge: once the desired web
application was coded and set with an instruction, such as “please highlight
the features that directly attract your attention,” the Group would be able
to pay a crowdsourcing com pany whose API would take charge of linking
the survey to dozens of low paid “users” of the Group’s web application. In
turn, these “users”— that I will from now on call “workers”— would feed the

A First Case Study 67

Group’s server with labeling coordinates that could be pro cessed on soft-
ware packages such as Matlab.15 For our story, crowdsourcing—as a rather
easily available paid service—created a difference: the gathering of many
manually labeled salient features became more manageable for the Group
than it had been for Liu et al. in 2007, and an extension of the notion of
saliency to multiple features became—at least in November 2013— doable.

Another difference effected by crowdsourcing was a potential redefinition
of the saliency prob lem as being continuous:

Group meeting, the Lab’s cafeteria, November 7, 2013

FJ: “So, basically you want many labels?”

GY: “Yes because you know, in the state- of- the- art face detection or
saliency models only detect things in a binary way, like face/no face,
salient/not salient. What we also try to do is a model that evaluates the
importance of faces and objects and segments them. Like ‘this face is
more impor tant than this other face which is more impor tant than that
object’ and so on. … But anyways, to do that [a ground truth based on
the results of a crowdsourcing task], we first need a dataset with many
images with dif fer ent contents.”

CL: “Yes, we thought about something like 1,000 image at least, to train
and evaluate. But it has to be images with dif fer ent objects and faces
with dif fer ent sizes.”

GY: “And we have to select the images; good images to run the sur-
vey. … We’ll try to propose a paper in [the] spring so it would be good to
have finished crowdsourcing in January, I guess.”

If the images used to construct the ground truth contained only one or two
objects and were labeled only by several individuals, no relational values
among the labeled features could be calculated. From this point, defining
saliency as a binary prob lem in the manner of Liu et al. (2007) would make
complete sense. Yet as the Group could afford to launch a social survey that
asked for many labels on a dataset with complex images containing many
features, it would become methodologically pos si ble to assign relative impor-
tance values to the dif fer ent labeled features. This was a question of arithme-
tic values: if one feature were manually labeled as salient, the Group could
only obtain a binary value (foreground and background). But if several fea-
tures were labeled as more or less salient by many workers, the Group could
obtain a continuous subset of results. In short, for the Group, crowdsourcing

68 Chapter 2

once again created a difference by making it pos si ble to create new types
of targets with relatively continuous values. It was difficult at this point to
predict if the Group’s algorithm would effectively be able to approach these
subtle results. Nevertheless, the ground truth the Group wanted to consti-
tute would enable the development of such an algorithm by providing the
targets that the model should try to retrieve in the best pos si ble way.

Even though the Group had managed to build on previous works in
saliency detection and other related fields to reframe the prob lem of saliency,
it still lacked the ground truth that could numerically establish the terms
of this new prob lem: both the inputs the desired algorithm should work
on and the outputs (the “targets”) it should try to retrieve still needed to
be constructed. In that sense, the Group was only at the beginning of the
problematization pro cess that may lead to a new computational model: its
new definition of the saliency prob lem still needed to be equipped (Vinck
2011) with tangible ele ments (a new set of complex images, a crowdsourcing
task, continuous values, segmented faces) to form a referential database that
would, in turn, constitute the material base of the new computerized method
of calculation. Borrowing from Michel Callon (1986), we might say that, for
the members of the Group, the new ground truth appeared as an obliga-
tory passage point that could make them become— perhaps— indispensable
for the research community in saliency detection. Without a new ground
truth, saliency- detection models would still operate on unrealistic images;
they would still be one- off object related; they would still ignore the detec-
tion and segmentation of faces; and they would still, therefore, be irrel-
evant for real- world applications. With the help of a new ground truth,
 these shortcomings that the Group attributed to saliency detection may
be overcome. In a similar vein— this time borrowing from Joan Fujimura
(1987)—we might say that, at this point, the Group’s saliency prob lem was
doable only at the level of its laboratory. The Group had indeed been given
time and money to conduct the proj ect and had insights on how to run
it. But without any ground truth, the Group had no tangible means to
articulate this “laboratory level” with both the research communities in
image pro cessing and the specific tasks required to effectively define a work-
ing model of computation. It is only by constructing a database gathering
“input- data” and “output- targets” that the Group would be able to propose
and, eventually, publish an algorithm capable of solving the saliency prob-
lem as the Group reframed it.

A First Case Study 69

Constructing a New Ground Truth

We have now a better sense of some of the pitfalls that sometimes get in
the way of computer scientists trying to shape a new algorithm. As we were
following the Group in the beginning of its saliency- detection proj ect, we
realized that the constitution of an image- processing algorithm capable of
establishing a new research direction goes along with the shaping of a new
ground truth that should precisely support and equip the constitution of
the algorithm. Yet for now, we only considered the reasons why the Group
needed to design a new ground truth. But how did it actually make it?

In addition to working on the coding of the crowdsourcing web
application, the Group also dedicated November and December 2013 to
the se lection of images that echo the algorithm’s three expected per for-
mances: (1) detecting and segmenting the contours of salient features,
including faces; (2) detecting and segmenting these salient features in com-
plex images; and (3) evaluating the relative importance of the detected and
segmented salient features. These specifications led to several Group meet-
ings specifically or ga nized to discuss the content and distribution of the
selected images:

Group meeting, the Lab’s cafeteria, November 21, 2013

BJ: “Well, we may avoid this kind of basketball photo because these
players may be famous- like. They are good because the ball contrasts
with faces, but at least I know some of the players. And if I know, we
include other features like ‘I know this face,’ so I label it.”

CL: “I think maybe if you have somebody that is famous, the impor-
tance of the face increases and then we just want to avoid modeling that
in our method.”

…

CL: “OK. And the distributions are looking better?”

FJ: “Yes definitely. BJ just showed me what to improve.”

CL: “OK. So what other variables do we consider?”

GY: “Like frontal and so on. But equalizing them is real pain.”

CL: “But we can cover some of them; maybe not equalize. So there
should be like the front face with images of just the front of the face and
then there is the side face, and a mixture in between.”

70 Chapter 2

The se lection pro cess took time because a wide variety of image contents
(e.g., sport, portraits, side faces) had to be gathered to cover more natu ral
situations than the other ground truths. Also, no famous features (e.g., build-
ings, comedians, athletes) that could influence attention pro cesses should be
part of the content. As we can see, the Group’s anticipated capabilities for the
algorithm oriented this manual se lection pro cess: similarly to Liu et al. (2007)
but in a manner that made the Group include more complex “natu ral situa-
tions,” the assembling of a dataset was driven by the algorithm’s future tasks.16
By December 2013, eight hundred high- resolution images were gathered—
mostly from Flickr— and stored in the Lab’s server. Since the Group consid-
ered the inclusion of faces within saliency detection as the most significant
contribution of the proj ect, 632 of the selected images included human faces.

In parallel to this problem- oriented se lection of images, orga nizational
work on the selected images had to be defined in order not to be overloaded
by the increasing number of files and by the huge amount of labeled results to
be gathered throughout the crowdsourcing task. This kind of orga nizational
procedure was very close to data management and implied the realization of
a whole new database for which information could be easily retrieved and
anticipated. Moreover, the shaping of the crowdsourcing survey also required
coordination and adjustments: What question would be asked? How would
answers be collected and processed in order to fulfill the ambitions of the
proj ect? Those were crucial issues as the “raw” labeled answers obtained via
crowdsourcing could only be rectangles and not precise contours:

Group meeting, the Lab’s cafeteria, December 12, 2013

CL: “But for the database, do we rename the images so that we have a
consistency?”

BJ: “Hum. … I don’t think so because now we can track the files back to
the website with their ID. And with Matlab you can like store the jpg files
in one folder and retrieve all of them automatically”

…

CL: “What do you think, GY? Can we ask people to select a region of the
image or to do something like segmenting directly on it?”

GY: “I don’t think you can get pixel- precision answers with crowdsourc-
ing. We’ll need to do the pixel- precision [in the Lab] because if we ask
them, it’s gonna be a very sloppy job. Or too slow and expensive anyway.”

A First Case Study 71

CL: “So what do you want? There is your Matlab code to segment fea-
tures, right?”

GY: “Yes, but that’s low- level stuff, pixel- precision [segmentation]. It’s
gonna be for later, after we collect the coordinates, I guess. I still need to
finish the scripts [to collect the coordinates] anyway. Real pain. … But what
I thought was just like ask people to draw rectangles on the salient things,
then collect the coordinates with their ID and then use this information to
deduce which feature is more salient than the other on each image. Loca-
tion of the salient feature is a really fuzzy decision, but cutting up the edges
is not that dependent. … You know where the tree ends, and that’s what
we want. Nobody will come and say ‘No! The tree ends here!’ There is not
so many variances between people I guess in most of the cases.”

CL: “OK, let’s code for rectangles then. If that’s easy for the users, let’s
just do that.”

The IDs of the selected images allowed the Group to put the images in a
Matlab database rather easily. But within the images, the salient features
labeled by the crowdworkers were more difficult to handle since GY’s inter-
active tool to get the precise bound aries of image contents was based on
low- level information. As a consequence, segmenting the bound aries of
low- contrasted features such as faces could take several minutes, whereas
affordable crowdsourcing was about small and quick tasks. The Group could
not take the risk of either collecting “sloppy” tasks or spending an infea-
sible amount of money to do so.17 The labeled features would thus have to
be post- processed within the Lab to obtain precise contours.

Moreover, another potential point of failure of the proj ect resided in the
development of the crowdsourcing web application. Indeed, asking people
to draw rectangles around features, translating these rectangles into coor-
dinates, and storing them into files to pro cess them statistically required
nontrivial programming skills. By January 2014, when the crowdsourc-
ing web application was made fully operational, it comprised seven dif-
fer ent scripts (around seven hundred lines of code) written in html, PHP,
and JavaScript that responded to each other depending on the workers’
inputs (see figure 2.7). Yet, if the Lab’s computer scientists were at ease
with numerical computing and programming languages such as Matlab, C,
or C++, web designing and social pooling were not competencies for which
they were necessarily trained.

Fi
gu

re
 2

.7
Sc

re
en

 c
ap

tu
re

s
of

 t
h

e
w

eb
 a

pp
lic

at
io

n
 d

es
ig

n
ed

 b
y

th
e

G
ro

up
 f

or
 it

s
cr

ow
ds

ou
rc

in
g

ta
sk

. O
n

 t
h

e
le

ft
, t

h
e

ap
pl

ic
at

io
n

 w
h

en
 r

an
 b

y
a

w
eb

br

ow
se

r.
 O

n
ce

 w
or

ke
rs

 c
re

at
ed

 a
 u

se
rn

am
e,

 t
h

ey
 c

ou
ld

 s
ta

rt
 t

h
e

ex
pe

ri
m

en
t

an
d

dr
aw

 r
ec

ta
n

gl
es

. W
h

en
 w

or
ke

rs
 c

lic
ke

d
on

 “
N

ex
t

Im
ag

e”

bu
tt

on
, t

h
e

co
or

di
n

at
es

 o
f

th
e

re
ct

an
gl

es
 w

er
e

st
or

ed
 in

 .t
xt

 f
ile

s
on

 t
h

e
La

b’
s

se
rv

er
. O

n
 t

h
e

ri
gh

t,
 o

n
e

ex
ce

rp
t

of
 o

n
e

of
 t

h
e

se
ve

n
 s

cr
ip

ts

re
qu

ir
ed

 t
o

re
al

iz
e

su
ch

 in
te

ra
ct

iv
e

la
be

ls
 a

n
d

da
ta

 s
to

ra
ge

.

A First Case Study 73

Once coded and debugged— a delicate pro cess in its own right (see chap-
ter 4)— the dif fer ent scripts were stored in one section of the Lab’s server
whose address was made available in January 2014 to the now- defunct
com pany ShortTask whose API offered the best- rated contingent workers.
By February 2014, thirty workers’ tasks qua tens of thousands of rectangles’
coordinates were stored in the Group’s database as .txt files, ready to be pro-
cessed thanks to the previous preparatory steps. At this point, each image of
the previously collected dataset was linked with many dif fer ent rectangles
drawn by the workers. By superimposing all the coordinates of the dif fer ent
rectangles on Matlab, the Group created for each image a “weight map”
with varying intensities that indicated the relative consensus on salient
regions (see figure 2.8). The Group then applied to each image a widely
used threshold taken from Otsu (1979)— part of Matlab’s internal library—
to keep only weighty regions that had been considered salient by the work-
ers. In a third step that took two entire weeks, the Group—in fact, BJ and
me— manually segmented the contours of the salient ele ments within the
salient regions to obtain “salient features.” Fi nally, the Group assigned the
mean value of the salient regions’ map to the corresponding salient features
to obtain the final targets capable of defining and evaluating new kinds of
saliency- detection algorithms. This laborious pro cess took place between
February and March 2014; almost a month was dedicated to the pro cessing
of the coordinates produced by the workers and then collected by the html-
JavaScript- PHP scripts and database.

By March 2014, the Group successfully managed to create targets with
relative saliency values. The selected images and their corresponding targets
could then be or ga nized as a single database that fi nally constituted the
ground truth. From this point, one could consider that the Group effec-
tively managed to redefine the terms of the saliency prob lem: the transfor-
mations the desired algorithm should conduct were— fi nally— numerically
defined. Thanks to the definition of inputs (the selected images) and the
definition of outputs (the targets), the Group fi nally possessed a prob lem
that numerical computing could take care of.

Of course, establishing the terms of a prob lem by means of a new ground
truth was not enough: to propose an actual algorithm, the Group also had
to design and code lists of instructions that could effectively transform
input- data into output- targets according to the prob lem they had just estab-
lished. To design and code these lists of instructions, the Group randomly

74 Chapter 2

selected two hundred images out of the ground truth to form a training
set. After formal analy sis of the relationships between the inputs and the
targets of this training set, the Group extracted several numerical features
that expressed— though not completely— these input- target relationships.18
The whole pro cess of extracting and verifying numerical features and par-
ameters from the training set and translating them sequentially into Matlab
programming language took almost a month. But at the end of this pro cess,
the Group possessed a list of Matlab instructions that was able to transform
the input values of the training set into values relatively close to those
of the targets.

By the end of March 2014, the Group used the remainder of its ground-
truth database to evaluate the algorithm and compare it with already available

Figure 2.8
Matlab table summarizing the dif fer ent steps required for the pro cessing of the coor-
dinates produced by the workers who accomplished the crowdsourcing task. The first
row shows examples of images and rectangular labels collected from the crowdsourc-
ing task. The second row shows the weight maps obtained from the superposition of
the labels. The third row shows the salient regions produced by using Otsu’s (1979)
threshold. The last row pre sents the final targets with relative saliency values. The
first three steps could be automated, but the last segmentation step had to be done
manually. At the end of this pro cess, the images (first row, without the labels) and
their corresponding targets (last row) were gathered in a single database that consti-
tuted the Group’s ground truth.

A First Case Study 75

saliency- detection algorithms in terms of precision and recall mea sures (see
figure 2.9). The results of this confrontation being satisfactory, the features
and per for mances of the Group’s algorithm were fi nally summarized in a
draft paper and submitted to an impor tant Eu ro pean Conference on image
pro cessing.

As these Group meetings and documents show, the Group’s algorithm
could only be made operational once the newly defined prob lem of saliency
had been solved by human workers and expressed in a ground- truth data-
base. In that sense, the finalization of Matlab lists of instructions capable
of solving the newly defined prob lem of saliency followed the problemati-
zation pro cess in which the Group was engaged. The theoretical refram-
ing of saliency, the se lection of specific images on Flickr, the coding of a
web application, the creation of a Matlab database, the pro cessing of the

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall

Pr
ec

is
io

n

PR curves

AMC CH GBMR
SMVJ LR Judd
Borji SC Ours

Borji
AM

C LR
SM

VJ CH

GBM
R SC

Ju
dd

Ours
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Methods

Precision Recall F−measure

Figure 2.9
Two Matlab- generated graphs comparing the per for mances of the Group’s algorithm
(“Ours”) with already published ones (“AMC,” “CH,” etc.). The new ground truth
enabled both graphs. In the graph on the left, the curves represented the variation of
precision (“y” axis) and recall (“x” axis) scores for all the images in the ground truth
when pro cessed by each algorithm. In the graph on the right, histograms measured
the same data while also including F-Measure values, the weighted average of preci-
sion and recall values. Both graphs indicated that, according to the new ground truth,
the Group’s algorithm significantly outperformed all state- of- the- art algorithms.

76 Chapter 2

workers’ coordinates: all these practices were required to design the ground
truth that ended up allowing the extraction of the relevant numerical fea-
tures of the algorithm as well as its evaluation. Of course, the mundane
work required for the construction of the ground truth was not sufficient to
complete the complex lists of Matlab instructions that ended up effectively
pro cessing the pixels of the images: critical certified mathematical claims
also needed to be articulated and expressed into machine- readable format.
Yet, by providing the training set to extract the numerical features of the
algorithm and by providing the evaluation set to mea sure the algorithm’s
per for mances, the ground truth greatly participated in the completion of
the algorithm.

The above ele ments are not so trivial, and some deeper reflections are
required before moving forward. In November 2013, the Group had only
few ele ments at its disposal. It had desires (e.g., contesting previous papers),
skills (e.g., mathematical and programming abilities), means (e.g., access to
academic journals, power ful computers), and hopes (e.g., make a difference
in the field of image pro cessing). But these ele ments alone were not enough
to effectively shape its new intended algorithm. In November 2013, the
Group also needed an empirical basis that could serve as a fundamental
substratum; it needed to ground a material coherence that could establish
the veridiction of their future model. This was the whole benefit of the
new ground truth— which should rather be called grounded truth—as it was
now pos si ble to found and bring into existence a set of phenomena (here,
saliency differentials) operating as an analytical referential. Once this scrip-
tural fixation was achieved in March 2014, the world the Group inhabited
was no longer the same: it was enriched and oriented by a set of relations
materialized in a database. And the algorithm that fi nally came out from
this database or ga nized, reproduced, and in a sense, consecrated the rela-
tions embedded in it. From a static and par tic u lar ground truth emerged
an operative algorithm potentially capable of reproducing and promoting
the orga nizational rules of the ground truth in dif fer ent configurations. By
rooting the yet- to- be- constructed algorithm, the ground truth as assembled
by the Group oriented the design of its algorithm in a par tic u lar direction.
In that sense, the new ground truth was the contingent yet necessary bias
of the group’s algorithm.19

This propensity of computational models to be bound to and fundamen-
tally biased by manually gathered and pro cessed data is not limited to the

A First Case Study 77

field of digital image pro cessing. For example, as Edwards (2013) showed for
the case of climatology, the tedious collection, standardization, and com-
pilation of weather data to produce accurate ground truths of the Earth’s
climate is crucial for both the parametrization and evaluation of General Cir-
culation Models (GCMs).20 Of course, just as in the field of image pro cessing,
the construction of ground truths by climatologists does not guarantee the
definition of accurate and effective GCMs: crucial insights in fluid dynam-
ics, statistics, and (parallel) computer programming are also required. Yet,
without ground truths providing par ameters and evaluations, no efficient
and trustworthy GCM could come into existence. For the case of machine
learning algorithms for handwriting recognition or spam filtering, Burrell
(2016, 5–6) noted the importance of “test data” in setting the learning par-
ameters of these algorithms as well as in evaluating their per for mances. Here
as well, ground truths appear central, defining what is statistically learned
by algorithms and allowing the evaluation of their learning per for mances.21
The same seems also to be true of many algorithms for high- frequency trad-
ing: as MacKenzie (2014, 17–31) suggested, detailed analy sis of former finan-
cial transactions as well as the authoritative lit er a ture of financial economics
work as empirical bases for the shaping and evaluation of “execution” and
“proprietary trading” algorithms.

Yet, despite growing empirical evidences, algorithms’ tendency to be exis-
tentially linked to ground- truth databases that cannot, obviously, be reduced
to mere sets of data remains little discussed in the abundant computer sci-
ence lit er a ture on algorithms. The issue is generally omitted: mathematical
analy sis and programming techniques, sometimes highly complex, are dis-
cussed after, or as if, a ground truth has been constructed, accepted, distrib-
uted, and made accessible. The theoretical exploration of what I called in
chapter 1 the standard conception of algorithms tends to take for granted
the existence of stable and shared referential repositories. This omission
may even be what makes such a vision of algorithms pos si ble: considering
algorithms as tools ensuring the computerized transition from prob lems
to solutions might imply to suppose already defined prob lems and already
assessable solutions.

Some sociologists— most of them STS- inspired—do consider the topic
head on, though. In their critique of predictive algorithmic systems, Baro-
cas and Selbst (2016) warned against the potentially harmful consequences
of prob lem definition and training sets’ collection. In a similar way, Lehr

78 Chapter 2

and Ohm (2017) emphasized on the handcrafted aspect of “playing with
the data” for the design of statistical learning algorithms. More recently,
Bechmann and Bowker (2019) built on these arguments to propose the
notion of value- accountability- by- design: a call for systemic efforts to make
arbitrary choices involved in algorithm- related data collection, prepara-
tion, and classification more explicit. In the wake of Ananny and Crawford
(2018), they thus suggest that, to better appreciate algorithmic be hav ior, ex
ante focus on ground- truthing pro cesses might be more conclusive than ex
post audits or source code scrutinization (as it is, for example, proposed in
Bostrom [2017] and Sandvig et al. [2016]). In a similar way, Grosman and
Reigeluth (2019) investigated the design of an algorithmic security system
for the detection of threatening be hav iors. They show that the definition
of the prob lem that the algorithm will have to solve— and, therefore, the
“true positives” it will have to detect— derive from collective problematiza-
tion pro cesses that include discussions and compromises among sponsors,
competing interpretations of legal documents, and on- site simulations of
threatening and inoffensive be hav iors conducted by the proj ect’s engineers.
They conclude that the normativity proper to algorithmic systems must
also be considered in the light of the tensions that contributed to mak-
ing this normativity expressible. In sum, all the above- mentioned authors
have uncovered pro cesses that resemble the one the Group had just gone
through. Their investigations also show that what is called an “algorithm”
often derives from collective pro cesses expressed materially in contingent,
but necessary, referential repositories.

At this early stage of the pre sent inquiry, it would be unwise to define a
general property common to all algorithms. Yet based on the preliminary
insights of this chapter and the growing body of studies that touched on
similar issues, one can make the reasonable hypothesis that behind many
of these entities we like to call “algorithms” lie ground- truth databases
that have made designers able to extract relevant numerical features and
evaluate the accuracy of the automated transformations of inputs- data into
output- targets. Consequently, as soon as such algorithms— once “in the
wild,” outside of their production sites— automatically pro cess new data,
their respective initial ground truths— along with the habits, desires, and
values that participated in their shaping— are also invoked and, to a cer-
tain extent, promoted. As I will further develop at the end of this chapter,
studying the performative effects of such algorithms in the light of the

A First Case Study 79

collective pro cesses that constituted the output- targets these algorithms
try to retrieve appears a stimulating, yet still underexplored, research topic
when compared with the growing influence algorithms have on our lives.

Almost Accepted (Yet Rejected)

June 19, 2014: The reviewers rejected the Group’s paper. The Group was
greatly disappointed to see several months of meticulous work unrewarded
by a publication that could have launched new research lines and gener-
ated many citations. But the feeling was also one of incomprehension and
surprise in view of the reasons provided by the three reviewers.

Along with doubts about the usefulness of incorporating face information
within saliency detection, the reviewers agreed on one seemingly key defi-
ciency of the Group’s paper: the per for mance comparisons of the computa-
tional model were only made with re spect to the Group’s new ground truth:

Assigned Reviewer 1
The paper does not show that the proposed method also performs better than
other state- of- the- art methods on public benchmark ground truths. … The exper-
iment evaluation in this paper is conducted only on the self- collected face images.
More evaluation datasets will be more convincing. … More experiment needs to
be done to demonstrate the proposed method.

Assigned Reviewer 2
The experiments are tested only on the ground truth created by the authors. … It
would be more insightful if experiments on other ground truths were carried out,
and results on face images and non- face images were reported, respectively. This
way one can more thoroughly evaluate the usefulness of a face- importance map.

Assigned Reviewer 3
The discussion is still too subjective and not sufficient to support its scientific
insights. Evaluation on existing datasets would be impor tant in this sense.

The reviewers found the technical aspects of the paper to be sound. But they
questioned whether the new best saliency- detection model—as the Group
presented it in the paper— could be confronted only with the ground truth
used to create it. Indeed, why not confront this new model with the already
available ground truths for saliency detection? If the model were really “more
efficient” than the already published ones, it should also be more efficient
on the ground truths used to shape and evaluate the per for mances of the
previously published saliency- detection models. In other words, since the

80 Chapter 2

Group presented its model as commensurable with former models, the Group
should have— according to the reviewers— more thoroughly compared its
per for mances. But why did the Group stop halfway through its evaluation
efforts and compare its model only with re spect to the new ground truth?

Discussion with BJ on the terrace of the CSF’s cafeteria, June 19, 2014

FJ: The committee didn’t like that we created our own ground truth? 22

BJ: No. I mean, it’s just that we tested on this one but we did not test on
the other ones.

FJ: They wanted you to test on already existing ground truths?

BJ: Yes.

FJ: But why didn’t you do that?

BJ: Well, that’s the prob lem: Why did we not test it on the others? We
have a reason. Our model is about face segmentation and multiple features.
But in the other datasets, most of them do not have more than ten face
images. … In the saliency area, most people do not work on face detection
and multiple features. They work on images where there is a car or a bird in
the center. You always have a bird or something like this. So it just makes no
sense to test our model on these datasets. They just don’t cover what our
model does. … That’s the thing: if you do classical improvement, you are
ensured that you will pre sent something at big conferences. But if you pro-
pose new things, then somehow people just misunderstand the concept.

It would not have been technically difficult for the Group to confront its
model with the previous ground truths; they were freely available on the
web, and such per for mance evaluations required roughly the same Matlab
scripts as those used to produce the results shown in figure 2.9. The main
reason the Group did not do such comparisons was that the previous models
deriving from the previous ground truths would certainly have obtained bet-
ter per for mance results. Since the Group’s model was not designed to solve
the saliency prob lem as defined by the previous ground truths, it would
certainly have been outperformed by these ground truths’ “native” models.

Due to a lack of empirical ele ments, I will not try to interpret the reasons
why the Group felt obliged to frame the line of argument of its paper around
issues of quantifiable per for mances.23 Yet, in line with the argument of
this chapter, I assume that this rejection episode shows again how image-
processing algorithms can be bound to their ground truths. An algorithm

A First Case Study 81

deriving from a ground truth made of images whose targets are centered,
contrastive objects will somehow manage to retrieve these targets. But
when tested on a ground truth made of images whose targets are multiple
decentered objects and faces, the same algorithm may well produce statisti-
cally poor results. Similarly, another algorithm deriving from a ground truth
made of images whose targets are multiple decentered objects and faces will
somehow manage to retrieve these targets. But when tested on a ground
truth made of images whose targets are centered contrastive objects, it may
well produce statistically poor results. Both such algorithms operate in dif-
fer ent categories; their limits lie in the ground truths used to define their
range of actions. As BJ suggested in a dramatic way, to a certain extent, we
get the algorithms of our ground truths. Algorithms can be presented as statisti-
cally more efficient than others when they derive from the same—or very
similar— ground truths. As soon as two algorithms derive from two ground
truths with dif fer ent targets, they can only be presented as dif fer ent. Quali-
tative evaluations of the dif fer ent ground truths in terms of methodology,
data se lection, statistical rigor, or industrial potentials can be conducted,
but the two computational models themselves are irreducibly dif fer ent and
not commensurable. From the point of view of this case study— which may
differ from the point of view of the reviewers— the Group’s fatal mistake
might have been to mix up quantitative improvement of per for mances with
qualitative refinement of ground truths.

Interestingly, one year after this rejection episode, the Group submitted
another paper, this time to a smaller conference in image pro cessing. The
objects of this paper were rigorously the same as those of the paper that was
previously rejected: the same ground truth and the same computational
model. Yet instead of highlighting the statistical per for mances of its model,
the Group emphasized its ground truth and the fact that it allowed the inclu-
sion of face segmentation within saliency detection. In this second paper
that won the “Best Short Paper Award” of the conference, the computa-
tional model was presented as one example of the application potential of
the new ground truth.

Prob lem Oriented and/or Axiomatic

This first case study accounted for a small part of a four- month- long proj-
ect in saliency detection run by a group of young computer scientists in

82 Chapter 2

the Lab. Is it pos si ble to draw on the observations of this exploratory case
study? Could we use some of the accounted ele ments to make broader
propositions and sketch analytical directions for the pre sent book as well
as for other potential future inquiries into the constitution of algorithms?
More than just concerning a group of young computer scientists and a
small prototype for saliency detection, I think indeed that this case study
fleshes out impor tant insights that deserve to be explored more thoroughly.
For the remaining part of this chapter then, I will draw on this empirical
case to tentatively propose two complementary research directions for the
so cio log i cal study of algorithms.

I assume that this case study implicitly suggests a new way of seeing
algorithms that still accepts their standard definition while expanding it
dramatically. Indeed, we may now still consider an algorithm as being, at
some point, a set of instructions designed to computationally solve a given
prob lem. Though as explained at the end of chapter 1, I intentionally did
not take this standard definition of algorithms as a starting point; at the
end of the Group’s proj ect, once the numerical features were extracted
from the training set and translated into machine- readable language, sev-
eral Matlab files with thousands of lines of instructions constituted just
such a set. From that point of view, the study of these sets of instructions
at a theoretical level—as proposed, for example, by Knuth (1997a, 1997b,
1998, 2011); Sedgewick and Wayne (2011); Dasgupta, Papadimitriou, and
Vazirani (2006); and many others—is wholly relevant to the prob lem at
hand. How to use mathe matics and machine- readable languages in order to
propose a solution to a given prob lem in the most efficient way is indeed a
fascinating question and field of study.

At the same time, however, we saw that the prob lem an algorithm is
designed to solve does not preexist: it has to be produced during what one
may call a “problematization process”— a succession of collective practices
that aim to empirically define the terms of a prob lem to be solved. In our
case study, the Group first drew on recent claims published in authorita-
tive journals of cognitive biology to reframe the saliency prob lem as being
face- related and continuous. As we saw, this first step of the Group’s prob-
lematization pro cess implied mundane and problematic practices such as
the critique of previous research results (what did our opponents miss?) and
the inclusion of some of the Lab’s recent proj ects (how to pursue our recent
developments?). The second step of the Group’s problematization pro cess

A First Case Study 83

implied the constitution of a ground truth that could operationalize the
reframed prob lem of saliency. This second step also implied mundane and
problematic practices such as the collection of a dataset on Flickr (what
images do we choose?), the organ ization of a database (how do we or ga nize
our data?), the design of a crowdsourcing task (what question do we ask to
the workers?), and the pro cessing of the results (how do we get contours of
features from rectangles?). Only at the very end of this process— once the
laboriously constructed targets have been associated to the laboriously con-
structed dataset in order to form the final ground- truth database— was the
Group able to formulate, program, and evaluate the set of Matlab instruc-
tions capable of transforming inputs into outputs by means of numerical
computing techniques. In short, to design a computerized method of cal-
culation that could solve the new saliency prob lem, the Group first had to
define the bound aries of this new prob lem.

From these empirical ele ments, two complementary perspectives on
the Group’s algorithm seem to emerge. A first perspective might consider
the Group’s algorithm as a set of instructions designed to computationally
solve a new prob lem in the best pos si ble way. This first traditional view on
the Group’s algorithm would, in turn, put the emphasis on the mathemati-
cal choices, formulating practices, and programming procedures the Group
used to transform the input- data of the new ground truth into their cor-
responding output- targets. How did the Group manipulate its training set
to extract relevant numerical features for such a task? How did the Group
translate mathematical operations into lines of code? And did it lead to
the most efficient result? In short, this take on the Group’s algorithm would
analyze it in the light of its computational properties. Yet symmetrically, a
second view on the Group’s algorithm might consider it as a set of instruc-
tions designed to computationally retrieve, in the best pos si ble way, output-
targets that were designed during a specific problematization pro cess. This
second take on the Group’s algorithm would, in turn, put the emphasis
on the specific situations and practices that led to the definition of the
terms of the prob lem the algorithm was designed to solve. How was the
prob lem defined? How was the dataset collected? How was the crowdsourc-
ing task conducted? In short, this second perspective— which this chapter
endorsed— would analyze the Group’s algorithm vis- à- vis the construction
pro cess of the ground truth it originally derived from (and by which it was
biased).

84 Chapter 2

If we tentatively expand the above propositions, we end up with two
ways of considering algorithms that both pivot about these material objects
called ground truths. What we may call an axiomatic perspective on algo-
rithms would consider algorithms as sets of instructions designed to com-
putationally solve in the best pos si ble way a prob lem defined by a given
ground truth. A second, and complementary, problem- oriented perspective
on algorithms would consider algorithms as sets of instructions designed
to computationally retrieve what has been defined as output- targets during
specific problematization pro cesses.

While I do think that both axiomatic and problem- oriented perspectives on
algorithms are complementary and should thus be intimately articulated—
specific numerical features being suggested by ground truths (and vice
versa)— I also believe that they lead to dif fer ent analytical efforts. By con-
sidering the terms of the prob lem at hand as given, the axiomatic way of
considering algorithms facilitates the study of the actual mathematical and
programming procedures that effectively end up transforming input sets of
values into output sets of values in the best pos si ble ways. This may sound
like an obvious statement, but defining a calculating method requires mini-
mal agreement on the initial terms and prospected results of the method
(Ritter 1995). It is by assuming that the transformation of the input- data
into the output- targets is desirable, relevant, and attestable that a step- by-
step schema describing this transformation might be proposed. In the case
of computer science, dif fer ent areas of mathe matics with many dif fer ent
certified rules and theorems can be explored, adapted, and enrolled to
automate at best the passage from selected input- data to specified output-
targets; linear algebra in the case of image pro cessing (Klein 2013), proba-
bility theory in the case of data compression (Pu 2005), graph theory in the
case of data structure (Tarjan 1983), number theory in the case of cryptog-
raphy (Koblitz 2012), or statistics (and probabilities) in the case of the ever-
popular machine- learning procedures supposedly adaptable to all fields of
activity (Alpaydin 2016). As we will see in chapters 5 and 6, the exploration
and teaching of these dif fer ent certified mathematical bodies of knowledge
must therefore be respected for what they are: power ful operators allowing
the reliable transformative computation of ground- truth’s input- data into
their corresponding output- targets.

If the problem- oriented perspective on algorithms may not directly focus
on the formation and computational effectiveness of algorithms, it may

A First Case Study 85

contribute to better documenting the pro cesses that configure the terms
of the prob lems these algorithms try to solve. Considering algorithms as
retrieving entities may put the emphasis on the referential databases that
define what algorithms try to retrieve and reproduce; the biases they build
on in order to express their veracity. What ground truth defined the terms
of the prob lem this algorithm tries to solve? How was this ground- truth
database constituted? And when? And by whom? By pointing at moments
and locations where outputs to be retrieved were, or are, being constituted
within ground-truth databases, this analytical look at algorithms— that
Bechmann and Bowker (2019) and Grosman and Reigeluth (2019) contrib-
uted to igniting— may suggest new ways of interacting with algorithms and
 those who design them. This ave nue of research, which is still in its infancy,
could moreover link its results to those of the more explic itly critical posi-
tions I mentioned in the introduction. If the investigations by Noble
(2018) on the racist ste reo types promoted by the search engine Google or
by O’Neil (2016) on how proxies used by proprietary scoring algorithms
tend to punish the poorest have effectively acted as warning signs, practi-
cal ways to change the current situation still need to be elaborated. This is
where the notion of composition, the keystone of this inquiry, comes again
into play: at the time of (legitimate) indignation, the time of constructive
confrontation must follow, which itself implies being able to pre sent one-
self realistically. As long as the practical work subtending the constitution
of algorithms remains abstract and indefinite, modifying the ecol ogy of
this work will remain extremely difficult. Changing the biases that root
algorithms in order to make them promote dif fer ent values may, in that
sense, be achieved by making the work practices that underlie algorithms’
veracities more vis i ble. If more studies could inquire into the ground- truthing
practices algorithms derive from, then actual composition potentials may
slowly be suggested.

* * *

Part I is now coming to an end. Let me then quickly recap the ele ments pre-
sented so far. In chapter 1, I presented the main setting of this inquiry: an
academic laboratory I de cided to call the “Lab” whose members spend a fair
amount of time and energy assembling and publishing new image- processing
algorithms, thus participating—at their own level—in the heterogeneous net-
work of computer science industry. I also considered methodological issues

86 Chapter 2

and critically discussed the notion of algorithm as it is generally presented in
the specialized lit er a ture.

In chapter 2, we dived into the daily work of the Lab and followed a
group of young computer scientists trying to design a new algorithm for
an impor tant conference in image pro cessing. Our initial encounter with
the Group at the Lab’s cafeteria was at first confusing, but after a quick
detour via the image- processing lit er a ture on saliency detection, we were
able to understand why the Group’s proj ect implied the shaping of a new
referential database that could define the terms of the prob lem its desired
algorithm should later try to solve. As we were accounting for these mun-
dane yet crucial ground- truthing practices, we realized something very banal
for prac ti tion ers of computer science but surprising to many others: it turns
out that, to a certain extent, we get the algorithms of our ground truths. As
the construction of image- processing algorithms implies the formation of
training sets for formulating the relationships between input- images and
output- targets as well as the formation of evaluation sets for mea sur ing and
comparing the per for mances of these formulated relationships, image-
processing algorithms— and potentially many others— must rely, in one
way or another, on manually constructed ground truths that precisely pro-
vide both sets. This half- discovery further suggested a research agenda that
two complementary analytical perspectives on algorithms could irrigate.
First, and in the wake of this chapter 2, a “problem- oriented perspective”
could explore the collective pro cesses leading to the formation and circula-
tion of ground truths. This unconventional glance on algorithms may con-
tribute to equipping broader topics related to data justice and algorithmic
fairness. Yet to avoid reducing algorithms to the ground truths from which
they derive, such studies of algorithms should be intimately articulated
with an “axiomatic perspective” on algorithms that could further explore
the formulation and evaluation of computational models from already con-
stituted ground truths.

II Programming

It is sometimes difficult to say things that are quite simple.

— Hutchins (1995, 356)

If part I led, I hope, to in ter est ing insights, it was nonetheless mundane-
biased. Although I kept on insisting on the ordinary aspect of ground-
truthing— criticizing previous papers, selecting data, defining targets, and
so on— I remained very vague about less common practices that those who
are not computer scientists generally expect to see in computer science lab-
oratories. For example, where is the mathe matics? If the Group managed to
define relationships between input- data and output- targets, it certainly for-
mulated them with the help of mathematical knowledge and inscriptions.
And where are the cryptic lines of computer code? If the Group managed
to first design a web application and later test its computational model on
the evaluation set, it must have successfully written machine- readable lists
of instructions. If I really want to propose a partial yet realistic constitution
of algorithms, do I not need to account for these a priori exotic activities
as well? The practices leading to the definition of mathematical models
of computation will be the topic of part III. For now, I need to consider
computer programming, this crucial activity that never stops being part of
computer scientists’ daily work.

Let us warm up with some basic assertions. Is it not a platitude to say
that computer programming is a central activity? Every digital device that
takes part in our courses of action required indeed the expert hands of “pro-
grammers” or “developers” who translated desires, plans, and intuitions
into machine- readable lists of instructions. Banks, scientific laboratories,

90 Part II: Programming

high- tech companies, museums, spare part manufacturers, novelists, eth-
nographers: all indirectly rely on people capable of interacting with com-
puters to assem ble files whose content can be executed by pro cessors at
electronic speed. If by a mysterious black- magic blow all programmers who
make computers compute in desired ways were removed from the collec-
tive world, the remaining people would very soon end up yapping around
powerless relics like, as Malraux says, crowds of monkeys in Angkor temples.
The current importance of fast and reliable automated pro cessing for most
sectors of activity positions computer programming as an obligatory pas-
sage point that cannot be underestimated.

Yet if the courses of action of computer programming are terribly impor-
tant— without them, there would be no digital tools— their study does not
always appear relevant. Most of the individuals of the collective world
rightly have other things to do than spending time studying what animates
the digital devices with which they interact. Moreover, those who study
 these individuals— for example, sociologists and social scientists— can also
take programming practices for granted as po liti cal, social, or economic
pro cesses often appear after innumerable programming ventures have been
successfully conducted. For many in ter est ing activities and research topics,
then, it makes perfectly sense not to look at how computer programs are
empirically assembled.

In other situations, though, the activity of computer programming is
more difficult to ignore. Computer scientists and engineers cannot, for
example, take this activity for granted as it would imply ignoring an impor-
tant and often problematic aspect of their work.1 Unfortunately, as we shall
see later, the methods they use to better understand their own practices
tend to privilege the evaluation of the results of computer programming
tasks rather than the practices involved in the production of these results.
Programmers’ insights resulting from the analy sis of programming tasks
thus remain distant from the actions of programming, for which they often
remain unaccountable.

But programming practices are also difficult to ignore for cognitive scien-
tists who work in artificial intelligence departments: as human cognition
is— according to many of them— a matter of computing, understanding
how computers become able to compute via the design of programs seems
indeed to be a fruitful topic. But just like computer scientists and engineers,
cognitive scientists have difficulties with properly accessing and inquiring

Part II: Programming 91

into computer programming courses of action. For entangled reasons
which I will cover in the following chapter, when cognitivists inquire into
what makes programs exist, they cannot go beyond the form “program”
that precisely needs to be accounted for. In a surprisingly vicious circle that
has to do with the so- called computational meta phor of the mind, cognitiv-
ists end up proposing numerous (mental) programs to explain the develop-
ment of (computer) programs.

Programming practices therefore appear quite tricky: terribly impor tant
but at the same time very difficult to effectively study. What makes these
courses of action so elusive? Is it even pos si ble to account for them? And
if it is, what are their associative properties? And what do these properties
suggest? The goal of this part II is to tackle some of these questions. The
journey will be long, never straightforward, and sometimes, not developed
enough. But let the reader forgive me: as you will hopefully realize, a full
historical and so cio log i cal understanding of computer programming is a
life proj ect of its own. So many things have been said without much being
shown! The reasons for dizziness are legitimate, the chances of success
infinitesimal; yet, if we really care about these entities we tend to call algo-
rithms, an exploratory attempt to better understand the practices required
to make them effectively participate in our courses of action might not be,
I hope, completely senseless.

Part II is or ga nized as follows. In chapter 3, I start by retracing how the
activity of programming was progressively made invisible before propos-
ing conceptual means to help restore its practicality. I first focus on an
impor tant document written by John von Neumann in 1945 that presented
computers as input- output devices capable of operating without the help
of humans. This initial setting aside of programming practices from elec-
tronic computing systems further seemed to depict them as self- sufficient
“electronic brains.” In the second section of the chapter I pre sent academic
attempts to make sense of the incapacity of “electronic brains” to operate
meaningfully. As we shall see, for intricate reasons related to the computa-
tional meta phor of the mind, I assume that researchers conducting these
studies did not manage to properly approach computer programming prac-
tices, thus further contributing to their invisibilization. In the last section
of the chapter where I progressively try to detach myself from almost every-
thing that has been said about the practice of computer programming, I
draw on con temporary work in the philosophy of perception to propose

92 Part II: Programming

a definition of cognition as enacted. This enactive conception of cognition
 will further help us fully consider actions instead of minds. In chapter 4, I
build on this unconventional conception of cognition as well as several
other concepts taken from Science and Technology Studies to closely analyze a
programming episode collected within the Lab. The study of these empiri-
cal materials makes me tentatively partition programming episodes into
three intimately related sets of practices: scientific with the alignment of
inscriptions, technical with the work- arounds of impasses, and affective with
the shaping of scenarios. The need for constant shifting among these three
modes of practices might be a reason why computer programming is a dif-
ficult yet fascinating experience. The last section of chapter 4 will be a brief
summary.

Many things have been written regarding computer programming— often,
I believe, in problematic ways. To avoid getting lost in this abundant lit-
er a ture, it is impor tant to start this chapter with an operational definition
of computer programming on which I could work and eventually refine
 later. I shall then temporally define computer programming as the situated
activity of inscribing numbered lists of instructions that can be executed by
computer pro cessors to or ga nize the movement of bits and to modify given
data in desired ways. This operational definition of computer programming
puts aside other practices one may sometimes describe as “programming,”
such as “programming one’s wedding” or “programming the clock of one’s
micro wave.”

If I place emphasis on the practical and situated aspect of computer pro-
gramming in my operational definition, it is because impor tant historical
events have progressively set it aside. In this first section that draws on
historical works on early electronic computing proj ects, we will see that
once computer systems started to be presented as input- output instruments
controlled by a central unit— following the successful dissemination of the
so- called von Neumann architecture— the entangled sociotechnical rela-
tionships required to make these objects operate in meaningful ways had
begun to be placed in the background. If electronic computing systems
 were, in practice, intricate and highly problematic sociotechnical pro cesses,
von Neumann’s modelization made them appear as functional devices
transforming inputs into outputs. The noninclusion of practices— hence
their invisibilization—in the accounts of electronic computers further led
to serious issues that suggested the first academic studies of computer pro-
gramming in the 1950s.

3 Von Neumann’s Draft, Electronic Brains, and Cognition

94 Chapter 3

A Report and Its Consequences

One cornerstone of what will progressively be called “von Neumann architec-
ture” is the First Draft of a Report on the EDVAC that John von Neumann wrote
in a hurry in 1945 to summarize the advancement of an audacious electronic
computing system initiated during World War II at the Moore School of Elec-
trical Engineering at the University of Pennsylvania. As I believe this report
has had an impor tant influence on the setting aside of the practical instantia-
tions of computer systems, we first need to look at the history and dissemina-
tion of this document as well as the world it participated in enacting.

World War II: An Increasing Need for the Resolution
of Differential Equations
An arbitrary point of departure could be President Franklin D. Roo se velt’s
radio broadcast on December 29, 1940, that publicly presented the United
States as the main military supplier to the Allied war effort, therefore imply-
ing a significant increase in US military production spending.1 Under the
jurisdiction of the Army Ordnance Department (AOD), the design and indus-
trial production of long- distance weapons were obvious topics for this war-
oriented endeavor. Yet for every newly developed long- distance weapon, a
complete and reliable firing table listing the appropriate elevations and azi-
muths for the reaching of any distant targets had to be calculated, printed,
and distributed. Indeed, to have a chance to effectively reach targets with a
minimum of rounds, every long- distance weapon had to be equipped with
a booklet containing data for several thousand kinds of curved trajectories.2
More battles, more weapons, and more distant shots: along with the mass
production of weapons and the enrollment of soldiers capable of handling
them, the US’s entry into another world war in 1942 further implied an
increasing need for the resolution of differential equations.

 These practical mathematical operations— which can take the form of
long iterative equations that require only addition, subtraction, multiplica-
tion, and division— were mainly conducted in the premises of the Ballistic
Research Laboratory (BRL) at Aberdeen, Mary land, and at the Moore School
of Electrical Engineering in Philadelphia. Hundreds of “ human comput-
ers” (Grier 2005), mainly women (Light 1999), along with mechanical desk
calculators and two costly refined versions of Vannevar Buch’s differential

Von Neumann’s Draft, Electronic Brains, and Cognition 95

analyzer (Owens 1986)—an analogue machine that could compute math-
ematical equations3— worked intensely to print out ballistic missile firing
 tables. Assembling all of the assignable factors that affect the trajectories
of a projectile shot from the barrel of a gun (gravity; the elevations of the
gun; the shell’s weight, dia meter, and shape; the densities and temperatures
of the air; the wind velocities, etc.)4 and aligning them to define and solve
messy differential equations5 was a tedious pro cess that involved intense
training and military chains of command (Polachek 1997). But even this
unpre ce dented ballistic calculating endeavor could not satisfy the comput-
ing needs of this war time. Too much time was required to produce a com-
plete table, and the backlog of work rapidly grew as the war intensified. As
Campbell- Kelly et al. (2013, 68) put it:

The lack of an effective calculating technology was thus a major bottleneck to the
effective deployment of the multitude of newly developed weapons.

In 1942, drawing on the differential analyzer and on the pioneering work of
John Vincent Atanasoff and Clifford Berry on electronic computing (Akera
2008, 82–102; Burks and Burks 1989) as well as on his own research on
delay- line storage systems,6 John Mauchly—an assistant professor at the
Moore School— submitted a memorandum to the AOD that presented the
construction of an electronic computer as a potential resource for faster and
more reliable computation of ballistic equations (Mauchly [1942] 1982).7
The memorandum first went unnoticed. But one year later, thanks to the
lobbying of Herman Goldstine— a mathematician and influential member
of the BRL— a meeting regarding the potential funding of an eighteen-
thousand- vacuum- tube electronic computer was or ga nized with the BRL’s
director. And despite the skepticism of influent members of the National
Defense Research Committee (NDRC),8 a $400,000 research contract was
signed on April 9, 1943.9 At this point, the construction of a computing
system that could potentially solve large iterative equations at electronic
speed and therefore accelerate the printing out of the firing tables required
for long- distance weapons could begin. This proj ect, initially called “Proj ect
PX,” took the name of ENIAC for Electronic Numerical Integrator and Computer.

The need to quickly demonstrate technical feasibility forced Mauchly
and John Presper Eckert— the chief engineer of the proj ect—to make irre-
versible design decisions that soon appeared problematic (Campbell- Kelly

96 Chapter 3

et al. 2013, 65–87). The biggest shortcoming was related to the new com-
puting capabilities of the system: If delay- line storage could potentially
make the system add, subtract, multiply, and divide electric translations
of numbers at electronic speed, such storage prevented the system from
being instructed via punched cards or paper tape. This common way of
both temporally storing data and describing the logico- arithmetic opera-
tions that would compute them was well adapted for electromechanical
devices, such as the Harvard Mark I that proceeded at three operations per
second.10 But an electronic machine such as the ENIAC that was supposed
to perform five thousand operations per second could not possibly handle
this kind of paper material. The solution that Eckert and Mauchly proposed
was then to set up both data and instructions manually on the device by
means of wires, mechanical switches, and dials. This choice led to two
related impasses. First, it constrained the writable electronic storage of the
device; more storage would have indeed required even bigger machinery,
entangled wires, and unreliable vacuum tubes. Second, the work required
to set up all the circuitry and controllers and start an iterative ballistic equa-
tion was extremely tedious; once the data and the instructions were labori-
ously defined and checked, the whole operating team needed to be briefed
and synchronized to set up the messy circuitry (Campbell- Kelly et al. 2013,
73). Moreover, the passage from diagrams provided by the top engineers
to the actual setup of the system by lower- ranked employees was by no
means a smooth process— the diagrams were tedious to produce, hard to
read, and error-prone, and the number of switches, wires, and resistors was
quite confusing.11

Two impor tant events made an alternative appear. The first is Eckert’s
work on mercury delay- line storage, which built upon his previous work on
radar technology. By 1944, he became convinced that these items could be
adapted to provide more compact, faster, and cheaper computing storage
(Haigh, Priestley, and Rope 2016, 130–132). The second event is one of the
most popu lar anecdotes of the history of computing: the visit of John von
Neumann at the BRL in the summer of 1944. Contrary to Eckert, Mauchly,
and even Goldstine, von Neumann was already an impor tant scientific fig-
ure in 1944. Since the 1930s, he was at the forefront of mathematical logic,
the branch of mathe matics that focuses on formal systems and their abili-
ties to evaluate the consistencies of statements. He was well aware of the
works on computability by Alonzo Church and Alan Turing, with whom

Von Neumann’s Draft, Electronic Brains, and Cognition 97

he collaborated at Prince ton.12 As such, he was one of the few mathema-
ticians who had a formal understanding of computation. Moreover, by
1944, he had already established the foundations of quantum mechanics
as well as game theory. Compared with him and despite their breathtaking
insights on electronic computing, Eckert and Mauchly were still provincial
engineers. Von Neumann was part of another category: he was a scientific
superstar of physics, logics, and mathe matics, and he worked as a consul-
tant on many classified scientific proj ects, with the more notable one cer-
tainly being the Manhattan Proj ect.

Von Neumann’s visit was part of a routine consulting trip to the BRL and
therefore was not specifically related to the ENIAC proj ect. In fact, as many
members of the NDRC expressed defiance toward the ENIAC, von Neu-
mann was not even aware of its existence. But when Goldstine mentioned
the ENIAC proj ect, von Neumann quickly showed interest:

It is the summer of 1944. Herman Goldstine, standing on the platform of the rail-
road station at Aberdeen, recognizes John von Neumann. Goldstine approaches
the great man and soon mentions the computer proj ect that is underway in Phila-
delphia. Von Neumann, who is at this point deeply immersed in the Manhattan
Proj ect and is only too well aware of the urgent need of many war time proj ects
of rapid computations, makes a quick transition from polite chat to intense inter-
est. Goldstine soon brings his new friend to see the proj ect. (Haigh, Priestley, and
Rope 2016, 132)

By the summer of 1944, it was accepted among Manhattan Proj ect’s scien-
tific man ag ers that a uniform contraction of two plutonium hemi spheres
could make the material volume reach critical mass and create, in turn, a
nuclear explosion. Yet if von Neumann and his colleagues knew that the
mathe matics of this implosion would involve huge systems of partial differ-
ential equations, they were still struggling to find a way of defining them.
And for several months, von Neumann had been seriously considering elec-
tronic computing for this specific prospect (Aspray 1990, 28–34; Goldstine
[1972] 1980, 170–182).

 After his first visit to the ENIAC, von Neumann quickly realized that
even though the ENIAC was by far the most promising computing system
he had seen so far, its limited storage capacity could by no means help
define and solve the very complex partial differential equations related to
the Manhattan Proj ect.13 Convinced that a new machine could overcome
this impasse— notably by using Eckert’s insights about mercury delay- line

98 Chapter 3

storage— von Neumann helped design a new proposal for the construction
of a post- ENIAC system. He moreover attended a crucial BRL board meeting
where the new proj ect was evaluated. His presence definitely helped with
attaining the final approval of the proj ect and its new funding of $105,000
by August 1944. The new hy po thet i cal machine— whose design and con-
struction would fall under the management of Eckert and Mauchly— was
initially called “Proj ect PY” before being renamed EDVAC for Electronic Dis-
crete Variable Automatic Computer.

Dif fer ent Layers of Involvement
The period between September 1944 and June 1945 is crucial for my adven-
turous story of the setting aside of computer programming practices. It
was indeed during this short period of time that von Neumann proposed
considering computer programs as input lists of instructions, hence sur-
reptitiously invisibilizing the practices required to shape these lists. As this
formal conception of electronic computing systems was not unanimously
shared among the participants of both ENIAC and EDVAC proj ects, it is
impor tant at this point to understand the dif fer ent layers of involvements
in these two proj ects that were intimately overlapping. One could sche-
matically divide them into three layers: the engineering staff, the operating
team, and von Neumann himself.

The first layer of involvement included the engineering staff— headed
by Mauchly, Eckert, Goldstine, and Arthur W. Burks—that was responsible
for the logical, electronic, and electromechanical architectures and imple-
mentations of both the ENIAC and the EDVAC. The split of the ENIAC
into dif fer ent units, the functioning of its accumulators— crucial parts for
making the system compute electric pulses— and the development and test-
ing of mercury delay- line storage for the future EDVAC were part of the
prerogatives of the engineering staff. It is difficult to see now the blurriness
of this endeavor that was swimming in the unpre ce dented. But besides the
systems’ abilities to compute more or less complex differential equations,
one crucial ele ment the engineering staff had to conceive and make happen
was a way to instruct these messy systems. In parallel to the enormous sci-
entific and engineering prob lems of the dif fer ent parts of the systems, the
shaping of readable documents that could describe the operations required
to make these systems do something was a real challenge: How, in the end,
could an equation be put into an incredibly messy electronic system? In

Von Neumann’s Draft, Electronic Brains, and Cognition 99

the case of the ENIAC, the engineering staff—in fact, mostly Burks (Haigh,
Priestley, and Rope 2016, 35–83)— progressively designed a workflow that
could be summarized as such: assuming ballistic data and assignable factors
had been adequately gathered and translated into a differential equation—
which was already a problematic endeavor— the ENIAC’s engineering staff
would first have to transform this equation into a logical diagram; then into
an electronic diagram that took into account the dif fer ent unit as blocks;
and then into another, bigger, diagram that took into account the inner
constituents of each block. The end result of this tedious process— the final
“panel diagram” drawn on large sheets of paper (Haigh, Priestley, and Rope
2016, 42)— was an incredible, yet necessary, mess.

This leads us to another layer that included the so- called operators—
mainly women computers— who tried to make sense, correct, and even-
tually implement these diagrams into workable arrangements of switches,
wires, and dials. Contrary to what the top engineers had initially thought,
translating large panel diagrams into a workable configuration of switches
and wires was not a trivial task. Errors in both the diagrams and the con-
figurations of switches were frequent— without mentioning the fragility of
the resistors— and this empirical “programming” pro cess implied constant
exchanges between high- level design in the office and low- level implemen-
tations in the hangar (Light 1999, 472; Haigh, Priestley, and Rope 2016,
74–83). Both engineers and operators were engaged in a laborious pro cess
to have ENIAC and, to a lesser extent, EDVAC produce meaningful results,
and these computing systems were considered heterogeneous pro cesses that
indistinctly mixed problematic technical components, interpersonal rela-
tionships, mathematical modeling, and transformative practices.

Next to these two layers of involvement was von Neumann who cer-
tainly constituted a layer on his own. First, contrary to Mauchly, Eckert,
Burks, and even Goldstine, he was well aware of recent works in math-
ematical logic and, in that sense, was prone to formalizing models of
computation. Second, von Neumann was very interested in mathematical
neurology and was well aware of the analogy between logical calculus and
the brain as proposed by McCulloch and Pitts in 1943 (more on this later).
This further made him consider computing systems as electronic brains
that could more or less intelligently transform inputs into outputs (Haigh,
Priestley, and Rope 2016, 141–142; von Neumann 2012). Third, if he was
truly involved in the early design of the EDVAC, his point of view was that

100 Chapter 3

of a con sul tant, constantly on the move from one laboratory to another.
He attended meetings— the famous “Meetings with von Neumann” (Stern
1981, 74)— and read reports and letters from the top man ag ers of the ENIAC
and EDVAC but was not part of the mundane tedious practices at the Moore
School (Stern 1981, 70–80; Haigh, Priestley, and Rope 2016, 132–140). He
was thus parallel to, but not wholly a part of, the everyday practices in the
 hangars of the Moore School. Fi nally, being deemed one of the greatest sci-
entific figures of the time— which he certainly was— his visits were real trials
that required preparation and cleaning efforts. If he visited the hangars of
the Moore School several times, he mainly saw the results of messy setup
pro cesses, not the pro cesses themselves. A lot was indeed at stake: at that
time, the electronic computing proj ects of the Moore School were not con-
sidered serious endeavors among many impor tant applied mathematicians
at MIT, Harvard, or Bell Labs— notably Vannevar Buch, Howard Aiken, and
George Stibitz (Stern 1981). Taking care of von Neumann’s support was
crucial as he gave legitimacy to the EDVAC proj ect and even to the whole
school.

All of these ele ments certainly contributed to shaping von Neumann’s
par tic u lar view on the EDVAC. In the spring of 1945, while the engineering
and operating layers had to consider this post- ENIAC computing system
as a set of problematic relations encompassing the definition of equations,
the adequate design of fragile electromechanical units, and back- and- forth
movements between hangars and offices, von Neumann could consider
it as a more or less functional object whose inner relationships could be
modeled.

Despite many feuds over the paternity of what has later been fallaciously
called “the notion of stored program,”14 it is clear now for historians of tech-
nology that the intricate relationships among these three layers of involve-
ment in the EDVAC proj ect collectively led to the design decision of storing
both data and instructions as pulses in mercury delay lines (Campbell- Kelly
et al. 2013, 72–87; Haigh, Priestley, and Rope 2016, 129–152). After several
board meetings between September 1944 and March 1945, the top engi-
neers and von Neumann agreed that, if or ga nized correctly, the new storage
capabilities of mercury delay lines could be used to temporally conserve not
only numerical data but also the description of in- built arithmetical and
logical operations that will later compute them. This initial characteristic
of the future EDVAC further suggested, to varying degrees, the possibility

Von Neumann’s Draft, Electronic Brains, and Cognition 101

of paper or magnetic- tape documents whose contents could be loaded, read,
and pro cessed at electronic speed by the device, without the intervention
of a human being.

For the engineers and operators deeply involved in the ENIAC- EDVAC
proj ects, the notion of lists of instructions that could automatically instruct
the system was rather disconnected from their daily experiences of unread-
able panel diagrams, electronic circuitry, and messy setup pro cesses of
switches and wires. To them, the differentiation between the computing
system and its instructions hardly made sense: in practice, an electronic
computing system was part of a broader sociotechnical pro cess encompass-
ing the definition of equations, the writing of diagrams, the adequate design
of fragile electromechanical units, back- and- forth movements between
 hangars and offices, etc. To paraphrase Michel Callon (1999) when he talked
about Air France, for these two layers of involvement, it was not an elec-
tronic calculator that could eventually compute an equation but a whole
arrangement of engineers, operators, and artifacts in constant relationship.

The vision von Neumann had for both the ENIAC and EDVAC proj ects
was very dif fer ent: as he was constantly on the move, attending meetings
and reading reports, he had a rather disembodied view of these systems.
This pro cess of disembodiment that often affects top man ag ers was well
described by Katherine Hayles (1999) when she compared the points of
view of Warren McCulloch— the famous neurologist— and Miss Freed— his
secretary—on the notion of “information”:

Thinking of her [Miss Freed], I am reminded of Dorothy Smith’s suggestion that
men of a certain class are prone to decontextualization and reification because
they are in a position to command the labors of others. “Take a letter, Miss Freed,”
the man says. Miss Freed comes in. She gets a lovely smile. The man speaks, and
she writes on her stenography pad (or perhaps on her stenography typewriter).
The man leaves. He has a plane to catch, a meeting to attend. When he returns,
the letter is on his desk, awaiting his signature. From his point of view, what has
happened? He speaks, giving commands or dictating words, and things happen.
A woman comes in, marks are inscribed onto paper, letters appear, conferences
are arranged, books are published. Taken out of context, his words fly, by them-
selves, into books. The full burden of the labor that makes these things happen is
for him only an abstraction, a resource diverted from other pos si ble uses, because
he is not the one performing the labor. (Hayles 1999, 82–83)

Hayles’s power ful proposition is extendable to the case that interests us here:
contrary to Eckert, Mauchly, Burks, and the operating team, von Neumann

102 Chapter 3

was not the one performing the labor. Whereas the engineering and operat-
ing teams were entangled in the headache of making the ENIAC and EDVAC
do meaningful things, von Neumann was entangled in the dif fer ent head-
ache of providing relevant insights— notably in terms of formalization—to
military proj ects located all around the United States. To a certain extent, this
position, alongside his interest in con temporary neurology and his excep-
tional logical and mathematical insights, certainly helped von Neumann
write a document about the implications of storing both data and instruc-
tions as pulses in mercury delay lines. Provided as a summary of the discus-
sions among the EDVAC team between the summer of 1944 and the spring
of 1945, he wrote the First Draft of a Report on the EDVAC ([1945] 1993) that,
for the first time, modeled the logical architecture of a hy po thet i cal machine
that would store both the data and the instructions required to compute
them. Unaware of, and not concerned with, its laborious instantiations
within the Moore School, von Neumann presented the EDVAC as a system
of interacting “organs” whose relationships could by themselves transform
inputs into outputs. And despite the skepticism of Eckert and Mauchly about
presenting their proj ect with floating terms, such as “neurons,” “memory,”
“inputs,” and “outputs”— and eventually their fierce resentment to see that
their names were never mentioned in the document15— thirty- one copies of
the report were printed and distributed among the US computing- related
war proj ects in June 1945.

Proofs of Concept and the Circulation of the Input- Output Model
The many lawsuits and patent- related issues around the First Draft are not
impor tant for my story. What matters at this point is the surreptitious shift
that occurred and per sis tently stayed within the computing community:
Whereas computing systems were, in practice, sociotechnical pro cesses that
could ultimately— perhaps— produce meaningful results, the formalism of
the First Draft surreptitiously presented them as brain- like objects that could
automatically transform inputs into outputs. And if these high- level insights
 were surely important to sum up the confidential work that had been under-
taken at the Moore School during the war and share it with other laboratories,
they also contributed to separating computing systems from the practices
required to make them operate. The First Draft presented the architecture of
a functioning computing machine and thus put aside the actions required
to make this machine function. The translation operations from equations

Von Neumann’s Draft, Electronic Brains, and Cognition 103

to logical diagrams, the specific configurations of electric circuitry and logic
gates, the corrections of the diagrams from inaccurate electronic circulation
of pulses; all of these sociotechnical operations were taken for granted in
the First Draft to formalize the EDVAC at the logical level. Layers of involve-
ment were relative layers of silence (Star and Strauss 1999); by expressing the
point of view of the con sul tant who built on the results of intricate endeav-
ors, the “list of the orders” (the programs) and the “device” (the computer)
started to be considered two dif fer ent entities instead of one entangled
pro cess.

But were the instructions really absent from the computing system as
presented in the First Draft? Yes and no. The story is more intricate than
that. In fact, the First Draft defined for the first time a quite complete set of
instructions that, according to the formal definition of the system, could
make the hy po thet i cal machine compute every prob lem expressible in its
formalism (von Neumann [1943] 1993, 39–43). But similarly to Turing’s
seminal paper on computable numbers (Turing 1937), von Neumann’s set
of instructions was integrally part of his formal system: the system consti-
tuted the set of all sets of instructions it could potentially compute. The
benefits of this formalization were huge as it allowed the existence of all the
infinite combinations of instructions. Yet, the surreptitious drawback was
to consider these combinations as nonproblematic realizations of potenti-
alities instead of costly actualizations of collective heterogeneous pro cesses.
While making a universal machine do something in par tic u lar was, and is,
very dif fer ent from formalizing such a universal machine, both practices
 were progressively considered equivalent.16

The diffusion of von Neumann’s architecture as presented in the First
Draft was not immediate. At the end of the war, several computing systems
coexisted in an environment of mutual ignorance— most proj ects were clas-
sified during the war— and per sis tent suspicion— the Nazi threat was soon
replaced with the communist (or cap i tal ist) threat. During the conferences
and workshops of the Moore School Series that took place in summer 1946,
the logical design of the EDVAC was, for example, very little discussed as
it was still classified. Nonetheless, several copies of the First Draft progres-
sively started to circulate outside of the US defense ser vices and laborato-
ries, notably in Britain, where a small postwar research community could
build on massive, yet extremely secret, code- breaking computing proj ects
(Abbate 2012, 34–35; Campbell- Kelly et al. 2013, 83–84).

104 Chapter 3

Contrary to Cold War– oriented American research proj ects, postwar Brit-
ish proj ects had no impor tant funding as most of the UK government’s
money was being invested in the reconstruction of the devastated infra-
structures. This forced British scientific man ag ers to design rather small
prototypes that could quickly show promising results. In June 1948, inspired
by von Neumann’s architecture as presented in the First Draft, Max New-
man and Frederic Williams from the University of Manchester provided a
first minimal proof of concept that the cathode- ray tube storage system
could indeed be used to store instructions and data for computation at elec-
tronic speed in a desired, yet fastidious, way. One year later, Maurice Wil-
kes from the University of Cambridge— who also obtained a version of the
First Draft and participated in the Moore School Series in 1946— successfully
led the construction of an electronic digital computer with a mercury delay-
line storage that he called the EDSAC for Electronic Delay Storage Automatic
Calculator. Largely due to the programming efforts of Wilkes’s PhD student
David Wheeler (Richards 2005), the EDSAC could load data and instructions
punched on a ribbon of paper and print the squares of the first one hundred
positive integers. These two successful experiences participated in rendering
electromechanical relays and differential analyzers obsolete in the emerg-
ing field of computer science research. But more importantly for the pre-
sent story, these two successful experiments also participated in the diffusion
of von Neumann’s functional definition of electronic computing systems as
input- output devices controlled by a central organ. As it ended up working,
the model, and its encapsulated meta phors, were considered accurate.

At the beginning of 1950s, when IBM started to redefine computers as
data- processing systems for businesses and administrations, von Neumann’s
definition of computing system further expanded. As cited in Haigh, Priest-
ley, and Rope (2016, 240), an IBM paper written by Walker Thomas asserts,
for example, that “all stored- program digital computers have four basic ele-
ments: the memory or storage ele ment, the arithmetic ele ment, the control
ele ment, and the terminal equipment or input- output ele ment” (Thomas
1953, 1245). More generally, the broader inclusion of computing systems
within commercial arrangements (Callon 2017) participated in the dissemi-
nation of their functional definition. It seems indeed that, to create new
markets, intricate and very costly computing systems had better be pre-
sented as devices that automatically transform inputs into outputs rather
than artefacts requiring a whole infrastructure to operate adequately. The

Von Neumann’s Draft, Electronic Brains, and Cognition 105

noninclusion of the sociotechnical interactions and practices required to
make computers compute seems, then, to have participated in their expan-
sions in commercial, scientific, and military spheres (Campbell- Kelly et al.
2013, 97–117). But the putting aside of programming practices from the
definition of computers further led to numerous issues related to the ad hoc
 labor required to make them function.

The Psy chol ogy of Programming (And Its Limits)

The prob lem with practice is that it is necessary to do things: essence is
existence and existence is action (Deleuze 1995). And as soon as electronic
computing systems started to be presented as input- output functional devices
controlled by a central organ, the efforts required to make them function in
desired ways quickly stood out: it was extremely tedious to make the devices
do meaningful things. These intelligent electronic brains were, in practice,
dull as dishwater. But rather than casting doubts on the input- output frame-
work of the First Draft and considering it formally brilliant but empirically
inaccurate, the blame was soon casted on the individuals responsible for
the design of computer’s inputs. In short, if one could not make electronic
brains operate, it was because one did not manage to give them the inputs
they deserved. What was soon called the “psy chol ogy of programming”
tried, and tries, to understand why individuals interact so laboriously with
electronic computers.

This emphasis on the individual first led to aptitude tests in the 1950s that
aimed at selecting the appropriate candidates for programming jobs in a
time of workforce scarcity. By the late 1970s, entangled dynamics that made
Western software industry shift from scientific craft to gender- connoted
engineering supported the launching of behavioral studies that typically
consisted of programming tests whose relative results were attributed to
controlled par ameters. A de cade later, the contested results of these behav-
ioral tests as well as theoretical debates within the discipline of psy chol ogy
led to cognitive studies of programming. Cognitive scientists put aside the
notion of par ameters as proposed by behaviorists to focus on the mental
models that programmers should develop to construct efficient programs.
As we shall see, these research endeavors framed programming in ways that
prevented them from inquiring into what programmers do, thus perpetuat-
ing the invisibilization of their day- to- day work.

106 Chapter 3

Personnel Se lection and Aptitude Tests
By the end of the 1940s, simultaneous to the completion of the first elec-
tronic computing systems that the von Neumann architecture inspired, the
prob lem of the actual handling of these systems arose: these automatons
appeared to be highly heteronomous. This practical issue quickly arose in
the universities hosting the first electronic computers. As Maurice Wilkes
wrote in his memoirs about the EDSAC:

By June 1949 people had begun to realize that it was not so easy to get programs
right as at one time appeared. I well remember when this realization first came on
me with full force. The EDSAC was on the top floor of the building and the tape-
punching and editing equipment one floor below on a gallery that ran round the
room in which the differential analyzer was installed. I was trying to get work-
ing my first non- trivial program, which was one for the numerical integration
of Airy’s differential equation. It was on one of my journeys between the EDSAC
room and the punching equipment that “hesitating at the angles of stairs” the
realization came over me with full force that a good part of the remainder of my
life was going to be spent in finding errors in my own programs. (Wilkes 1985, 145)

Although the EDSAC theoretically included all pos si ble programs, the actu-
alization of these programs within specific situations was the main practical
issue. And this became obvious to Wilke once he was directly involved in
trying to make the functional device function.

In the industry, the heteronomous aspect of electronic computing sys-
tems also quickly stood up. A first example is the controversies surrounding
the UNIVAC—an abbreviation for Universal Automatic Computer—an elec-
tronic computing system that Eckert and Mauchly developed after they left
the Moore School in 1946 to launch their own com pany (which Remington
Rand soon acquired). The potential of the UNIVAC gained a general audi-
ence when a whole programming team— which John Mauchly headed—
made it run a statistical program that accurately predicted the results of
1952 American presidential election. This marketing move, whose costs
 were carefully unmentioned, further expanded the image of a functional
electronic brain receiving inputs and producing clever outputs. But when
General Electric acquired a UNIVAC computer in 1954, it quickly realized
the gap between the pre sen ta tion of the system and its actual enactment: it
was simply impossible to make this functional system function. And it was
only after two years and the hiring of a whole new programming team that
a basic set of accounting applications could start producing some meaningful

Von Neumann’s Draft, Electronic Brains, and Cognition 107

results (Campbell- Kelly 2003, 25–30). IBM faced similar prob lems with its
computing system 701. The promises of smooth automation quickly faced
the down- to- earth real ity of practice: the first users of IBM 701— notably
Boeing, General Motors, and the National Security Agency (Smith 1983)—
had to hire whole teams specifically dedicated to making the system do
useful things.17

US defense agencies were confronted with the same issue. After the
explosion of the first Soviet atomic bomb in August 1949, the United States
appeared dangerously vulnerable; the existing air defense system and its
slow manual gathering and pro cessing of radar data could by no means
detect nuclear bombers early enough to or ga nize counter operations of
interceptor aircrafts. This threat— and many other entangled ele ments
that are far beyond the scope of this chapter— led to the development of a
prototype computer- based system capable of pro cessing radar data in real
time.18 The promising results of the prototype further suggested in 1954 the
realization of a nationwide defense system of high- speed data- processing
systems— called Semi- Automatic Ground Environment (SAGE).19 The US Air
Force contacted many contractors to industrially develop this system of sys-
tems, with IBM being awarded the development of the 250 tons AN/FSQ-7
electronic computers.20 But none of these renowned institutions— among
them IBM, General Electric, Bell Labs, and MIT— accepted the develop-
ment of the lists of instructions that would make such power ful computers
usable. Almost by default, the $20 million contract was awarded to the
RAND Corporation, a nonprofit (but nonphilanthropic) governmental
organ ization created in 1948 that operated as a research division for the US
Air Force. RAND had already been involved in the previous development of
the SAGE proj ect, but its team of twenty- five programmers was obviously
far too small for the new programming task. So by 1956, RAND started an
impor tant recruiting campaign all around the country to find individuals
who could successfully pursue the task of programming.

In this early Cold War period, the challenge for RAND was then to recruit
a lot of programming staff in a short period of time. And to equip this
massive personnel se lection imperative, psychologists from RAND’s Sys-
tem Development Division started to develop tests whose quantitative results
could positively correlate with future programming aptitudes. Largely
inspired by the Thurstone Primary Mental Abilities Test,21 these aptitude
tests— although criticized within RAND itself (Rowan 1956)— soon became

108 Chapter 3

the main basis for the se lection of new programmers as they allowed cru-
cial time savings while being based on the statistically driven discipline of
psychometrics. The intensive use of aptitude tests helped RAND to rapidly
increase its pool of programmers, so much so that its System Development
Division was soon incorporated into a separate organ ization, the System
Development Corporation (SDC). As early as 1959, the SDC had “more than
700 programmers working on SAGE, and more than 1,400 people support-
ing them. … This was reckoned to be half of the entire programming man-
power of the United States” (Campbell- Kelly 2003, 39). But besides enabling
RAND/SDC to engage more confidently in the SAGE proj ect, aptitude tests
also had an impor tant effect on the very conception of programming work.
Although the main goal of these tests was to support a quick and nation-
wide personnel se lection, they also contributed to framing programming as
a set of abstract intellectual operations that can be mea sured using proxies.

The regime of aptitude testing as initiated by the SDC quickly spread
throughout the industry, notably prompting IBM to develop its own ques-
tionnaire in 1959 to support its similarly impor tant recruitment needs. Well
in line with the computer- brain parallel inherited from the seminal period
of electronic computing, the IBM Programming Aptitude Test (PAT) typi-
cally asked job candidates to figure out analogies between forms, continue
lists of numbers, and solve arithmetic prob lems (see figure 3.1). Though
the correlation between candidates’ scores to aptitude tests and their future
work per for mances was a matter of debate, aptitude tests quickly became
mainstream recruiting tools for companies and administrations that pur-
chased electronic computers during the 1960s. As Ensmenger (2012, 64)
noted: “By 1962, an estimated 80 percent of all businesses used some form
of aptitude test when hiring programmers, and half of these used IBM PAT.”
The massive distribution and use of these tests among the emerging com-
puting industry further constricted the framing of programming practices
as mea sur able innate intellectual abilities.

Supposed Crisis and Behavioral Studies
By framing programming as an activity requiring personal intuitive quali-
ties, aptitude tests have somewhat worked against gendered discrimina-
tions related to unequal access to university degrees. As Abbate (2012, 52)
noted: “A woman who had never had the chance to earn a college degree—
or who had been steered into a nontechnical major— could walk into a job

Von Neumann’s Draft, Electronic Brains, and Cognition 109

PART III (Cont’d)

13. During his first three years, a salesman sold 90%, 105%, and 120%, respectively,
of his yearly sales quota which remained the same each year. If his sales totaled
$252,000 for the three years, how much were his sales below quota during his first
year?

(a) $800 (b) $2,400 (c) $8,000
(d) $12,000 (e) $16,000

14. In a large office, 2/3 of the staff can neither type nor take shorthand. However, 1/4
of the staff can type and 1/6 can take shorthand. What proportion of people in the
office can do both?

(a) 1/12 (b) 5/36 (c) 1/4
(d) 5/12 (e) 7/12

15. A company invests $80,000 of its employee pension fund in 4% and 5% bonds and
receives $3,360 in interest for the first year. What amount did the company have
invested in 5% bonds?

(a) $12,800 (b) $16,000 (c) $32,000
(d) $64,000 (e) $67,200

16. A company made a net profit of 15% of sales. Total operating expense were
$488,000. What was the total amount of sales?

(a) $361,250 (b) $440,000 (c) $450,000
(d) $488,750 (e) $500,000

17. An IBM Sorting Machine processes 1,000 cards per minute. However, 20% is
deducted to allow for card handling time by the operator. A given job requires
5,000 cards to be put through the machine 5 times and 9,000 cards to be put
through 7 times. How long will it take?

(a) 1 hr. 10 min. (b) 1 hr. 28 min. (c) 1 hr. 45 min.
(d) 1 hr. 50 min. (e) 2 hrs. 10 min.

Figure 3.1
Sample of the 1959 IBM Programmer Aptitude Test. In this part of the test, the par-
ticipant is asked to answer prob lems in arithmetic reasoning. Source: Reproduced by
the author from a scanned 1959 IBM Programmer Aptitude Test by J. L. Hughes and
W. J. McNamara. Courtesy of IBM.

110 Chapter 3

interview, take a test, and instantly acquire credibility as a future program-
mer.” From its inception, computer programming, unlike the vast majority
of skilled technical professions in the United States, has involved women
workers, some of whom had already taken part to computing proj ects dur-
ing the war.

However, like most Western professional environments in the late 1950s,
the nascent computing industry was fueled by pervasive ste reo types, often
preventing women programmers from occupying upper managerial posi-
tions and encouraging them to do relational customer care work. These
gender dynamics should not be overlooked as they help to understand
the rapid, and often underappreciated, development of ingenious software
equipment. Due to their unique position within the computer- related profes-
sional worlds— both expert prac ti tion ers and, often, representatives toward
clients— women, given their rather small percentage within the industry,
actively contributed to innovations aimed at making programming eas-
ier for experts and novices alike. The most notorious example is certainly
Grace Murray Hopper, head of programming for UNIVAC, who developed
the first compiler— a program that translates other programs into machine
code22—in 1951 before designing the business programming language B-0
(renamed FLOW- MATIC) in 1955. But many other women actively took
part to software innovations throughout the 1950s and 1960s, though often
in the shadow of more vis i ble male man ag ers. Among these impor tant fig-
ures are Adele Mildred Koss and Nora Moser who developed widely used
code for data editing in the mid-1950s; Lois Haibt who was responsible for
flow analy sis of the FORTRAN high- level programming language; and Mary
Hawes, Jean Sammet, and Gertrude Tierney who were at the forefront of
the common business- oriented language (COBOL) proj ect in the late 1950s
(Abbate 2012, 79–81).

From the mid-1960s onward, refinements over compilers and high- level
programming languages, which had often come from women, were added
to the impressive tenfold increase in computing power (Mody 2017, 47–77).
This combination of new promising software and hardware infrastructures
prompted large iconic computer manufacturers to start building increas-
ingly complex programs, such as operating systems and massive business
applications. The resounding failures of some of these highly vis i ble proj-
ects, like the IBM proj ect System 360,23 soon gave rise to a sense of uncer-
tainty among commentators at the time, some of whom used the evocative

Von Neumann’s Draft, Electronic Brains, and Cognition 111

expression of “software crisis” (Naur and Randell 1969, 70–73). Historians
of computing have expressed doubts about the real ity of this software crisis
as precise inquiries have shown that, apart from some highly vis i ble and
nonstandard proj ects, software production in the late 1960s was generally
on time and on bud get (Campbell- Kelly 2003, 94). But the crisis rhe toric,
which also fed on an exaggerated but popu lar discourse on software produc-
tion costs,24 nonetheless had tangible effects on the industry to the point of
changing its overall direction and identity.

When compared with the related discipline of microelectronics, pro-
gramming has long suffered from a lack of credibility and prestige. Despite
significant advances throughout the 1950s and the 1960s, actors taking
part to software production were often accorded a lower status within West-
ern computing research and industry. This was true for women program-
mers since they were working in a technical environment. But it was also
true for men programmers since they were working in a field that included
 women. Under this lens, the crisis rhe toric that took hold at the end of the
1960s— feeding on iconic failures that were not representative of the state of
the industry— provided an opportunity to reinvent programming as some-
thing more valuable according to the criteria of the time (Ensmenger 2010,
195–222). This may be one of the reasons why the positively connoted term
“engineering” started to spread and operate as a line of sight, notably via
the efforts of the 1968 North Atlantic Treaty Organ ization (NATO) confer-
ences entitled “Software Engineering” and the setting up of professional
organ izations and academic journals such as the Institute of Electrical and
Electronics Engineers’ IEEE Transactions on Software Engineering (1975) and
the Association for Computing Machinery’s ACM Software Engineering Notes
(1976). Though contested by eminent figures who considered that software
production was already rigorous and systematic, this complex pro cess of
disciplinary relabeling was supported by many programmers— women and
men— who saw the title of engineer as an opportunity to improve their work
conditions. However, as Abbate (2012, 104) pointed out: “An unintended
consequence of this move may have been to make programming and com-
puter science less inviting to women, helping to explain the historical puzzle
of why women took a leading role in the first wave of software improve-
ments but become much less vis i ble in the software engineering era.”

This stated desire to make software production take the path of
engineering— considered the solution to a supposed crisis that itself built on

112 Chapter 3

a gendered undervaluation of programming work— has rubbed off on the aca-
demic analy sis of programming. Parallel to this disciplinary re orientation,
a line of positivist research claiming behaviorist tradition began to take
an interest in programming work in the early 1970s. For these research-
ers, the analytical focus should shift: instead of defining the inherent skills
required for programming and design aptitude tests, scholars should rather
try to extract the par ameters that induce the best programming per for mances
and propose ways to improve software production. The introduction and
dissemination of high- level programming languages as well as the multi-
plication of academic curricula in computer science highly participated in
establishing this new line of inquiry. With programming languages such as
FORTRAN or COBOL that did not depend on the specificities and brands of
computers, behavioral psychologists along with computer scientists became
able to design programming tests in controlled environments. Moreover,
the multiplication of academic curricula in computer science provided rel-
atively diverse populations (e.g., undergrads, gradu ates, faculty members)
that could pass these programming tests. These two ele ments made pos si-
ble the design of experiments that ranked dif fer ent sets of par ameters (age,
experience, design aids) according to the results they assumedly produced
(see figure 3.2).

This framework led to numerous tests on debugging per for mances (e.g.,
Bloom 1980; Denelesky and McKee 1974; Sackman, Erikson, and Grant
1968; Weinberg 1971, 122–189; Wolfe 1971), design aid per for mances (e.g.,
Blaiwes 1974; Brooke and Duncan, 1980a, 1980b; Kammann 1975; Mayer
1976; Shneiderman et al. 1977; Weinberg 1971, 205–281; Wright and Reid
1973), and logical statement per for mances25 (e.g., Dunsmore and Gannon
1979; Gannon 1976; Green 1977; Lucas and Kaplan 1976; Sime, Green,
and Guest 1973; Sime, Arblaster, and Green 1977; Sime, Green, and Guest
1977; Sheppard et al. 1979; Weissman 1974). But despite their systematic
aspect, these studies suffered from the obviousness of their results, for as
explained by Curtis (1988), without formally being engaged in behavioral
experiments, software contractors were already aware that, for example,
experienced programmers produced better results than inexperienced ones
did, or that design aids such as flowcharts or documentation were help-
ful tools for the practice of programming. These general and redundant
facts did not help programmers to better design lists of instructions. By
the 1980s, the increasingly power ful computing systems remained terribly

Von Neumann’s Draft, Electronic Brains, and Cognition 113

difficult to operate, be they instructed by software engineers working in
more and more malely connoted environments.

The Cognitive Turn
By the end of the 1970s, the behavioral standpoint began to be criticized
from inside the psychological field. To more and more cognitive psychologists,
sometimes working in artificial intelligence departments, it seemed that the
obviousness of behavioral studies’ results was function of a methodologi-
cal flaw, with many of the ranked sets of par ameters gathering impor tant
individual variations of results. According to several cognitive researchers,
the unit of analy sis of behavioral studies was erroneous; since many results’
disparities existed within the same sets of par ameters, the ranking of these
sets was simply senseless (Brooks 1977, 1980; Curtis 1981; Curtis et al. 1989;
Moher and Schneider 1981). The solution that these cognitivists proposed
to account for what they called “individual differences” was then to dive

T

SP1

SP2

SP3

SP4

SP5

R3

R1

R5

R2

R4

SP3

SP1

SP5

SP2

SP4

best

worst

A

Figure 3.2
Schematic of behavioral studies of computer programming. Let us assume a program-
ming test T, the test’s best answers A, and five sets of par ameters SP1,…,5. SP1 could,
for example, gather the par ameters “unexperimented, male, with flowcharts”; SP2
could, for example, gather the par ameters “experienced, female, without flowcharts,”
and so on. Once all SPs have passed T, the results Rs of each SP allow the ranking of
all SPs from best to worst. In this example, R3 (the results of SP3) made SP3 be considered
the best set of par ameters. Inversely, R4 (the results of SP4) made SP4 be considered the
worst set of par ameters.

114 Chapter 3

inside the individuals’ head to better understand the cognitive pro cesses and
 mental models under lying the formation of computer programs.

The strong relationships between the notions of “program” and “cog-
nition” also participated in making the study of computer programming
attractive to cognitive scientists. As Ormerod (1990, 63–64) put it:

The fields of cognition and programming are related in three main ways. First, cog-
nitive psy chol ogy is based on a “computational meta phor,” in which the human
mind is seen as a kind of information pro cessor similar to a computer. Secondly,
cognitive psy chol ogy offers methods for examining the pro cesses under lying per-
for mance in computing tasks. Thirdly, programming is a well- defined task, and
 there are an increasing number of programmers, which makes it an ideal task in
which to study cognitive pro cess in a real- world domain.

 These three ele ments— the assumed- fundamental similarity between cog-
nition and computer programs, the growing population of programmers,
and the available methods that could be used to study this population—
greatly contributed to making cognitive scientists consider computer pro-
gramming as a fruitful topic of inquiry. Moreover, investing in a topic that
behaviorists failed to understand was also seen as an opportunity to dem-
onstrate the superiority of cognitivist approaches. To a certain extent, the
aim was also to show that be hav iors were a function of mental pro cesses:

[Behaviorists] attempt to establish the validity of vari ous par ameters for describ-
ing programming be hav ior, rather than attempting to specify underlining pro-
cesses which determine these par ameters. (Brooks 1977, 740)

The ambition was then to describe the mental pro cesses that lead to good
programming per for mances and eventually use these mental pro cesses to
train or select better programmers. The methodology of cognitive studies
was, most of the time, not radically dif fer ent from that of behavioral stud-
ies on programming, though. Specific programming tests were proposed to
dif fer ent individuals, often computer science students or faculty members.
The responses, comments (oral or written), and metadata (number of key
strokes, time spent on the prob lem, etc.) of the individuals were then ana-
lyzed according to the rights answers of the test as well as based on general
cognitive models of human understanding that the computational meta-
phor of the mind has inspired (especially the models of Newell and Simon
[1972] and, later, Anderson [1983]). From this confrontation among results,
comments, and general models of cognition, dif fer ent mental models specific

Von Neumann’s Draft, Electronic Brains, and Cognition 115

to the task of computer programming were inferred, classified, and ranked
according to their per for mances (see figure 3.3).

This research pattern on computer programming led to numerous stud-
ies proposing mental models for solving abstract prob lems (e.g., Adelson
1981; Brooks 1977; Carroll, Thomas, and Malhotra 1980; Jeffries et al. 1981;
Pennington 1987; Shneiderman and Mayer 1979) and developing program-
ming competencies (e.g., Barfield 1986; Coombs, Gibson, and Alty 1982;
McKeithen et al. 1981; Soloway 1986; Vessey 1989; Wiedenbeck 1985). Due,
in part, to their mitigated results—as admitted by Draper (1992), the numer-
ous mental models proposed by cognitivists did not significantly contribute
to better programming performances— cognitive studies have later rein-
tegrated behaviorist considerations (e.g., controlled sets of par ameters) to
acquire the hybrid and management- centered form they have today (Cap-
retz 2014; Ahmed, Capretz, and Campbell 2012; Ahmed et al. 2012; Cruz, da
Silva, and Capretz 2015).

Limits
From the 1950s up to today, computer scientists, engineers, and psycholo-
gists have deployed impor tant efforts in the study of computer program-
ming. From aptitude tests to cognitive studies, these scholars have spent

T

I1

I2

I3

I4

I5

R&MD1

R&MD2

R&MD3

R&MD4

R&MD5

GM
+
A

SMM1

SMM2

SMM3

best

worst

Figure 3.3
Schematic of cognitive studies of computer programming. Let us assume a program-
ming test T, the test’s best answers A, five individuals I1,….,5, and a general model of
cognition GM. Once all Is have passed T, the corresponding results Rs and metadata
MD (for example, comments from I on T) are gathered together to form five R&MDs.
All R&MDs are then evaluated and compared according to A and GM. At the end of
this confrontation, specific mental models (SMMs) are proposed and ranked from best
to worst according to their assumed ability to produce the best programming results.

116 Chapter 3

a fair amount of time and energy trying to understand what is going on
when someone is programming. They certainly did their best, as we all do.
Yet I think one can nonetheless express some critiques of, or at least reser-
vations about, some of their methods and conceptual habits regarding the
study of programming activity.

Aptitude tests certainly constituted useful recruiting tools in the confus-
ing days of early electronic computing. In this sense, they surely helped
counterbalance the unkeepable promises of electronic brains, themselves
deriving— I suggest— from the dissemination of von Neumann’s functional
depiction of electronic computers and its setting aside of programming
practices. Moreover, the weight of aptitude tests’ results has also constituted
resources for women wishing to pursue careers in programming, and some
of these women have devised crucial software innovations. Yet as central as
they might have been for the development of computing, aptitude tests suf-
fer from a flaw that prevents them from properly analyzing the actions tak-
ing part in computer programming: they test candidates on what electronic
computers should supposedly do (e.g., sorting numbers, solving equations)
but not on the skills required to make computers do these things. They mix
up premises and consequences: if the results of computer programming can
potentially be evaluated in terms of computing and sorting capabilities, the
way in which these results are achieved may require other units of analy sis.

Behavioral studies suffer from a similar flaw that keeps them away from
computer programming actions. By analyzing the relationships between
sets of par ameters and programming per for mances, behaviorist studies put
the practices of programming into a black box. In these studies, the prac-
tices of programmers do not matter: only the practices’ conditions (reduced
to contextual par ameters) and consequences (reduced to quantities of errors)
are considered. One may object that this nonconsideration of practices is
precisely what defines behaviorism as a scientific paradigm, its goal being
to predict consequences (be hav iors) from initial conditions (Watson 1930),
an aim that well echoed the engineerization of software production in the
1970s. It is true that this way of looking at things can be very power ful, espe-
cially for the study of complex pro cesses that include many entities, such as
traffic flows (Daganzo 1995, 2002), migrations (Jennions and Møller 2003),
or cells’ be hav iors (Collins et al. 2005). But inscribing numbered lists of sym-
bols is a pro cess that does not need any drastic reduction: a programming
situation involves only one, two, perhaps three individuals whose actions

Von Neumann’s Draft, Electronic Brains, and Cognition 117

can be accounted for without any insurmountable difficulties. For the study
of such a pro cess that engages few entities whose actions are slow enough
to be accounted for, no need a priori exists to ignore what is happening in
situation.

For cognitive studies, the story is more intricate. They are certainly right
to criticize behavioral studies for putting into black boxes what precisely
needs to be accounted for. Yet the solution cognitivists propose to better
understand computer programming leads to an impasse we now need to
consider.

As Ormerod (1990, 63) put it, “cognitive psy chol ogy is based on a ‘com-
putational meta phor’ in which the human mind is seen as a kind of infor-
mation pro cessor similar to a computer.” From this theoretical standpoint,
cognition refers to the reasoning and planning models the mind uses to
transform emotional and perceptual input information into outputs that
take the form of thoughts or bodily movements. Similarly to a computer—
or rather, similarly to one specific and problematic image of computers— the
 human mind “runs” mental models on inputs to produce outputs. The sys-
tematic study of the complex mental models that the mind uses to trans-
form inputs into outputs is the very purpose of cognitive studies. Scientific
methods of investigation, such as the one presented in figure 3.3, can be
used for this specific prospect.

When cognitive science deals with topics such as lit er a ture (Zunshine
2015), religion (Barrett 2007), or even chimpanzees’ preferences for cooked
foods (Warneken and Rosati 2015), its foundations usually hold on: com-
plex mental models describing how the mind pro cesses input information
in terms of logical and arithmetic statements to produce physical or mental
be hav iors can be proposed and compared without obvious contradictions.
But as soon as cognitive science deals with computer programming, a short
cir cuit appears that challenges the whole edifice: the cognitive explanation
of the constitution of computer programs is tautological as the very notion
of cognition already requires constituted computer programs.

To better understand this tricky prob lem, let us consider once again the
computational meta phor of the mind. According to this meta phor, the
mind “runs” models—or programs—on inputs to produce outputs. In that
sense, the mind looks like a computer as described by von Neumann in
the First Draft: input data are stored in memory where lists of logical and
arithmetic instructions transform them into output. But as we saw in the

118 Chapter 3

previous sections, von Neumann’s pre sen ta tion of computers was functional
in the sense that it did not take into consideration the ele ments required
to make a computer function. In this image of the computer that reflects
von Neumann’s very specific position and status, the ele ments required
to assem ble the actual transformative lists of instructions—or programs—
that command the functioning of an electronic computer’s circuitry have
already been gathered.

From here, an impor tant flaw of cognitive studies on computer program-
ming starts to appear: as the studies rely on an image of the computer that
already includes constituted computer programs, these cognitive studies are
not in a position to inquire into what constitutes computer programs. In
fact, the cognitive studies are in a situation where they can mainly propose
circular explanations of programming: if there are (computer) programs,
it is because there are (mental) programs. Programs explain programs: a
perfect tautology.

As long as cognitive science stays away from the study of computer pro-
gramming, its foundations hold on: mental programs can serve as explica-
tive tools for observed be hav iors. But as soon as cognitive science considers
computer programming, its limits appear: cognition and programs are of
the same kind. Thunder in the night! Cognition, as inspired by the compu-
tational meta phor of the mind, works as a stumbling stone to the analy sis
of computer programming practices as its fundamental units of analy sis
are assembled programs. In such a constricted epistemic culture (Knorr-
Cetina 1999), the in situ analy sis of courses of action cannot but be omit-
ted, despite their active participation in the constitution of the collective
computerized world. This is an unfortunate situation that even the bravest
propositions in human- computer interaction (HCI) have not been able to
modify substantially (e.g., Flor and Hutchins 1991; Hollan, Hutchins, and
Kirsh 2000). Is there a way to conceptually dis- constrict the empirical study
of computer programming?

Putting Cognition Back to Its Place

Most academic attempts to better understand computer programming seem
to have annoying flaws: aptitude tests mix up premises and consequences,
behavioral studies put actions into black boxes, and cognitive studies are stuck
in tautological explanations. If we want to consider computer programming

Von Neumann’s Draft, Electronic Brains, and Cognition 119

as accountable practices, it seems that we need to distance ourselves from
 these brave but problematic endeavors.

Yet, provided that our critics are relevant, we are at this point still unable
to propose any alternative. Do the actions of programmers not have a cogni-
tive aspect? Do programmers not use their minds to computationally solve
complex prob lems? The confusion between cognition and computer pro-
grams may well derive from a misleading history of computers—as I tried
to suggest— its capacity to establish itself as a generalized habit commands
re spect. How can we not pre sent empirical studies of computer programming
practices as silly reductions? How can we justify the desire to account for,
and thus make vis i ble, the courses of action of computer programming, these
practices that are obligatory passage points of any computerization proj ect?

Fortunately, con temporary work in philosophy has managed to fill in the
gap that has separated cognition from practices, intelligent minds from dull
actions. It is thanks to these inspiring studies that we will become able to
consider programming as a practice without totally turning our back on the
notion of cognition. To do so, I will first need to quickly reconsider the idea
that computers were designed in the image of the human brain and mind.
As we already saw— though partially— this idea is relevant only in retrospect:
what has concretely happened is far more intricate. I will then reconsider
the philosophical frame that encloses cognition as a computational pro cess.
Fi nally, following con temporary works in the philosophy of perception, I will
examine a definition of cognition that preserves impor tant aspects of how
we make sense of the things that surround us while reconnecting it to prac-
tices and actions. By positing the centrality of agency in cognitive pro cesses,
this enactive conception of cognition will further help us empirically consider
what is happening during computer programming episodes.

A Reduction Pro cess
The computational meta phor of the mind forces cognitivists to use pro-
grams to explain the formation of programs. The results of programming
processes— programs— are thus used to explain programming pro cesses. It
is not easy to find another example of such an explicative error: it is like
explaining rain with water, chicken poultry with the chicken dance … But
how did things end up this way? How did programs end up constituting the
fundamental base of cognition, thus participating in the invisibilization of
computer programming practices?

120 Chapter 3

The main argument that justifies the computational meta phor of the
mind is that “computers were designed in the image of the human” (Simon
and Kaplan 1989, quoted in Hutchins 1995, 356). According to this view
that spread in the 1960s in reaction to the behavioral paradigm (Fodor
1975, 1987; Putnam [1961] 1980), how the human brain works inspired
the design of computers, and this can, in turn, provide a clearer view on
how we think. Turing is generally considered the father of this argument,
with the Universal Machine he imagined in his 1937 paper “On Comput-
able Numbers” being able to simulate any mechanism describable in its
formalism. According to this line of thought, it was Turing’s self- conscious
introspection that allowed him to define a device capable of any compu-
tation as he was looking “at what a mathematician does in the course of
solving mathematical prob lems and distilling this pro cess to its essentials”
(Pylyshyn 1989, 54). Turing’s demonstration would then lead to the first
electronic computers, such as the ENIAC and the EDVAC, whose depiction
as giant brains appears legitimate as how we think inspired these computers
in the first place.

In line with the recent work of Simon Penny (2017), I assume that this
conception of the origins of computers is incorrect. As soon as one consid-
ers si mul ta neously the pro cess by which Turing’s thought experiment was
reduced to an image of the brain and the pro cess by which the EDVAC was
reduced to an input/output device controlled by a central organ, one real-
izes that the relationship between computers and the human brain points
to the other direction: the human brain was designed in a very specific
image of the computer that already included all pos si ble programs.

Let us start with Turing as he is often considered the father of the com-
putational meta phor of the mind. It is true that Turing compared “a man
in the pro cess of computing a real number” with a “machine which is only
capable of a finite number of conditions” (Turing 1937, 231). Yet his image
of human computation was not limited to what is happening inside the
head: it also included hands, eyes, paper, notes, and sets of rules defined
by others in dif fer ent times and locations. As Hutchins put it: “The math-
ematician or logician was [for Turing] materially interacting with a material
world” (Hutchins 1995, 361). By modeling the properties of this socio-
material arrangement into an abstract machine, Turing could distinguish
between computable and noncomputable numbers, hence showing that
Hilbert’s Entscheidungsproblem was not solvable. His results had an im mense

Von Neumann’s Draft, Electronic Brains, and Cognition 121

impact on the mathe matics of his time as they suggested a class of num-
bers calculable by finite means. But the theoretical machine he in ven ted to
define this class of numbers was by no means designed only in the image of
the human brain; it was a theoretical device that expressed the sociomate-
rial pro cess enabling the computation of real numbers.

What participated in reducing Turing’s theoretical device to an expres-
sion of a mental pro cess was the work of McCulloch and Pitts on neurons.
In their 1943 paper entitled “A logical Calculus of the Ideas Immanent in
Ner vous Activity,” McCulloch and Pitts built upon Carnap’s (1937) prop-
ositional logic and a simplified conception of neurons as all- or- none fir-
ing entities to propose a formal model of mind and brain. In their paper,
neurons are considered units that pro cess input signals sent from sensory
organs or from other neurons. In turn, the outputs of this neural pro cessing
feed other neurons or are sent back to sensory organs. The novelty of
McCulloch and Pitts’s approach is that, thanks to their simplified concep-
tion of neurons, the input signals that are pro cessed by neurons can be re-
presented as propositions or, as Gödel (1931) previously demonstrated, as
numbers.26 From that point, their model could consider configurations of
neural networks as logical operators pro cessing input signals from sensory
organs and outputting dif fer ent signals back to sensory organs. This way to
consider the brain as a huge network of neural networks able to express the
laws of propositional calculus on binary signals allowed McCulloch and
Pitts to hypothetically consider the brain as a Turing machine capable of
computing numerical propositions (McCulloch and Pitts [1943] 1990, 113).
Even though they did not mathematically prove their claim and recognized
that their model was computationally less power ful than Turing’s model,
they nonetheless infused the conception of mind as the result of the brain’s
computational pro cesses (Piccinini 2004).

At first, McCulloch and Pitts’s paper remained unnoticed (Lettvin
1989, 17). It was only when von Neumann used some of their proposi-
tions in his 1945 First Draft (von Neumann [1945] 1993, 5–11) that the
equivalence between computers and the human mind started to take off.
As we saw earlier, von Neumann had a very specific view on the EDVAC:
his position as a famous con sul tant who mainly sees the clean results of
laborious material pro cesses allowed him to reduce the EDVAC as an input-
output device. Once separated from its instantiation within the hangars of
the Moore School of Electric Engineering, the EDVAC, and especially the

122 Chapter 3

ENIAC, effectively looked like a brain as conceived by McCulloch and Pitts.
From that point, the reduction pro cess could go on: von Neumann could
use McCulloch and Pitts’ reductions of neurons and of the Turing machine
to pre sent his own reductive view on the EDVAC. However, it is impor tant
to remember that von Neumann’s goal was by no means to pre sent the
EDVAC in a realistic way: the main goal of the First Draft was to formalize
a model for an electronic computing system that could inspire other labo-
ratories without revealing too many classified ele ments about the EDVAC
proj ect. All of these intricate reasons (von Neumann’s position, war time,
von Neumann’s interest in mathematical biology) made the EDVAC appear
in the First Draft as an input- output device controlled by a central organ
whose configuration of networks of neurons could express the laws of prop-
ositional calculus.

As we saw earlier, after World War II, the First Draft and the modeliza-
tion of electronic computers it encapsulates began to circulate in academic
spheres. In parallel, this conception of computers as giant electronic brains
fitted well with their broader inclusion in commercial arrangements: these
very costly systems had better be presented as functional brains automati-
cally transforming inputs into outputs rather than intricate artifacts requir-
ing great care, maintenance, and an entire dedicated infrastructure. Hence
 there were issues related to their operationalization as the buyers of the
first electronic computers— the Air Force, Boeing, General Motors (Smith
1983)— had to select, hire, and train and eventually fire, reselect, rehire,
and retrain whole operating teams. But despite these initial failures, the
conception of computers as electronic brains held on, well supported, to
be fair, by Turing’s (1950) paper “Computing Machinery and Intelligence,”
the 1953 inaugural conferences on artificial intelligence at Dartmouth Col-
lege (Crevier 1993), Ashby’s book on the neural origin of be hav ior (Ashby
1952), and von Neumann’s posthumous book The Computer and the Brain
([1958] 2012). Instead of crumbling, the conception of computers as elec-
tronic brains started to concretize to the point that it even supported a
radical critique of behaviorism in the field of psy chol ogy. Progressively, the
mind became the product of the brain’s computation of ner vous inputs.
The argument appeared indeed indubitable: as human be hav iors are the
results of (computational) cognitive pro cesses, psy chol ogy should rather
describe the composition of these cognitive processes— a real tour de force
whose consequences we still experience today.

Von Neumann’s Draft, Electronic Brains, and Cognition 123

But this colossus of the computational meta phor of the mind has feet
of clay. As soon as one inquires sociohistorically into the pro cess by which
brains and computers have been put into equivalence, one sees that the
foundations of the argument are shaky; a cascade of reductions, as well
as their distribution, surreptitiously ended up presenting the computer as
an image of the brain. Historically, it was first the reduction of the Turing
machine as an expression of mental pro cesses, then the reduction of neu-
rons as on/off entities, then the reduction of the EDVAC as an input- output
device controlled by a central organ, then the distribution of this view
through academic networks and commercial arrangements that allowed
computers to be considered as deriving from the brain. It is the collusion of
all of these translations (Latour 2005), along with many others, that made
computers appear as the consequences of the brain’s structure.

Impor tant authors have finely documented how computer- brain equiva-
lences contributed, for better or worse, to structuring Western subjectivi-
ties throughout the Cold War period (e.g., Dupuy 1994; Edwards 1996;
Mirowski 2002). For what interests me here, the main prob lem of the con-
ception of computers as an image of the brain is that its correlated concep-
tion of cognition as computation contributed to further invisibilizing the
courses of actions taking part in computer programming. According to the
computational meta phor of the mind, the brain is the set of all the com-
binations of neural networks—or logic cir cuits27— that allow the computa-
tion of signals. The brain may choose one specific combination of neural
networks for the computation of each signal, but the combination itself is
already assembled. As a consequence, the study of how combinations of
neural networks are assembled and put together to compute specific sig-
nals—as it is the case when someone is programming— cannot occur as it
would imply to go beyond what constitutes the brain. Cognitive studies
may involve inquiring about which program the brain uses for the compu-
tation of a specific input, but the way this program was assembled remains
out of reach: it was already there, ready to be applied to the task at hand.
In short, similarly to von Neumann’s view on the EDVAC but with far less
engineering applications, the brain as conceived by the computational
meta phor of the mind selects the appropriate mental program from the infinite
library of all pos si ble programs. But as this library is precisely what constitutes
the brain, it soon becomes senseless to inquire into how each program was
concretely assembled.

124 Chapter 3

The cognitivist view on computers as designed in the image of the brain
seems then to be the product of at least three reductions: (1) neurons as on/
off firing entities, (2) the Turing machine as an expression of mental events,
and (3) the EDVAC as an input/output device controlled by a central organ.
The further distribution of this view on computers through academic, com-
mercial, and cultural networks further legitimatized the conception of cog-
nition as computation. But this cognitive computation was a holistic one
that implied the possibility of all specific computations: the brain progres-
sively appeared as the set of all potential instruction sets, hence preventing
inquiries into the constitution of actual instruction sets. The tautological
impasse of cognitive science when it deals with computer programming
seems, then, to be deriving from a delusive history of the computer. The
ones who inherit from a nonempirical history of electronic computers
might consider cognition as computation and programming as a mental
pro cess. Yet the ones who inherit from an empirical history of the constitu-
tion of electronic computing systems and who pay attention to translation
pro cesses and distributive networks have no other choice but to consider
cognition differently. But how?

The Classical Sandwich and Its Consequences
We now have a clearer— yet still sketchy— idea of the formation of the
computational meta phor of the mind. An oriented “double- click” history
(Latour 2013, 93) of electronic computers that did not pay attention to the
small translations that occurred at the beginning of the electronic com-
puting area enabled cognitive scientists— among others—to retroactively
consider computers as deriving from the very structure of the brain. But
historically, what has happened is far more intricate: McCulloch and Pitts’s
work on neurons and von Neumann’s view on the EDVAC echoed each
other to progressively form a power ful yet problematic depiction of com-
puters as giant electronic brains. This depiction further legitimized the
computational meta phor of the mind— also coined computationalism— that
yet para lyzed the analy sis of the constitution of actual computer programs
since the set of all potential programs constituted the brain’s fundamental
structure. At this point of the chapter, then, to definitively turn our back
on computationalism and propose an alternative definition of cognition
that could enable us to consider the task of computer programming as a

Von Neumann’s Draft, Electronic Brains, and Cognition 125

practical activity, we need to look more precisely at the metaphysics of this
computational standpoint.

If computationalism in cognitive science derives from a quite recent
nonempirical history of computers, its metaphysics surely belongs to a
philosophical lineage that goes back at least to Aristotle (Dreyfus 1992).
Susan Hurley (2002) usefully coined the term “classical sandwich” to sum-
marize the metaphysics of this lineage— also referred to as “cognitivism”—
that considers perception, cognition, and agency as distinct capacities. For
the supporters of the classical sandwich, human perception first grasps an
input from the “real” world and translates it to the mind (or brain). In the
case of computationalism, this perceptual input takes the shape of ner vous
pulses that can be expressed as numerical values. Cognition, then, “works
with this perceptual input, uses it to form a repre sen ta tion of how things
are in the subject’s environment and, through reasoning and planning that
is appropriately informed by the subject’s proj ects and desires, arrives at a
specification of what the subject should do with or in her current environ-
ment” (Ward and Stapleton 2012, 94). In the case of computationalism, the
cognitive step implies the se lection and application of a mental model—or
 mental program— that outputs a dif fer ent numerical value to the ner vous
system. Fi nally, agency is considered the output of both perception and
cognition pro cesses and takes the form of bodily movements instructed by
ner vous pulses.

This conception of cognition as “stuck” in between perception and action
as meat in a sandwich has many consequences. It first establishes a sharp
distinction between the mind and the world. Two realms are then created:
the realm of “extended things” that are said to be material and the realm
of “thinking things” that are said to be abstract and immaterial.28 If matter
thrones in the realm of “extended things” by allowing substance and quan-
tities, mind thrones in the realm of “thinking things” by allowing thoughts
and knowledge.

Despite the ontological abyss between them, the realms of “thinking
 things” and “extended things” need to interact: after all, we, as individuals,
are part of the world and need to deal with it. But a sheet of paper cannot go
through the mind, a mountain is too big to be thought, a spoken sentence
has no matter: some transformation has to occur to make these things pos-
si ble for the mind to pro cess. How, then, can we connect both “extended”

126 Chapter 3

and “thinking” realms? The notions of repre sen ta tion (without hyphen) and
symbols have progressively been introduced to keep the model viable. For
the mind to keep in touch with the world of “real things,” it needs to work
with repre sen ta tions of real things. Because these repre sen ta tions happen in
the head and refer to extended things, they are usually called mental repre-
sen ta tions of things.

 Mental repre sen ta tions of things need to have at least two properties.
They first need a form on which the mind could operate. This form may
vary according to dif fer ent theories among cognitivism. For the computa-
tional metaphor of the mind, this form takes, for example, the shape of elec-
tric ner vous pulses that the senses acquire and that are then routed to the
brain. The second property that mental repre sen ta tions of things require is
meaning; that is, the distinctive trace of what repre sen ta tions refer to in the
real world. Both properties depend on each other: a form has a meaning,
and a meaning needs a form. The notion of symbol is often used to gather
both the half- material and semantic aspects of the mental repre sen ta tions
of things. In this re spect, cognition, as considered by the proponents of
the classical sandwich, pro cesses symbolic repre sen ta tions of things that
the senses offer in their interactions with the real world. The result of this
pro cessing is, then, another repre sen ta tion of things— a statement about
 things— that further instructs bodily movements and be hav iors.

The pro cessing of symbolic repre sen ta tions of things does not always
lead to accurate statements about things. Some malfunctions can happen
 either at the level of the senses that badly translate real things or at the level
of the mind that fails to interpret the symbols. In both cases, the whole pro-
cess would lead to an inaccurate, or wrong, statement about things. These
errors are not desirable as they would instruct inadequate be hav iors at the
end of the cognitive pro cess. It is therefore extremely impor tant for cogni-
tion to make true statements. If cognition does not manage to establish
adequate correspondences between our minds and the world, our be hav iors
 will be badly instructed. Conversely, by properly acquiring knowledge about
the real world, cognition can make us behave adequately.

I assume that the symbolic repre sen ta tional thesis that derives from cog-
nition as considered by the classical sandwich leads to two related issues.
The first issue deals with the amalgam between knowledge and real ity it cre-
ates, hence refusing giving any ontological weight to entities whose tra-
jectories are dif fer ent from scientific facts. The second issue deals with the

Von Neumann’s Draft, Electronic Brains, and Cognition 127

thesis’s incapacity to consider practices in the wild, with most of the models
that take symbolic repre sen ta tional thesis to the letter failing the test of
ecological validation.

Let us start with the first issue, certainly the most difficult. We saw that,
according to cognitivism, the adaequatio rei et intellectus serves as the mea-
sure of valid statements and be hav iors. For example, if I say “the sun is ris-
ing,” I make an invalid statement and thus behave wrongly because what
I say does not refer adequately to the real event. Within my cognitive pro-
cess, something went wrong: in this case, my senses that made me believe
that the sun was moving in the sky prob ably deceived me. In real ity, thanks
to other mental pro cesses that are better than mine, we know as a matter of
fact that it is the earth that rotates around the sun; some “scientific minds”—
in this case, Copernicus and Galileo, among others— managed indeed to
adequately pro cess symbolic repre sen ta tions to provide a true statement
about the relations between the sun and the earth, a relation that the laws
of Reason can demonstrate. My statement and be hav ior can still be con-
sidered a joke or some form of sloppy habit: what I say/do is not true and
therefore does not really count.

The prob lem of this line of thought that only gives credit to scientific
facts is that it is grounded on a very unempirical conception of science.
Indeed, as STS authors have demonstrated for almost fifty years, many mate-
rial networks are required to construct scientific facts (Knorr- Cetina 1981;
Lynch 1985; Latour and Woolgar 1986; Collins 1992). Laboratories, experi-
ments, equipment, colleagues, funding, skills, academic papers: all of these
ele ments are necessary to laboriously construct the “chains of reference”
that give access to remote entities (Latour 1999b). In order to know, we
need equipment and collaboration. Moreover, as soon as one inquires into
science in the making instead of ready- made science, one sees that both the
knowing mind and the known thing start to exist only at the very end of
practical scientific pro cesses. When every thing is in place, when the chains
of reference are strong enough, when there are no more controversies, I
am becoming able to look at the majestic Californian sunrise and meditate
about the power of habits that makes me go against the most rigorous fact:
the earth is rotating. Thanks to numerous scientific networks that were
put in place during the sixteenth and seventeenth centuries, I gain access
to such— poor— meditation. Symmetrically, when every thing is in place,
when the chains of reference are strong enough, the sun gains its status of

128 Chapter 3

known thing as one part of its existence— its relative immobility—is indeed
being captured through scientific work and the maintenance of chains
of reference. In short, what others have done and made durable enables
me to think directly about the objective qualities of the sun. As soon as I
can follow solidified scientific networks that gather observations, instru-
ments, experiments, academic papers, conferences, and educational books,
I become a knowing mind, and the sun becomes a known object. Cognitiv-
ism started at the wrong end: the possibility of scientific knowledge starts
with practices and ends with known objects and knowing minds. As Latour
(2013, 80) summarized it:

A knowing mind and a known thing are not at all what would be linked through
a mysterious viaduct by the activity of knowledge; they are the progressive result
of the extension of chains of reference.

One result of this relocalization of scientific truth within the networks
allowing its production, diffusion, and maintenance is that real ity is not
the sole province of scientific knowledge anymore: other entities that go
through dif fer ent paths to come into existence can also be considered real.
 Legal decisions (McGee 2015), technical artifacts (Simondon 2017), fictional
characters (Greimas 1983), emotions (Nathan and Zajde 2012), or religious
icons (Cobb 2006): even though these entities do not require the same type
of networks as scientific facts in order to emerge, they can also be consid-
ered real since the world is no longer reduced to sole facts. As soon as the
dichotomy between knowledge and mind is considered one consequence of
chains of reference, as soon as what is happening is distinguished from what
is known, there is space for many va ri e ties of existents. By disamalgamating
real ity and knowledge, the universe of the real world can be replaced with
the multiverse of performative beings (James 1909)—an ontological feast, a
breath of fresh air.

Besides its problematic propensity to posit correspondence between
 things and minds as the supreme judge of what counts as real, another
prob lem of cognitivism—or computationalism, or computational meta phor
of the mind; at this point, all of these terms are equivalent—is its mitigated
results when it comes to support so- called expert systems (Star 1989; For-
sythe 2002).

A first example concerns what Haugeland (1989) called “Good Old Fash-
ioned Artificial Intelligence” (GOFAI), an impor tant research paradigm in

Von Neumann’s Draft, Electronic Brains, and Cognition 129

artificial intelligence that endeavored to design intelligent digital systems
from the mid-1950s to the late 1980s. Although the complex algorithms
implied in GOFAI’s computational conception of the mind soon appeared
very effective for the design of computer programs capable of complex tasks,
such as playing chess or checkers, these algorithms symmetrically appeared
very problematic for tasks as simple as finding a way outside a room without
 running into its wall (Malafouris 2004). The extreme difficulty for expert sys-
tems to reproduce very basic human tasks started to cast doubts on computa-
tionalism, especially since cybernetics—an cousin view on intelligence that
emphasizes “negative feedback” (Bowker 1993; Pickering 2011)— effectively
managed to reproduce such tasks without any reference to symbolic repre-
sen ta tion. As Malafouris (2004, 54–55) put it:

When the first such autonomous devices (machina speculatrix) were constructed
by Grey Walter, they had nothing to do with complex algorithms and repre sen-
ta tional inputs. Their kinship was with W. Ross Ashby’ Homeostat and Norbert
Wiener’s cybernetic feedback … On the basis of a very simple electromechanical
circuitry, the so- called ‘turtles’ were capable of producing emergent properties
and be hav ior patterns that could not be determined by any of their system com-
ponents, effecting in practice a cybernetic transgression of the mind- body divide.

Another practical limit of computationalism when applied to computer
systems is the so- called frame prob lem (Dennet 1984; Pylyshyn 1987). The
frame prob lem is “the prob lem of generating behaviour that is appropri-
ately and selectively geared to the most contextually relevant aspects of
their situation, and ignoring the multitude of irrelevant information that
might be counterproductively transduced, pro cessed and factored into the
planning and guidance of behaviour” (Ward and Stapleton 2012, 95). How
could a brain—or a computer— adequately select the inputs relevant for
the situation at hand, pro cess them, and then instruct adequate be hav iors?
Sports is, in this re spect, an illuminating example: within the mess of a
cricket stadium, how could a batter pro cess the right input in a very short
amount of time and behave adequately (Sutton 2007)? By what magic is a
tennis player’s brain capable of selecting the con spic u ous input, pro cessing
it, and— eventually— instructing adequate be hav iors on the fly (Iacoboni
2001)? To date, the only satisfactory computational answer to the frame
prob lem, at least with regard to perceptual search tasks, is to consider it NP-
complete, thus recognizing it should be addressed by using heuristics and
approximations (Tsotsos 1988, 1990).29

130 Chapter 3

Fi nally, the entire field of HCI can be considered an expression of the
limits of computationalism as it is precisely because human cognition is
not equivalent to computers’ cognition that innovative interfaces need to
be imagined and designed (Card, Moran, and Newell 1986). One famous
example came from Suchman (1987) when she inquired into how users
interacted with Xerox 8200 copier: as the design of Xerox’s artifact included
an equivalence between computers’ cognition and human cognition, inter-
acting with the artifact was a highly counterintuitive experience, even for
 those who designed it. Computationalism made Xerox designers forget about
impor tant features of human cognition, such as the importance of action
and “situatedness” for many sense- making endeavors (Suchman 2006, 15).
Besides refusing giving any ontological weight to nonscientific entities, com-
putationalism thus also appears to restrain the development of intelligent
computational systems intended to interact with humans.

Enactive Cognition
Despite its impressive stranglehold on Western thought, cognitivism has
been fiercely criticized for quite a long time.30 For the sake of this part II—
whose main goal is, remember, to document the practices of computer
programming because they are nowadays central to the constitution of
algorithms— I will deal only with one line of criticisms recently labeled
“enactive conception of cognition” (Ward and Stapleton 2012). This refram-
ing of human cognition as a local attempt to engage with the world is here
crucial as it will— fi nally!— enable us to consider programming in the light
of situated experiences.

Broadly speaking, proponents of enactive cognition consider that agency
drives cognition (Varela, Thompson, and Rosch 1991). Whereas cognitiv-
ism considers action as the output of the internal pro cessing of symbolic
repre sen ta tions about the “real world,” enactivism considers action as a
relational co- constituent of the world (Thompson 2005). The shift in per-
spective is thus total: it is as if one were speaking two dif fer ent languages.
Whereas cognitivism deals with an ideal world that is being accessed indi-
rectly via repre sen ta tions that, in turn, instruct agency, enactivism deals
with a becoming environment of transformative actions (Di Paolo 2005).
Whereas cognitivism considers cognition as computation, enactivism con-
siders cognition as adaptive interactions with the environment whose prop-
erties are offered to and modified through the actions of the cognizer. For

Von Neumann’s Draft, Electronic Brains, and Cognition 131

enactivism, the features of the environment with which we try to couple
are then not fixed nor in de pen dent: they are continuously provided as well
as specified based on our ability to attune with the environment.

With enactivism, the cognitivist separations among perception, cogni-
tion, and agency are blurred. Perception is no longer separated from cog-
nition because cognizing is precisely about perceiving the takes that the
environment provides: “The affordances of the environment are what it
offers the animal, what it provides or furnishes, for either good or ill” (Gibson
1986, cited in Ward and Stapleton 2012, 93). Moreover, cognition does not
need to be stuck in between perception and agency, pro cessing inputs on
repre sen ta tions to instructively define actions: for enactivism, the cognizer’s
effective actions both participate in, and are functions of, the takes that the
sensible situation provides (Noë 2004; Ward, Roberts, and Clark 2011). Fi nally,
agency cannot be considered the final product of a well or badly informed
cognition pro cess because direct perception itself is also part of agency: the
way we perceive grips also depends on our capacities to grasp them. But the
environment does not structure our capacity to perceive either; actions also
modify the environment’s properties and affordances, thus allowing a new
and always surprising “dance of agency” (Pickering 1995). Perceptions sug-
gest actions that, in turn, suggest new perceptions. From take to take, as far
as we can perceive: this is what enactive cognition is all about.

This very minimal view on cognition that considers it “simply” as our
capability to grasp the affordances of local environments has many conse-
quences. First, enactivism implies that cognition (and therefore, to a certain
extent, perception) is embodied in the sense that “the categories about the
kind and structure of perception and cognition are constrained and shaped
by facts about the kind of bodily agents we are” (Ward and Stapleton 2012,
98). Notions such as “up,” “down,” “left,” and “right” are not anymore nec-
essarily features of a “real” extended world: they are contingent effects of
our bodily features that suggest a spatially arrayed environment. We experi-
ence the world through a body system that supports our perceptual appa-
ratus (Clark 1998; Gallagher 2005; Haugeland 2000). Cognition is therefore
multiple: to a certain extent, each body cognizes in its own way by engag-
ing itself differently with its environment.

Second, enactivism implies that cognition is affective in the sense that
“the form of openness to the world characteristic of cognition essentially
depends on a grasp of the affordances and impediments the environment

132 Chapter 3

offers to the cognizer with re spect to the cognizer’s goal, interest and proj-
ects” (Ward and Stapleton 2012, 99). Evaluation and desires thus appear
crucial for a cognitive pro cess to occur: no affects, no intelligence (Ratcliffe
2009, 2010). “Care” is something we take; what “shows up” concerns us.
Again, it does not mean that our inner desires structure what we may per-
ceive and grasp; our cognitive efforts also suggest desires to grasp the takes
our environment suggests.

Third, enactivism considers that cognition can sometimes be extended:
nonbiological ele ments, if properly embodied, can surely modify the bound-
aries of affective perceptions (Clark and Chal mers 1998). It does not mean
that every nonbiological item would increase our capability to grasp affor-
dances: some artifacts are, of course, constraining ongoing desires (hence
suggesting new ones). But at any rate, the combinations of human and non-
human apparatus, the association of biological and nonbiological substrates
fully participate in the cognitive pro cess and should therefore also be taken
into account.

The fourth consequence of enactivism is the sudden disappearance of the
frame prob lem. Indeed, although this prob lem constitutes a serious draw-
back for cognitivism by preventing it from understanding— and thus from
implementing— the initial se lection of the relevant input for the task at
hand, enactive cognition avoids it by positing framing as part of cognition.
Inputs are not thrown at cognizers anymore; their embodied, affective, and,
eventually, extended perception tries to grasp the takes that the situations
at hand propose. Cricket batters are trained, equipped, and concerned with
the ball they want to hit; tennis players inhabit the ball they are about to
smash. In short, whereas cognitivism deals with procedural classifications,
enactivism deals with bodily and affective intuitions (Dreyfus 1998).

The fifth consequence is the capacity to consider a wide variety of exis-
tents. This consequence is as subtle as it is impor tant. We saw that one del-
eterious propensity of cognitivism was to amalgamate truth (or knowledge)
and real ity: what counts as real for cognitivism is a be hav ior that derives
from a true statement about the real world. Cognition is, then, considered
the pro cess by which we know the world and— hopefully— act accord-
ingly. The picture is very dif fer ent for enactivism. As enactive cognition is
about interacting with the surrounding environment, grasping the takes it
offers and therefore participating in its reconfiguration, knowledge can be
considered as an eventual, very specific, and very delightful by- product of

Von Neumann’s Draft, Electronic Brains, and Cognition 133

cognitive pro cesses. Cognition surely helps scientists to align inscriptions
and construct chains of reference according to the veridiction mode of the
scientific institution; however, cognition also helps writers to create fictional
characters, lawyers to define legal means, or devout followers to be altered
via renewed yet faithful messages. In short, by distinguishing knowledge
and cognition— cognizers do not know the world but interact with it, hence
participating in its reconfiguration— enactivism places the emphasis on our
local attempts to couple with what surrounds us and reconfigure it, hence
sometimes creating new existing entities.

Fi nally, enactivism makes the notions of symbols and repre sen ta tions
useless for cognitive activities. Indeed, since the world is now a local envi-
ronment whose properties are constantly modified by our attempts to
 couple with it, no need exists to posit an extra step of mental repre sen-
ta tions supported by symbols. For enactivism, there may be symbols—in
the sense that a take offered by the environment may create a connection
with many takes situated elsewhere or co- constructed at another time— but
agency is always first. When I see the hammer and sickle on a red flag on a
street of Vientiane, Laos, I surely grasp a symbol but only by virtue of the
connections this take is making with many other takes I was able to grasp
in past situations: TV documentaries about the Soviet revolution, school
manuals, movies, and so on. In that sense, a symbol becomes a network
of many solidified takes. Similarly, some takes may re- present other takes,
but these re- presentations are always takes in the first place. For example,
I may grasp a romantic re- presentation of a landscape at the second floor
of Zürich’s Kunsthaus, but this re- presentation is a take that the museum
environment has suggested in the first place. This take may derive from
another take— a pastoral view from some country hill in the late eigh teenth
 century— but, at least at the cognitive level, it is a take I am grasping at the
museum in the first place.

To sum up, enactive cognition starts with agency; affective and embod-
ied actions are considered our way of engaging with the surrounding envi-
ronment. This environment is not considered a preexisting realm; it is a
collection of situations offering takes we may grasp to configure other take-
offering situations. From this minimal standpoint, cognition infiltrates
 every situation without constituting the only ingredient of what exists.
Scientists surely need to cognize to conduct experiments in their laborato-
ries; lawyers for sure need to cognize to define legal means in their offices;

134 Chapter 3

programmers surely need to cognize to produce numbered lists of instruc-
tions capable of making computers compute in desired ways; yet facts, legal
decision, or programs cannot be reduced to cognitive activities as they end
up constituting existents that populate the world. With enactive cognition,
the emphasis is made on the interactions among local situations, bodies,
and capabilities that, in turn, participate in the formation of what is exist-
ing, computer programs included. Cognition, then, appears crucial as it
provides grips but also remains very limited as it is constantly overflowed:
 there is always something more than cognition. May computer program-
ming be considered as part of this more. This could make it fi nally appear
in all its subtleties.

The journey was convoluted, but we are now fi nally in a position to consider
computer programming as a practical, situated activity. In chapter 3, I first
questioned von Neumann’s architecture; for fundamental yet contingent
reasons, its definition of computers as functional devices took for granted the
situated practices required to make them function. If this unempirical pre-
sen ta tion of electronic systems was certainly useful at the beginning of the
computer area by sharing classified work and proposing a research agenda,
it nonetheless misled the understanding of what makes computers actually
compute. I then distanced myself from the dif fer ent academic answers to
the nonfunctional aspects of electronic computers as functionally defined by
von Neumann. Aptitude tests for the se lection of programmers started at the
wrong end as they tried to select people without inquiring into the require-
ments for such tasks. Behavioral studies aiming to isolate the right par ameters
for efficient programming implied looking at the results of actions and not at
the actions themselves. Fi nally, I tried to show how the cognitivist response
to behavioral studies had, and has, problematic limitations: as mainstream
cognitivism relies on the computational meta phor of the mind that itself
needs already assembled programs, many cognitivists cannot go beyond the
form “program” that ends up explaining itself. A pro cess is being explained
by its own result; programs need programs, a perfect tautology. Yet in the
last section of chapter 3, I suggested that the very notion of cognition, once
freed from the throes of computationalism, could still be a useful concept for
rediscovering experience. Once cognition is considered an enactive pro cess of
grasping the affordances of local environments, the emphasis is placed on
specific situations, places, bodies, desires, and capabilities.

From this point, we are ready to grasp programming in all of its materi-
ality without being obtruded by the notions of “repre sen ta tions” (without

4 A Second Case Study

136 Chapter 4

hyphen), “ mental models,” or “computation.” All of these things— and
more generally von Neumann’s functional pre sen ta tion of computers— are
the results of the situations we want to account for. To a certain extent,
we are back in 1943 at the Moore School of Electrical Engineering: no
 mental models, no internal cognition, no von Neumann architecture, no
programs; only actions, desires, and artifacts that interactively try to make
meaningful electronic computations occur. Even though the following case
study is based on data collected in the Lab between 2015 and 2016, I will
try to study them as if the unempirical conceptions of electronic comput-
ing did not occur.

Pre sen ta tion of the Empirical Materials

The development of an image- processing algorithm intended for academic
publication is a pro cess that involves many dif fer ent activities and situa-
tions. But along the gathering of relevant data; the construction of ground
truths; the formulation of transformative relationships between input- data
and output- targets; and the numerous Group meetings, informal discus-
sions, seminars, and coffee breaks that help all these things to happen,
 there are more or less long computer programming episodes when numbered
lists of instructions have to be written in order to make an electronic device
adequately compute digital data. It is these courses of action that have a
beginning and an end that I will try to account for in this case study.

The prob lem that quickly stood out during my ethnographic endeavor
within the Lab was how to document these courses of action. First, as the
code being written during programming episodes was very cryptic, it was
in the beginning difficult to have a grip on what was going on. Second, the
configurations of these cryptic signs on the screens were constantly chang-
ing; new characters were added, other erased, other corrected, and so on.
Third, these situations appeared quite engaging for the people involved,
which prevented me from asking them questions about what they were
 doing. During these moments that looked particularly intense, I was clearly
out of place.

To palliate these methodological issues, I designed my own image-
processing proj ect with the help of the Lab’s members. After several Lab
meetings, we collectively de cided that I should try to design a prepro cessing
model that could sort images whose pixel configurations would fit further

A Second Case Study 137

specific segmentation pro cesses that were under development within the
Lab. This modest proj ect was explic itly designed to force me learn the basics
of several computer programming languages and become more familiar
with image pro cessing in general. Importantly, the proj ect also included a
“helping clause” that allowed me to ask members of the Lab for help when
I was stuck in a programming impasse. This somewhat unusual method
turned out im mensely fruitful. It first made me become more comfort-
able with several programming languages;1 little by little, all these cryptic
signs started to make more sense. It also made the members of the Lab
more comfortable during the programming episodes I tried to document
and account for. As the proj ect had been designed collectively and could
potentially be used for future proj ects, the members of the Lab found it
somewhat relevant. And as the so- called helping sessions did not directly
concern their own proj ects, they also felt more at ease with me taking notes
and asking questions while they were programming. Fi nally— and perhaps
more importantly— this method allowed me to better equip and document
programming episodes: along with notes describing the movements and
gestures of the one who was programming next to me, I could video rec-
ord my monitors and audio rec ord the discussions. For the eight helping
sessions I needed for this proj ect, I then ended up with descriptions, screen
recordings, and audio recordings I could thoroughly analyze.

Though insightful in many re spects, the materials collected during these
helping sessions nonetheless had limitations. As the small programs result-
ing from these sessions were primarily intended for my own specific use,
they were not directly designed to circulate within a professional commu-
nity of programmers as it is typically the case in corporate software settings.
In this sense, impor tant topics such as program reading for the in situ shap-
ing of intelligibility, as considered by Button and Sharrock (1995) in their
paper on computer programming practices, could not be specifically inves-
tigated. Nevertheless, as we will see later in the chapter, some of my analyti-
cal propositions may well be related to Button and Sharrock’s conclusions.

The following materials are taken from one helping session during
which DF— a PhD student of the Lab— wrote a small program that I will
from now on call PROG that dealt with data I had previously collected via
a crowdsourcing task. The crowdsourcing task was divided into ten rounds.
For each round, twenty to thirty unknown workers were shown fifty “natu-
ral pictures” of landscapes, faces, birds, buildings, and so on. The content

138 Chapter 4

of these pictures was extremely varied. For each image, each worker was
asked to draw one or several rectangles around the parts of the image that
first attracted their attention. Before switching to the next image, each
worker also had to grade from one to seven how straightforward it had been
for them to choose what specific parts of the image to label. After the ten
rounds of this crowdsourcing task, 254 dif fer ent workers each labeled fifty
images for a total of five hundred images. The data collected from the activity
of the workers (the IDs of the images they pro cessed, the coordinates of the
rectangles they drew, and the grades they gave for each labeling task) via a
web application were gathered in .txt files or ga nized as in figure 4.1. The
content of these .txt files along with the natu ral images used for the crowd-
sourcing task were the data on which PROG had to work.

If this small proj ect was explic itly designed to better document program-
ming practices, it also had an image- processing goal. This secondary goal
was to find correspondences between the contents of the natu ral images—
in terms of arrangement of numerical pixel-values— and both the rectangles
and grades provided by the workers. In short, the assumption was that for

16714267603_cd60601b7f_b.jpg 1 startX: 25px startY: 32px width: 450px height: 361px
16705290404_d8de298f0e_b.jpg 5 startX: 430px startY: 76px width: 260px height: 414px
 startX: 234px startY: 227px width: 189px height: 216px

Figure 4.1
Excerpt of a .txt file named “worker_05Waldave56jm9815.txt” as provided by the
web application at the end of each session of the crowdsourcing task. The name
of the file (“worker_05Waldave56jm9815.txt”) corresponds to the ID given to the
worker by the web application. Only two rows of the file are presented here. The first
ele ment of each row is a string of text that ends with “.jpg”; it corresponds to the
ID of the image that had been pro cessed by the worker. The second ele ment of each
row corresponds to the numeral grade given to the labeling task by the worker. The
subsequent ele ments of each row correspond to the coordinates of the rectangle(s)
drawn by the worker. Every rectangle is defined by four values part of the coordi-
nate space of the image that was being pro cessed. The first value of each rectangle
(“startX: npx”) corresponds to the horizontal coordinate of the picture. The second
value (“startY: npx”) corresponds to the vertical coordinate of the picture. The third
value (“width: npx”) corresponds to the pixel width of the drawn rectangle. The
fourth value (“height: npx”) corresponds to the pixel height of the drawn rectangle.
Altogether, these four values allow to reconstruct— later— the rectangle(s) drawn by
the user. Moreover, as indicated by the second row of the excerpt, the workers could
draw several rectangles.

A Second Case Study 139

images with high grades and very dispersed rectangles, it may not make sense
to divide their content into smaller parts. Symmetrically, for images with low
grades and very compact rectangles, it may eventually make sense to divide
their content into smaller parts (see figure 4.2). Being able to automatically
sort pictures whose contents may or may not be divided into smaller parts
could be useful for further lossy compression schema based on segmentation
pro cesses. In that sense, the computational method I tried to define could
eventually serve as a prepro cessing step for further, more complex, segmenta-
tion/compression methods that members of the Lab were developing at that
time. But at any rate, to propose such a prepro cessing method, many inter-
mediary programs— including PROG— had to be assembled.

The design of the web application that enabled the crowdsourcing task
and the gathering of data as shown in figure 4.2 required the completion of
many dif fer ent programs. First, a Python web- scrapping program had to be
designed in order to browse and download heterogeneous, high- definition,
and Creative- Commons- licenced images made available by the API of the
Flickr website. The design of this small yet not- so- trivial program first
required a “helping session” with a member of the Lab. Second, several pro-
grams using html, JavaScript, and PHP computer programming languages

Figure 4.2
Two views on the data collected during the crowdsourcing task. Both views were
made pos si ble by a Matlab program that parsed the data of the .txt files and related
them to the corresponding .jpg images. On the left, workers roughly labeled the same
part of the image and gave a very low grade to this labeling task (average of 1.16).
One may then assume that it would make sense to divide the content of this image
into smaller parts (in this case, the bird and the rest). On the right, the opposite situ-
ation: the workers labeled the image almost randomly and gave a high grade to this
labeling task (average 5.25). One may them assume that it would make little sense to
divide the content of this image into smaller parts.

140 Chapter 4

had to be designed to allow workers to interact with a specific number of
images and store their IDs, labels, and grades within .txt files. The design of
this web application required two “helping sessions” with members of the
Lab. Third, a first Matlab program was required in order to read the tex-
tual and numerical contents of all the .txt files and reor ga nize them within
Matlab software environment. Because of its agility to design prob lems of
linear algebra— all integers being considered scalars— Matlab is widely used
for research and industrial purposes in computer science, electrical engi-
neering, and economics. Yet if Matlab programming language is known
for being well adapted for the computation of matrices and arrays, it is
also known for being badly adapted for the reor ga ni za tion of .txt data into
matrices and arrays. This reor ga ni za tion of data into matrices and arrays
was generally called “parsing” by the members of the Lab. Again, a fourth
helping session was required to help me assem ble parsing programs that
further enabled views such as those presented in figure 4.2.

The program whose formation we are about to follow— PROG— dealt
with the analy sis of the data as reor ga nized by previous parsing programs.
The shaping of PROG required a fifth “helping session” with DF. The speci-
fications of PROG can be summarized as such: for reasons we will cover
at length in the next sections, PROG should be able to transform each
labeled digital image as presented in figure 4.2 into another less complex
digital image as presented in figure 4.3. The value of the pixels of each

Figure 4.3
Two views on the results of PROG. Both simplified matrices are translations of the
labeled images of figure 4.2. PROG was intended to select one part of the parsed data
in order to transform the labeled images of figure 4.2 into much less complex matrices.
 These matrices allowed further analy sis, notably in terms of histograms and frequencies.

A Second Case Study 141

less complex image should correspond to the number of rectangles each
pixel is part of. For example, if a given pixel is part of zero rectangle, PROG
should attribute the value zero to this pixel. But if another given pixel
is part of, say, six rectangles, PROG should attribute the value six to this
pixel. PROG was thus intended to gather together dif fer ent values (dimen-
sions of the natu ral image, dimensions of each rectangle drawn by the
participants of the crowdsourcing task, incrementing values of each pixel)
in order to create new images or, as usually coined in image pro cessing,
new matrices.

At this point, it is not necessary to fully understand the goals and specifi-
cations of PROG as we will closely consider them in the next sections. What
is more impor tant for now is to understand that PROG was designed in the
Matlab software environment. Like other popu lar high- level programming
languages, such as Python or C, Matlab is generally used in conjunction
with an integrated development environment (IDE) that includes visualization
and file organ ization functionalities (see figure 4.4). But unlike Python, C,
and some of their compatible IDEs (e.g., PyCharm, Eclipse), Matlab—as
a programming language in its own right and as an IDE—is owned and
maintained by MathWorks Inc. and is distributed on a license basis. At the
time of this inquiry, Matlab’s proprietary feature was criticized by a grow-
ing number of Lab members who tended to prefer Python, which is open-
source and supported by an active community of developers. However,
notably because of its internal organ ization natively designed for matrix
pro cessing, Matlab was and still is frequently used. For reasons of readabil-
ity, my follow-up of the practical formation of PROG will only focus on the
Editor and the Command Win dow of the Matlab IDE. In the next sections,
the content of figure 4.4 will then be presented as in figure 4.5.

Even if PROG was by far the smallest program of the proj ect, I will not
be able to account for its entire formation pro cess. Instead of accounting for
the whole programming episode that established PROG, I will only focus
on specific sequences that are particularly instructive. My follow-up of the
programming sequences is chronological, starting at Time 0 (T0) and end-
ing at Time n. Yet the sampling of each T does not follow a fixed period of
time but rather the modifications of both the Editor and the Command
Win dow. Let us assume, for example, that figure 4.5 is the first expression of
PROG during the programming sequence we are following (T0). As soon as

142 Chapter 4

Figure 4.4
Screenshot of the Matlab IDE. The far- right win dow is called the Workspace. It gath-
ers all the variables the programmer creates during their session. To the left of the
Workspace, the Variables Win dow allows the programmer to visualize in spread-
sheets the variables she created. In this screenshot, the variable “images[1,1]” is being
visualized. Below it, to the left of the Workspace, there is the Command Win dow
that shows the results of the operations conducted by the programmer. In this
screenshot, the Command Win dow shows the answer “[]”. The long win dow in the
 middle of the screenshot is the Current Folder Win dow that shows the content of
the folder currently accessed by the software. On the left, the Editor is the win dow
that allows the programmer to write Matlab programs— also called scripts— that is,
numbered lists of instructions written in the Matlab programming language. When
the programmer clicks on the Run icon (on the top middle of the Editor) or uses an
equivalent personalizable shortcut key, the results of the script are printed in the
Command Win dow. In this screenshot, the running of the script made “[]” appear in
the Command Win dow. The spatial arrangements of these dif fer ent win dows can be
modified according to the programmer’s preferences.

A Second Case Study 143

the programmer makes changes in both the Editor and the Command Win-
dow, these changes will be documented and highlighted as in figure 4.6.

In between the dif fer ent Ts, the sayings and actions of the programmer
(DF) and me (FJ) will be transcribed. To keep things readable, I may omit
some small actions, such as quick mistypes or hesitation disfluencies. Fol-
lowing T1 (figure 4.6), the programming sequence would, for example, go
on like this:

DF: “Hum, it doesn’t work anymore.”

FJ: “Apparently. …”

DF: “Tssssss.”

[at line 14, DF deletes “{1}”]
[DF runs the script]
[figure 4.7— T2]

DF: “OK. But why are there only two of them? I don’t get it. Difficult
 today!”

[laughs]

1. f = fopen(‘user_05Waldave56jm9815.txt’);
2.

3. images = cell(1);
4. images{1} = cell(1);
5. line = fgetl(f)
6. while ischar(line)
7. elements = strsplit(line);
8. rating = elements(2);
9. images{1}{1,2} = sscanf(rating{1}, ‘%1’);
10. rect = elements(4:2:10)
11. cords = [];
12. for I = size(rect)
13. c = rect{i}
14. %coords = [cords sscanf(c{1}, ‘%ipx’)];
15. end
16. images{1}{1,3} = coords;
17.

18. line = fgetl(f);
19. end
20. %
21. %images{1}{3}

ans =

[]

Figure 4.5
Simplified Matlab IDE as it will be presented for the remainder of the analy sis. To
make the follow-up of programming sequences more readable, only the content of
the Editor and the Command Win dow will be displayed. Here, the figure expresses
(part of) the content of figure 4.4.

144 Chapter 4

1. f = fopen(‘user_ 05Waldave56jm9815.txt’);
2.

3. images = cell(1);
4. images{1} = cell(1);
5. line = fgetl(f)
6. while ischar(line)
7. elements = strsplit(line);
8. rating = elements(2);
9. images{1}{1,2} = sscanf(rating{1}, ‘%1’);
10. rect = elements(4:2:10)
11. cords = [];
12. for I = size(rect)
13. c = rect{i}
14. coords = [cords sscanf(c. ., ‘%ipx’)];
15. end
16. images{1}{1,3} = coords;
17.

18. line = fgetl(f);
19. end
20. %
21. %images{1}{3}

ans =

83 74

14. {1}

Figure 4.7
Editor and Command Win dow at T2.

1. f = fopen(‘user_ 05Waldave56jm9815.txt’);
2.

3. images = cell(1);
4. images{1} = cell(1);
5. line = fgetl(f)
6. while ischar(line)
7. elements = strsplit(line);
8. rating = elements(2);
9. images{1}{1,2} = sscanf(rating{1}, ‘%1’);
10. rect = elements(4:2:10)
11. cords = [];
12. for I = size(rect)
13. c = rect{i}
14. .coords = [cords sscanf(c{1}, ‘%ipx’)];
15. end
16. images{1}{1,3} = coords;
17.

18. line = fgetl(f);
19. end
20. %
21. %images{1}{3}

>> parse

Cell contents

reference from a non-

cell array object

Error in parse(line

14)

coords = [coords

sscanf(c{1}, ‘%ipx’)]

14. %

Figure 4.6
The Editor and the Command Win dow at T1, when modified by the programmer. In
the caption’s title, the term “T1” indicates that it is the first change of the program-
ming sequence being followed. The instructions that have been removed or added in
the Editor are highlighted in gray. The content of the Command Win dow is updated.
Fi nally, the instructions that have been deleted are indicated as strikeout text in the
bottom cell. The line numbers of the deleted instructions are those of Tn-1 (here T0).

A Second Case Study 145

 Here and then, I will also intervene to clarify things and analyze what is
happening. Before we start with the first sequence, it is impor tant to keep
in mind that one does not need to understand every thing that is said in the
transcriptions nor all the ele ments within each T. What is impor tant in this
close analy sis of computer programming practices is what is happening in
between each T. It is by focusing on the relative differences between each T
that we will manage to understand some of the issues at stake during these
unconventional courses of actions.

I need to mention one last thing before we dive into the practices of com-
puter programming. One may easily object that the following case study and
its subsequent tentative propositions are not representative of programming
practices in general. To this, I answer that representativeness is simply not at
stake here. Representativeness is indeed a power ful and impor tant concept
but only when the bound aries of a population are clearly defined. Inhabit-
ants of a town, cells of a tissue, words of a book: all can be related to a very
costly and equipped set— the administrative and geo graph i cal limits of a
towns, the physical limits of a sample, the hardcover of a book— that sub-
sequently defines a territory and a population. In these specific— but very
rare and often controversial— cases, the concept of representativeness can
be used to extract statistically meaningful results. But when there is no ter-
ritory, no set, the very notion of representativeness loses its raison d’être.
What is programming? Who are programmers when they program? We do
not know as there were very few studies of computer programming prac-
tices. This is typically where ethnography can be useful: the exploration of
nondefined—or problematically defined— territories may provide takes for
the design of subsequent bound aries to be explored statistically. And while
I do think that the young street artist in Leipzig who is writing a small Java-
Script program to animate the menus of her personal website, the engineer
of Boeing who is working on the last Ada’s update for cabin pressurization
modules, or the computer scientist who tries to parse .txt files with the Mat-
lab IDE differ in many ways— they have dif fer ent prob lems, affects, environ-
ments, equipment— I also think that (almost) none of these situations have
yet been accounted for ethnographically. We still have to start somewhere.
The following case study is then one of the very first steps into, I hope, more
systematic studies of programming courses of action; hence the exploratory
aspect of its propositions.

146 Chapter 4

Aligning Inscriptions

Let us focus on PROG. Building on what I presented in the last section,
I will document a very short programming sequence that took less than
five minutes in real time. I will stay as close as pos si ble to the formatted-
yet- empirical material, using the pre sen ta tion method I introduced above
as well as several concepts developed in STS in the course of the analy sis.
My hope is to show that one set of practices that are terribly impor tant for
programmers deal with the proliferation and alignment of inscriptions in
order to pave out an access to a remote entity and, si mul ta neously, identify a

1. I = imread(images{1});
2. R = zeros(size(I));
3. users = images {1,2};
4. for i = 1:size(users), 1)
5. j = 0;
6. while 1
7. rect = users{i,j+3};
8. if size(rect,2) == 0
9. break
10. end
11. j = j+1;
12. x = rect(1):rect(1)+rect(3);
13. y = rect(2):rect(2)+rect(4);
14. R(y,x) = R(y,x) + 1;
15. end
16. end

>>

Figure 4.8
Editor and Command Win dow at T0.

1. I = imread(images{1});
2. R = zeros(size(I));
3. users = images {1,2};
4. for i = 1:size(users), 1)
5. j = 0;
6. while 1
7. rect = users{i,j+3};
8. if size(rect,2) == 0
9. break
10. end
11. j = j+1;
12. x = rect(1):rect(1)+rect(3);
13. y = rect(2):rect(2)+rect(4);
14. R(y,x) = R(y,x) + 1;
15. end
16. end

Index exceeds matrix
dimensions

Figure 4.9
Editor and Command Win dow at T1.

A Second Case Study 147

location. Hopefully, this odd proposition will become clearer as the chapter
goes on. For the moment, let us start in medias res with figures 4.8 and 4.9:

[figure 4.8— T0]
[DF runs the script]
[figure 4.9— T1]

DF: “OK. So it tells me it doesn’t work.”

FJ: “Apparently.”

What is happening between T0 and T1? After DF runs the script, a red
(here, gray) inscription appears in the Command Win dow, indicating that
“Index exceeds matrix dimensions.” Where does this text come from?
Who wrote it? To better understand the origin of this cryptic notification, I
have to introduce an impor tant participant to the sequence: the interpreter
(INT). For the sixteen lines of code in the Editor to generate electric pulses
that would further allow the hardware of the computer to effectively com-
pute the data of the .txt files, many steps have to be taken. Fortunately, for
the case that interests us here, only the very first step is impor tant. This first
step consists in translating every line of code into something else—in this
case, subroutines compiled into machine code— that would, in turn, gen-
erate electric pulses and the effective computation of the data. One of the
entities responsible for this complex translation is INT. Every time DF runs
the script, INT is surreptitiously triggered to translate the content of the
Editor, byte by byte. We do not need to know exactly what INT does during
its translating pro cesses: even for DF, the very functioning of INT remains
obscure. In fact, we just need to understand four characteristics of INT:

1. INT has its own trajectory that is fully understood by almost nobody:
highly specialized teams employed by the com pany MathWorks, editors
of Matlab, were required to shape it and are still currently maintaining
it. In that sense—at least from the point of view of DF— INT can be con-
sidered a being that takes the risk of existence (James [1912] 2003; Latour
2013), just as a cat or an elephant seal.

2. INT translates one line of the Editor after the other.2

3. As soon as INT successfully translates a line, if this line instructs the print-
ing of an inscription, INT prints this inscription in the Command Win dow.

4. As soon as INT cannot translate one line, it stops and prints a red (here,
gray) inscription in the Command Win dow.

148 Chapter 4

This leads us to the impor tant notion of inscription that we have already
encountered in the introduction where I emphasized the world- generative
capabilities of these durable, mobile, and re- presentable entities. There are,
of course, many dif fer ent types of inscriptions: books, WhatsApp messages,
shopping lists, or even tattooed bodies can be considered inscriptions,
some being more durable, mobile, and re- presentable than others (Gitel-
man 2014). But in any case, inscriptions are translated manifestations of
more or less attributable events and thus constitute, at least potentially,
takes offered by the environment in specific situations. These inscriptions
are not repre sen ta tions (without hyphen) of “real things” that feed mental
computations. They are formatted re- presentations of events that may be
grasped and, in turn, configure other world- generative takes. This is why I
needed to tediously introduce enactive cognition at the end of chapter 3: as
we are now aware that agency precedes cognition, documents and inscrip-
tions can be considered no more but also no less than takes that may sug-
gest other actions— from take to take, as far as we can perceive and make
sense (Penny 2017).

Inscriptions- takes are sometimes grasped by cognizing individuals; other
times, they are not. In our case, the inscription “Index exceeds matrix
dimensions” is indeed grasped by DF. In fact, as DF ran the script, he
expected an inscription to appear in the Command Win dow. Moreover, as
DF is well aware— just as we are now— that any red inscription in the Com-
mand Win dow manifests that INT could not translate all the lines of the
script, DF knows that the inscription “Index exceeds matrix dimensions”
is the trace of an event related to INT.

From this point, we are able to better understand what the first inscription
does to DF. At T1, the inscription “Index exceeds matrix dimensions” is a
take grasped by DF that manifests that something— but what?—is affecting
the trajectory of INT: it tells me it doesn’t work.

Let us continue:

DF: “It doesn’t go through. I’ll just check the size of the image.”

[DF creates a new line at 2 in the Editor; types “size(I)”]

INT has a prob lem: it doesn’t go through the script. But what part of PROG
is affecting INT? At this point, it is difficult to know exactly. In fact, under-
standing what is happening to INT is, from now on, necessary to the real-
ization of PROG.

A Second Case Study 149

For DF, the initial red inscription indicates— though quite vaguely— that
INT is affected by the size of something. The terms “exceeds” and “dimen-
sions” of the red inscription attest for such a size- related prob lem. In order
to have a better grip on what size- related prob lem is affecting the trajectory
of INT, DF starts by examining the size of the image. To do this, DF adds the
small line of code “size(I)” at the second line of the script and then runs
it, thus triggering INT (figure 4.10— T2).

By adding the line of code “size(I)” at line 2 and then triggering INT,
DF makes a new inscription appear in the Command Win dow:

ans =

Columns I through 2

1024 712

Column 3

3

This new inscription printed by INT in the Command Win dow is not red
and can therefore be considered an actual translation of the code. This is
taken for granted: de cades of engineering developments allow DF to be
certain that this new inscription is an unproblematic expression of INT. But
still, is this inscription expressing the dimension of the right image? If not,
the whole script should be reconsidered. To verify that INT is indeed failing
to pro cess the right image, DF uses the second non- red inscription to create
a third one, this time emanating from me:

1. I = imread(images{1});
2. size(I)
3. R = zeros(size(I));
4. users = images {1,2};
5. for i = 1:size(users), 1)
6. j = 0;
7. while 1
8. rect = users{i,j+3};
9. if size(rect,2) == 0
10. break
11. end
12. j = j+1;
13. x = rect(1):rect(1)+rect(3);
14. y = rect(2):rect(2)+rect(4);
15. R(y,x) = R(y,x) + 1;
16. end
17. end

ans =
Columns 1 through 2
1024 712

Column 3
3

Index exceeds matrix
dimensions

Figure 4.10
Editor and Command Win dow at T2.

150 Chapter 4

DF: “OK, so the size is 1024 × 712. Does that sound right to you?”

FJ: “Yes, it is correct for this image.”

DF: “Ok. So it’s happening after.”

The oral statement “Yes, it is correct for this image”— itself deriving from
inscriptions I had previously produced and encountered during a former
unsuccessful programming attempt— allows DF to consider that the non-
red inscription refers adequately to the image INT is failing to pro cess.
The certitude emanating from the articulation of the non- red inscription
and the inscription- derived oral statement further allows DF to infer that
“it’s happening after.” The “ after” is here crucial. Indeed, since the second
inscription is not red and appears above the red inscription in the Com-
mand Win dow, DF can conclude that what ever is affecting the trajectory
of INT, it lies somewhere after the instruction “size(I)” he has just added
at line 2. By adding and articulating two new inscriptions— the non- red
inscription and the inscription relayed by my confirmatory oral state-
ment— DF already gets a clearer view on INT: what is affecting its trajectory
lies after the second line of the script.

Let us continue:

[DF examines the Command Win dow of figure 4.10— T2]

DF: “Ah, but it indicates also the colors! Typical Matlab.”

[DF puts the cursor on “Column 3” in T2 Command Win dow]

DF: “See? [to FJ] We should take only the first two values for “R.” Other-
wise, it blocks.”

FJ: “ Because now ‘R’ has three values?”

DF: “I guess so.”

[DF deletes line 2; at the end of “new” line 2, he types “.1), size(I,2”]

By pursuing his inspection of the non- red inscription in the Command
Win dow at T2, DF notices that the size of the image INT fails to pro cess is
expressed by three values: “1024,” “712,” and “3.” Where does this “3” come
from? Difficult to say. It may come from Matlab systematic consideration of
the data that structure a digital color image. Indeed, these specific matrices are
bound to a width, a height, and three layers of RGB values. Most high- level
programming languages do not take into consideration this third value as it
generally does not express useful information about the actual dimensions

A Second Case Study 151

of an image. But Matlab—in its fussy fashion— apparently expresses it, and
this may be, according to DF, the source of the prob lem affecting INT.

At this point, DF believes that the documentation he gathered about
INT’s trajectory through the piling up and alignment of three inscriptions—
the red inscription, the non- red inscription, and the auditory statement
(itself being a translation of written inscriptions considered in the past)—is
accurate enough to complete the script; according to DF, based on the evi-
dences he produced, collected, and aligned, INT does not support the third
value of “size(I).” This information about INT that points toward line 3
may, in turn, allow the modification of the script and smooth the trajectory
of INT. DF also deletes “size(I)” at line 2 that mainly served for him as an
instrument for the probing of INT. Then, in line with his insight about the
provenance of the problematic phenomenon that affects the trajectory of
INT, he types “,1),size(I,2” in the Editor in order to define “R” according
to only two values: “1024” and “712,” for the case of the first image of the
ground truth. He then runs the script:

[DF runs the script]
[figure 4.11— T3]

DF: “Ah no. It’s not here, apparently.”

Unfortunately for DF, these modifications do not change the state of INT.
As we can see in the Command Win dow at T3 (figure 4.11), DF’s new

1. I = imread(images{1});
2. R = zeros(size(I,1), size(I,2));
3. users = images {1,2};
4. for i = 1:size(users), 1)
5. j = 0;
6. while 1
7. rect = users{i,j+3};
8. if size(rect,2) == 0
9. break
10. end
11. j = j+1;
12. x = rect(1):rect(1)+rect(3);
13. y = rect(2):rect(2)+rect(4);
14. R(y,x) = R(y,x) + 1;
15. end
16. end

Index exceeds matrix
dimensions

2. size(I)

Figure 4.11
Editor and Command Win dow at T3.

152 Chapter 4

triggering of INT does not lead to the disappearance of the red inscription:
something is still affecting INT, and it was not the image size defined by
three values instead of only two.3 Using a scientific expression, we can say
that “INT- being- affected- by- the- third- value- of- size(I)” was an artifact: it
does not participate in the phenomenon that affects INT’s trajectory. In
turn, the problematic location is not line 2; it is somewhere else. More experi-
ments are therefore needed; more inscriptions have to be produced, com-
pared, and aligned.

The artifact “INT- being- affected- by- the- third- value- of- size(I)” was
not totally worthless for DF, though. Thanks to it, DF is now certain that
INT is being affected by a size- related prob lem that occurs after line 2. But
this certainty about INT is for the moment too thin; it does not allow DF
to precisely identify what is affecting INT and therefore modify the code
accordingly.

Let us continue:

DF: “OK. Well, we’ll print the rectangle then. And just compare.”

 [DF deletes “;” at the end of line 8; he creates a new line at 3 in the Edi-
tor; he types “size(R)” at line 3]

PROG deals with natu ral images on which rectangles have been previously
drawn by workers during a crowdsourcing task. As we saw in the previous
section that presented the empirical materials of this chapter, the drawn rect-
angles are not strictly speaking on the images: they are stored as coordinates
within .txt files. The script we are now examining is intended to use the
width and height values of each natu ral image as well as its rectangles in
order to create a new image that is less complex and easier to analyse. These
new simplified images— that I will from now on call matrices— should only
express the number and the position of the rectangles that the workers drew
on the initial color images. In this re spect, the workflow of the script is quite
straightforward: first, an empty matrix is created using the width and height
values of the initial natu ral image, then a rectangle is created using the work-
ers’ data in the .txt file related to this image, then the rectangle is added
to the empty matrix. Progressively, as more and more rectangles are added to
the matrix, the matrix acquires more values. In the field of image pro cessing,
we say that the matrix is incremented. Figure 4.3 provides two examples of
PROG’s final outputs; that is, matrices that have been incremented according
to the coordinates of the rectangles related to their IDs in .txt files. But we
are not there yet; at this point of the programming episode, INT— this lively

A Second Case Study 153

entity on which it is difficult to have a grip, at least for biped mammals—is
affected by something that prevents it from translating the code adequately.

What is affecting INT is not clear. But the previous inscriptions DF man-
aged to handle and align have made him see that INT’s prob lem has to do
with some size and dimension. Moreover, DF is also aware of the general
workflow of the script since he mostly designed it (more on this later). In this
re spect, what if the first rectangle that is added to the first matrix exceeds
the bound aries of the matrix? It would be very problematic as it would sig-
nify that some .txt data are corrupted. But as the rectangle is indexed to .txt
data, this would satisfy the red inscription “Index exceeds matrix dimen-
sion.” But how could DF be certain of that? Just as before, by producing
more inscriptions and compare them.

To print the size of the first rectangle, DF deletes “;” at the end of line 8.4
In order to print the dimension of the first image of the dataset, he writes
“size(R)” on line 3. He then runs the script:

[DF runs the script]
[figure 4.12— T4]
[DF examines the Command Win dow of figure 4.12— T4]

DF: “So, 197 and 323. Makes less than 1024, obviously. And same for
height. Alright. It’s strange because it doesn’t exceed.”

Two new non- red, and thus a priori nonproblematic, inscriptions appear in
the Command Win dow at T4 (figure 4.12). The first one “ans = 1024 712”

1. I = imread(images{1});
2. R = zeros(size(I,1), size(I,2));
3. size(R)
4. users = images {1,2};
5. for i = 1:size(users), 1)
6. j = 0;
7. while 1
8. rect = users{i,j+3}.
9. if size(rect,2) == 0
10. break
11. end
12. j = j+1;
13. x = rect(1):rect(1)+rect(3);
14. y = rect(2):rect(2)+rect(4);
15. R(y,x) = R(y,x) + 1;
16. end
17. end

ans =
1024 712

rect=
197 91 323 371

Index exceeds matrix
dimensions

8. ;

Figure 4.12
Editor and Command Win dow at T4.

154 Chapter 4

describes the dimension of the first image of the collection. The second one
“rect = 197 91 323 371” describes the dimensions of the first rectangle
drawn by the first worker as well as the location of this rectangle within the
first image. The first value of rect, “197,” refers to its horizontal coordinate
within the image, and the second value, “91,” refers to its vertical coordi-
nate. These two numbers therefore indicate that the rectangle starts at pixel
[197:91] of the image. The third value of rect, “323,” expresses the width of
the rectangle and the fourth value, “371,” expresses its height. These two
last numbers therefore indicate that the width of the rectangle is 323 pixels
and that its height is 371 pixels.

At T4, DF is already aware of what all these values refer to; before
this programming episode, I explained to him the conventions I used to
structure the data of the .txt files. But once these values are printed and
compared with the width and height of the image, basic yet terribly impor-
tant arithmetic evaluations can be undertaken: “197 + 323 < 1024” and
“91 + 371 < 712.” These are crucial clues as they do not corroborate the red
inscription of the Command Win dow; the rectangle doesn’t exceed the
dimensions of the image. The size and position of the rectangle is not what
is affecting INT. Something else is disrupting INT in its relation with PROG.
But what? And where is it? More inscriptions are required to better docu-
ment what affects INT and modify the script accordingly.

What we see at T4 is a perfect example of the pro cess I’m here trying to
highlight: by printing the size of the image and the coordinates of the rect-
angle, DF acquires a better grip on the pro cess at hand. He can articulate these
two new inscriptions and align them to the previous ones. In that sense, he is
enactively paving out some access to INT and its red inscription. Even though
this production and alignment of inscriptions do not work as DF hoped— the
dimensions of the rectangle do not exceed the dimensions of the image— this
gives him another clue about the phenomenon under scrutiny: what is affect-
ing INT lies somewhere else. This practice of grasping, producing, and aligning
inscriptions in order to identify the origin of a problematic phenomenon is,
I believe, central to programming. As we will see, it is not the only type of
practices that are deployed during computer programming sequences. But in
some specific situations, when an impor tant entity is blocked in its trajec-
tory, thus preventing the computation of data by means of electric pulses,
the handling and aligning of inscriptions remains crucial. In these situations
when a problematic location has to be found, the design of experiments and
the articulation of their results appear necessary to pave a very specific path,

A Second Case Study 155

itself providing very specific information about some small, scattered, and very
swift entities we may call “interpreters,” “compilers,” or even “pro cessors” in
the case of microcode. I will come back to this proposition at the end of this
programming sequence. But already at this point, it is impor tant to note that
the mundane addition and alignment of inscriptions DF is currently making
might be central to the very activity of computer programming.

With these preliminary ele ments in mind, let us continue:

DF: “I’ll just try something else. We’ll see if the rectangle corresponds.”

 [DF creates a new line at 13 in the Editor; on this new line, he types
“imshow(I(y,x,:))”]

DF needs a new inscription: if the relationship between the rectangle and
the image is not problematic for INT, something else must be. But what?
As is often during programming episodes, the situation starts to be con-
fusing. To be sure that the rectangle expressed in the Command Win dow
at T4 is the right one and not some sort of not- yet- identified artifact, DF
needs to see this first rectangle when superimposed over the first image. To
do so, he creates a new line in the Editor and types the small instruction
“imshow(I(y,x,:)).” He then runs the script:

[DF runs the script]
[figure 4.13— T5]
[figure 4.14]
[DF examines figure 4.14]

1. I = imread(images{1});
2. R = zeros(size(I,1), size(I,2));
3. size(R)
4. users = images {1,2};
5. for i = 1:size(users), 1)
6. j = 0;
7. while 1
8. rect = users{i,j+3}
9. if size(rect,2) == 0
10. break
11. end
12. j = j+1;
13. imshow(I(y,x,:))
14. x = rect(1):rect(1)+rect(3);
15. y = rect(2):rect(2)+rect(4);
16. R(y,x) = R(y,x) + 1;
17. end
18. end

ans =
1024 712

rect=
197 91 323 371

Index exceeds matrix
dimensions

Figure 4.13
Editor and Command Win dow at T5.

156 Chapter 4

DF: “OK. So theoretically, this should be the first rectangle labeled by
the first worker.”

The new inscription triggered by DF at T5 (figure 4.14) is this time a little
dif fer ent. Instead of text, it is a part of an image. More precisely, it is the
expression of the first rectangle the first worker drew on the first image.
And just like between T2 and T3, this new inscription allows DF to create
another inscription, this is time emanating from me:

DF: “Does it correspond?”

FJ: “Yes, yes, it does.”

DF: “OK good. So it definitely blocks somewhere else. Maybe it can’t
define the second rectangle.”

Having worked on the data of the ground truth for a couple days, I am a
trustworthy reference: at least for the first image, I know quite well the
position of the dif fer ent rectangles. Once again, the articulation and align-
ment of two inscriptions— the first rectangle over the first image and my
own verification (informed by inscriptions I had previously encountered)—
allow DF to pursue his inquiry into the problematic phenomenon engaging
INT. If the first rectangle and the part of the code responsible for defining
it are not what is affecting INT, the prob lem should lie somewhere else.
Perhaps in the second rectangle and, more generally, the part of the code
responsible for defining it? Once again, new inscriptions are required:

Figure 4.14
Output of PROG at T5.

A Second Case Study 157

DF: “It might be when we define the empty matrix.”

[DF deletes “imshow(I(y,x,:))” on line 13; on line 2, he selects the
function “zeros,” right clicks on it, and selects “help on se lection”]
[figure 4.15]

The new inscription (figure 4.15) is again a little dif fer ent from those
appearing in the Command Win dow. It turns out indeed that the Matlab
IDE provides access to a “Help on Selection” database that, if connected
to the internet, displays the correct syntax for each selected function. This
pop-up win dow being aligned with the suspect function at line 2, DF can
use the mouse cursor to compare the correct syntax of the help menu with
what is written in the Editor:

DF: “No, no, we did it right. It is somewhere else.”

[DF closes the “help on se lection” win dow]

The comparison between the help menu and the script allows DF to be cer-
tain that INT is not affected by this line of code; the syntax is right, so INT
is able to understand it. The prob lem lies somewhere else:

[DF runs the script]
[figure 4.16— T6]

Figure 4.15
Screenshot of “help on se lection” as triggered by DF at T5.

158 Chapter 4

DF: “Huh, I don’t get it … There’s only the empty matrix.”

At T6 (figure 4.16), DF is getting a little lost. The new inscription he has just
produced is difficult to grasp; how does it relate to the previous ones? The
zeros only refer to the empty matrix “R” that, by definition, cannot become
too big. This inscription is “not eligible” as one says in law; no relationship
between this inscription and the previous ones can be established. Some-
thing else has to be tried:

DF: “It’s so stupid. Sorry, I’m a bit rusty … I’ll just try another way.”

[at the end of line 15, DF types “= R(y,x) + ones(numel(y), numel(x));”]

DF: “So basically [to FJ], I do a 1 × 1 matrix that contains one and then I
repeat it according to the size of the region. It’s very stupid, but at least
I’m sure it will work. We’ll see if it changes anything.”

[DF runs the script]
[figure 4.17— T7]

DF: “Well, at least it doesn’t change anything. It doesn’t block here either.”

The experiment of DF is conclusive. At T6 (figure 4.16), he was not totally
convinced by the instruction at line 15. At T7 (figure 4.17), he tries another
equivalent “stupid” way to express it. We do not need to dig too far into this

1. I = imread(images{1});
2. R = zeros(size(I,1), size(I,2));
3. size(R)
4. users = images {1,2};
5. for i = 1:size(users), 1)
6. j = 0;
7. while 1
8. rect = users{i,j+3};
9. if size(rect,2) == 0
10. break
11. end
12. j = j+1;

. .

13. x = rect(1):rect(1)+rect(3);
14. y = rect(2):rect(2)+rect(4);
15. R(y,x) . .
16. end
17. end

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

Index exceeds matrix
dimensions

13. imshow(I(x,y,:))
16. =R(y,x) + 1;

Figure 4.16
Editor and Command Win dow at T6.

A Second Case Study 159

affective aspect of code since we are going to consider it later on in the chap-
ter. At this point, what is more impor tant is that DF used an instruction he
was certain INT could translate. The solidity of this fact, certainly consolidated
during his previous experiences with Matlab programming language, allows
him to equip a new experiment. Once again, when articulated with the previ-
ous inscriptions, the two new inscriptions “ans = 1024 712” and “rect = 197
91 323 371” are instructive; as they are similar to the ones that appeared at
T4, DF can conclude that the problematic phenomenon engaging INT does
not derive from the line 15 of the script. It has to be somewhere else, again:

DF: “OK, I’ll do something very, very stupid but I just want to see if it’s
 here.”

[DF creates a new line at 7; types “1”; creates a new line at 10; types “2”]
[DF runs the script]
[figure 4.18— T8]
[DF examines the Command Win dow of figure 4.18— T8]

DF: “OK. It’s here [at line 9 of figure 4.18— T8]. See? [DF puts the cur-
sor on line 9] It gives ‘1,’ then ‘rect,’ then ‘2,’ then ‘1,’ then stops. It’s
this ‘j+3’ that becomes too big after the first rectangle. It takes the first
rectangle, and if the second rectangle is bigger, it just can’t increment.”

At T8 (figure 4.18), the stupid thing pays off: the new inscription successfully
identifies the source of the problematic phenomenon engaging INT. At

1. I = imread(images{1});
2. R = zeros(size(I,1), size(I,2));
3. size(R)
4. users = images {1,2};
5. for i = 1:size(users), 1)
6. j = 0;
7. while 1
8. rect = users{i,j+3};
9. if size(rect,2) == 0
10. break
11. end
12. j = j+1;
13. x = rect(1):rect(1)+rect(3);
14. y = rect(2):rect(2)+rect(4);
15. R(y,x) = R(y,x) + ones(numel(y),

numel(x));
16. end
17. end

ans =
1024 712

rect=
197 91 323 371

Index exceeds matrix
dimensions

Figure 4.17
Editor and Command Win dow at T7.

160 Chapter 4

line 9, “j+3” becomes too big after the first rectangle, thus disrupting INT in its
translation efforts. But how does DF make this inference? How does he con-
fidently attribute to line 9 the responsibility of disrupting INT? If we look
attentively at the Command Win dow of T8, just as DF does, we see that its
first series of numbers— “1024” and “712”— expresses the size of “R” as line
3 of the script in the Editor instructs it. If we continue our examination,
we see that the subsequent number “1” expresses the instruction “1” as line
8 instructs it. Then we see that the third series of numbers— “197,” “91,”
“323,” and “371”— expresses the size of the first rectangle as line 9 instructs
it. Then the fourth number in the Command Win dow— “2”— expresses the
instruction “2” as instructed at line 10. The fifth number— “1”— expresses,
again, the instruction “1” on line 8. This ele ment is crucial because it shows
that, at this specific moment, INT is about to deal with the second rectangle.
And as the last ele ment of the Command Win dow indicates, as soon as INT
tries to translate line 9 for the second time, it blocks and prints a red error.
By sequentially examining the Command Win dow, what is affecting INT
becomes for us—as for DF— identifiable: at the second round of the script,
INT is not able to translate line 9. This last inscription allows DF to attribute
the origin of the INT- related phenomenon to one specific location.

At this point, it is impor tant to remember that this last inscription— even
though crucial— did not allow by itself the constitution of a connection

1. I = imread(images{1});
2. R = zeros(size(I,1), size(I,2));
3. size(R)
4. users = images {1,2};
5. for i = 1:size(users), 1)
6. j = 0;
7. while 1
8. 1;
9. rect = users{i,j+3};
10. 2
11. if size(rect,2) == 0
12. break
13. end
14. j = j+1;
15. x = rect(1):rect(1)+rect(3);
16. y = rect(2):rect(2)+rect(4);
17. R(y,x) = R(y,x) + ones(numel(y),

numel(x));
18. end
19. end

ans =
1024 712

ans =
1

rect =
197 91 323 371

ans =
2

ans =
1

Index exceeds matrix
dimensions

Figure 4.18
Editor and Command Win dow at T8.

A Second Case Study 161

between INT’s red inscription and line 9. It is the addition and the align-
ment of all the previous inscriptions that progressively led to the definition
of this last inscription. The whole aligning pro cess allowed DF to pinpoint
the provenance of the phenomenon affecting INT: it cannot translate “j+3”
at line 9 for the second time.

As some readers may have noticed, in order to account for this small
programming sequence I used several notions that have been developed in
the STS lit er a ture to describe an a priori very dif fer ent pro cess: experimental
practices in scientific laboratories. I now need to discuss this connection
between laboratory practices and computer programming practices I have
surreptitiously drawn.

For the last fifty years, many studies of scientific work have underlined
the centrality of textual documents (Latour and Woolgar 1986), diagrams
(Netz 2003), graphs (Dennis 1989; Gooday 1990), and notes (Lynch 1985;
Garfinkel 1981) that I gather here— following Latour (2013)— under the
umbrella term “inscriptions.” Other impor tant studies also showed the cen-
trality of the instruments and experiments required to produce, confront,
and articulate these inscriptions (Hacking 1983; Knorr- Cetina and Mulkay
1983; Collins 1975; Dear 1987; Gooding, Pinch, and Schaffer 1989). And
still other studies further emphasized the importance of the manipulation
and circulation of these inscriptions (Latour 1987; Knorr- Cetina 1999) that,
through comparison, confrontation, alignment—in short, articulation—
sometimes end up forming what Latour (1999a) calls “chains of reference”:
more or less solidified paths that document, when every thing is in place,
the be hav ior of some remote entity (e.g., a planet, a virus, a particle). These
impor tant studies pre sent certified knowledge as being produced and objec-
tive at the same time: thanks to scientific practices— and scientific institu-
tions that support the expression of these practices— knowledge is objective.5

As this short programming sequence seems to indicate, programming
practices may sometimes— not always— resemble some of the practices
required for the construction of certified knowledge. Indeed, the production
of inscriptions— via experiments and instruments— and their comparison
and alignment in order to produce even more inscriptions echo well with
what has been observed in scientific laboratories. Little by little, through the
manipulations, comparisons, and alignments of inscriptions, some access is
paved out that may allow the characterization of a phenomenon engaging
a remote entity. In the case of computer programming, this remote entity

162 Chapter 4

may vary: it can be, for example, a Matlab interpreter, a C compiler, or an
Intel micropro cessor. At any rate, the common characteristic of these dif-
fer ent entities is the incredible swiftness of their constitutive relationships.
Indeed, how is it pos si ble to have a grip on an interpreter, a compiler or—
worst— a pro cessor that executes billions of operations per second? Once
assembled, these entities are very difficult to grasp; hence the relevance
of the scientific mode of veridiction to better understand what is affecting
them. Moreover, I assume that the adoption of laboratory practices during
computer programming episodes is not a result of the miniaturization of
electronic components that followed the development of planar pro cess at
the end of the 1950s (Lécuyer, Brock, and Last 2010). As shown by historical
studies of early electronic computers made of two- meter- high accumulators
and multipliers— themselves made of hundreds of resistors connected with
wires and soldered joints— every short cir cuit, carry errors, or divider fault
that occurred during computation episodes had to be identified and located
through the tedious formation of error reports, inscriptions, and experi-
ments (Haigh, Priestley, and Rope 2014; 2016, 60–83). In these early days of
electronic computing, programmers also had to align inscriptions to pave
out an access to the affected component of the system.

Another similarity between scientific practices and the practices of com-
puter programming is a common tendency to forget about the instruments
that enabled the characterization of the phenomenon under scrutiny. In both
cases, when the source of a phenomenon has been identified thanks to a
specific laboratory setting, the practices, instruments, and experiments that
allowed the formation of the chain of reference are generally put aside (Latour
and Woolgar 1986, 105–155). This characteristic of science can make its his-
tory difficult to conduct. As established facts are purified from the scaffoldings
that allowed them to be assembled and solidified in the first place, great may
be the temptation to start from established facts and extrapolate backward
(Collins 1975). To empirically grasp the practice of science, it is therefore cru-
cial to consider facts as consequences of specific pro cesses rather than causes
of prior events (Bloor 1981). To a lesser extent, the same is true for computer
programming. When the phenomenon engaging the remote entity is charac-
terized; when the problematic location in the script is identified, most of the
instruments (small bits of code, questions to FJ, “stupid things”) are put aside
and soon forgotten. At the end of the programming episode, when the script
is functional and performs as desired, most of these intermediary objects (Vinck

A Second Case Study 163

2011) are generally left behind. Consequently, if one takes completed scripts
or programs as starting points for the study of programming, the greater is the
risk to miss what has been necessary to complete these scripts or programs.6

For the case of computer programming, one may imagine dif fer ent expres-
sions of the alignment practices I have documented above. Even though I
conjecture that these expressions still consist in forming chains of reference
in order to access remote entities and point at specific locations within num-
bered lists of inscriptions, they may not necessary deploy themselves in a
spatio- temporal landmark that is similar to the one of DF. If we consider for
example “program testing”—an impor tant industrial pro cess that consists
in detecting and documenting errors in order to modify lines of code— this
work can be highly distributed in space and time (Parrington and Roper 1989;
Myers, Sandler, and Badgett 2011).7 The “bug reports” we often encounter
when one of our software programs crash for mysterious reasons are other
expressions of this necessity to align inscriptions because they consist pre-
cisely in documenting at what time and following what actions the program
fatally affected the interpreter, compiler, or pro cessor. These reports serve as
first inscriptions that will, in turn, be articulated with another one, and then
another one, until eventually it indicates one origin of the phenomenon
within the source code of the program. Moreover, alignment practices can
also be automated and integrated within the programming languages them-
selves. This is typically the case when an interpreter or compiler indicates
by itself its breakpoint, the line of the script that negatively affects its tra-
jectory. But if these error reports appear automatic to the programmer, it
should not be forgotten that they are the product of heteromatic pro cesses
as the programming teams involved in the maintenance and enhancement
of programming languages have to cope with alignment of inscriptions in
order to establish what type of errors should be indexed in the first place.8
While dif fer ent in terms of extension and labor involved, these pro cesses of
program testing, bug reporting, and programming language design are also,
possibly, about aligning inscriptions and producing chains of reference.

The practice of aligning inscriptions to identify locations within num-
bered lists of written symbols may also explain, at least in part, the obses-
sion of professional programmers with program intelligibility.9 This topic
has been well documented by Button and Sharrock (1995) in their admira-
ble, yet solitary, study of computer programming practices. As they showed,
making a program intelligible to other programmers involves conventional

164 Chapter 4

naming of variables and functions to make its structure readable as an or ga-
nized and referenced document. It also involves formatting and laying out
the dif fer ent functions and par ameters of the code to make it easily brows-
able from its visual organ ization. This also typically includes commenting on
the program by means of small explicative sentences whose initial symbols
(“%” for the case of Matlab) allow them to be ignored by interpreters or
compilers. If the programming sequence we have just been following does
not directly deal with formatting, laying out, and commenting, it none-
theless specifies what these practices are striving toward. In view of the
ele ments presented above, naming, formatting, and commenting all point
to future moments when they can operate as landmarks directly enrollable
in the constitution of chains of reference. These marks may thus form an
additional referential infrastructure capable of accelerating alignment work
in the event of a future negative affection of an interpreter or a compiler
(which is likely to happen in corporate settings where complex programs
have to be maintained and enhanced).

But are the alignment practices of computer programming equivalent to
the laboratory practices in the sciences? Of course not, and it is now time
to pre sent an impor tant difference between them. Whereas the alignment
practices of programming lead to the identification of a location within a
script, scientific laboratory practices generally lead to the definition of new
objects whose properties and contours are later presented in academic papers
and discussed among peers. We will come back to this crucial aspect of the
formation of scientific knowledge when we will consider mathe matics in
chapters 5 and 6. For now, suffice it to say that whereas both impetuses
and outcomes of alignment practices in computer programming mainly
concern programmers who try to complete adequate scripts, alignment
practices in scientific laboratories are turned toward the completion of per-
suasive written claims. Scientific laboratories are always counter- laboratories
(Latour 1987, 79–100): they are also to be understood as a means to publish
stronger claims than their competitors. The agonistic aspect of laboratory
practices in the sciences that constantly try to establish what should count
as natu ral must then be demarcated from the self- referential aspect of labo-
ratory practices in computer programming: While scientists try to make
a case for the objective real ity of the phenomena they practically make
appear, programmers try to follow a scenario they are attached to (more
on this later). In short, the networks in which scientists and programmers

A Second Case Study 165

participate are, I believe, quite dissimilar. Whereas alignment of inscrip-
tions in the sciences support the publication of claims, alignment practices
in computer programming support the completion of a technical artifact
that yet needs to be intelligible in corporate settings.

The analogy between scientific and programming practices therefore has
its limits. Yet I also believe that both practices share some crucial— and
quite surprising— similarities, both allowing the formation of chains of ref-
erence and access to remote beings. And just like scientific work, computer
programming cannot be reduced to this specific type of practice. Indeed,
once the remote entity has been reached, once the problematic location has
been localized, many operations still need to be conducted. In this re spect,
aligning inscriptions is only a small part of the activity of programming.

Technical Detours

We saw in the previous section that sometimes, during programming epi-
sodes, when a small, swift, and difficult- to- grasp entity (e.g., an interpreter,
a compiler, a micropro cessor) is affected in its trajectory to the point of not
being able to trigger electric pulses for the computation of data anymore,
programmers need to multiply inscriptions, align them, and pile them up
 until the inscriptions constitute some access to the entity— access that, in
turn, indicates a location within the script. But what happens next?

In this section, we will focus on another set of practices deployed dur-
ing programming episodes. While this set of practices surely goes along
the alignment of inscriptions, it has dif fer ent implications. Whereas the
scientific aspect of programming involves the addition and alignment of
inscriptions (experiments, confirmations, “stupid things”) in order to reach
a remote entity, what I shall call the technical aspect of programming involves
the inclusion and substitution of entities to get around impasses. Once
again, this odd sentence will hopefully become clearer as the chapter goes
on. For now, we shall continue to follow PROG, starting exactly when the
previous sequence ended:

[DF examines the Command Win dow of figure 4.18— T8]

DF: “It is this ‘j+3’ that becomes too big after the first rectangle. It takes
the first rectangle and if the second rectangle is bigger, it just can’t incre-
ment. So I’ll just put in some order.”

166 Chapter 4

[DF deletes lines 3, 8 and 10; deletes “;” at the end of line 9]
[DF runs the script]
[figure 4.19— T9]

DF: “OK, we just need to change a few things.”

As we saw in the previous section, DF managed to localize the line of the
script that is badly affecting INT. Several inscriptions had to be produced
and aligned in order to establish this certified knowledge. But these inscrip-
tions are now useless; they were only relevant as part of DF’s quasi- scientific
inquiry into INT. It is now time for DF to really change a few things in the
script. To do so, he starts by putting in some order and deleting the instruc-
tions that were used to him as experimental instruments (figure 4.19).

At this point of the chapter, to account for what happens next, I need
to introduce a complementary notation that will allow us to have a better
grip on the technical innovations DF is about to conduct. Following results
of historical and so cio log i cal studies of technical proj ects, the notation I
 will draw on has been proposed during the 1990s as an attempt to illustrate
the evolution of technical proj ects without using the traditional and prob-
lematic distinction between nature and society (Latour, Mauguin, and Teil

1. I = imread(images{1});
2. R = zeros(size(I,1), size(I,2));

.

3. users = images {1,2};
4. for i = 1:size(users), 1)
5. j = 0;
6. while 1

..

7. rect = users{i,j+3}..
.

8. if size(rect,2) == 0
9.

10.

11.

12.

13.

14.

break
end
j = j+1;
x = rect(1):rect(1)+rect(3);
y = rect(2):rect(2)+rect(4);
R(y,x) = R(y,x) + ones(numel(y),
numel(x));

15. end
16. end

Index exceeds matrix
dimensions

3. size(R)
8. 1
10. 2

Figure 4.19
Editor and Command Win dow at T9.

A Second Case Study 167

1992). We do not need to understand all the subtleties of this mapping that,
by the way, never really took off.10 For what interests us here, we shall only
cover the basic princi ples of these so- called sociotechnical graphs (STGs).

One of the results of the studies of sociotechnical proj ects was to show
that the trajectories of such proj ects are a function of their capacity to enroll
new actants— human or nonhuman entities—in order to overcome critical
impasses (Akrich 1989; Callon 1986; Latour 1993a). Historical examples of
such enrollments are legion: in order for American Bell to prevail over West-
ern Union in the development of the telephone network in the United States,
it had to enroll— after many lawsuits— crucial telephone patents within its
sociotechnical network (Brooks 1976). By enabling the production of highly
reliable and flexible switching transistors, the planar pro cess allowed Fair-
child Semiconductor to become a commercial partner of the US Air Force
(Lécuyer, Brock, and Last 2010). By enrolling the time- sharing technology as
developed at MIT at the beginning of the 1960s, John Kemeny and his team
 were able to pursue the development of the BASIC programming language
at Dartmouth College (Montfort et al. 2013, 158–194). For each example,
a specific actant— a set of telephone patents, the planar pro cess, the time-
sharing technology—is enrolled, and this, in turn, makes the proj ect slightly
shift. One impor tant credit to the history and sociology of technologies is
to have successively demonstrated how crucial the inclusion of new actants
for the development of technical proj ects is— may they be huge as the elec-
trification of the United States at the end of the nineteenth century (Hughes
1983; Nye 1992) or small as the installation of a road bump (Latour 2006).

Yet, this “latitudinal” dimension of technical proj ects enrolling new
actants in order to develop and expand would be incomplete without an
orthogonal “longitudinal” dimension expressing the transformations sug-
gested by the newly enrolled actants. Another crucial result of the history
and sociology of technical proj ects is indeed that the inclusion of new actants
si mul ta neously modifies the relationships among the previous actants of the
proj ect, thus potentially creating new impasses. Using the examples of the
previous paragraph, Bell’s technical system was transformed by the inclusion
of telephone patents: the previously tiny network became a potential mono-
poly over telephone communications in the United States, hence necessitat-
ing further reconfigurations so as not to be the target of antitrust lawsuits by
the US Department of Justice (Gertner 2013). Fairchild Semiconductor was
fundamentally transformed by the inclusion of the planar pro cess: it became

168 Chapter 4

a power ful entity soon capable of industrial production of integrated cir-
cuits. These production capacities participated, in turn, in the development
of intercontinental ballistic missiles, and this further created an explosion of
the demand for integrated cir cuits and the progressive formation of serious
competitors (most notably, Texas Instruments and Motorola; see Campbell-
Kelly et al. 2013, 210–225). Similarly, the inclusion of time- sharing technol-
ogy within Dartmouth’s computer system greatly participated in the design of
the BASIC programming language by considerably increasing its beta testing.
But the inclusion of the actant “time sharing” also transformed Dartmouth’s
computing infrastructure, which, by allowing its extensive utilization by
students, soon started to be used for original computer- game experiments
(Montfort et al. 2013, 165–194). More than just enrolling (or losing) actants,
technical proj ects are also modified by them. And just like the latitude—
inclusive— axis of technical proj ects, this longitude— transformative— axis
does not only concern large and highly complex technological systems: small
mundane proj ects are also affected by it (Latour 1992).

Building on this dual aspect of technical proj ects as well as concepts bor-
rowed from linguistics, the proponents of STGs proposed a way to map the
development of technical proj ects according to two dimensions: a syntagmatic
dimension and a paradigmatic dimension. The first dimension (syntagmatic)
of STG is defined by specific assemblages of actants at a certain time T.
This configuration of actants at a time T is specific to each technical proj-
ect and should therefore be supported by a narrative that exposes the whys
and wherefores of the proj ect being considered. As this dimension expresses
association among variables, it can be called the AND dimension. The con-
figuration of actants in the AND dimension is separated into two branches:
the “allies” whose configuration participates in the development of the proj-
ect and the “opponents” whose configuration constitutes an obstacle to the
completion of the proj ect. Again, which actant counts as an ally or as an
opponent to the development of the proj ect depends on the narrative the
STG is only summarizing (Latour, Mauguin, and Teil 1992, 39). The bound-
ary that separates allies’ configuration of actants and opponents’ configura-
tion of actants constitutes the “frontline” of the technical proj ect at time T.

The second (paradigmatic; nothing to do with Thomas Kuhn’s notion)
dimension is defined by the substitutions that have occurred in both allies’
and opponents’ configurations at time T + 1. Since this dimension expresses
substitution of variables, it can be called the OR dimension. Depending on

A Second Case Study 169

the fluctuation of allies’ and opponents’ configurations at T + 1, the front-
line of the technical proj ect may also fluctuate. Once again, which actant
is substituted by another, thus potentially making the frontline fluctuate,
depends on the narrative of the technical proj ect.

Two other ele ments are necessary to translate the narrative of a technical
proj ect into an STG: a specified point of view and what I call a “scenario.”
First, the point of view of the actant whose view on the proj ect is being
summarized by the STG has to be specified. In that sense, for any given
narrative about a technical proj ect, if this narrative takes the point of view
of many dif fer ent actants, each point of view can (potentially) be mapped
by one specific STG. Second, the desire of the actant whose point of view is
being mapped also has to be specified. This topic is a tricky one and will be
further developed in the next section of this chapter. For now, suffice it to
say that what the actant wants to achieve, the future it wants to live in, the
scenario to which it is attached should be specified in each STG.

Let us now try to adapt these theoretical ele ments to the proj ect that
interests us here: DF’s proj ect to complete PROG. If we consider T8 and
the whole narrative that precedes it, we might be able to translate it into
an STG summarizing DF’s allies and opponents. The first ele ment of the
graph should indicate the point of view that it re- presents. Contrary to
most narratives about large technical systems where many points of view
are considered and confronted, our small narrative only accounts for the
point of view of DF. The second ele ment of the graph should be the scenario
to which DF is attached. As already touched upon in the previous section,
we know that DF’s scenario for PROG can be summarized as such: “Creating
a matrix whose pixel-values correspond to the numbers of rectangles drawn
by workers on each pixel.” Concerning the actants: every instruction of the
script can be considered an actant as they all make INT do things. But other
actants might also be included in the graph as long as they impact on the
proj ect as framed by its scenario. In that sense, the red inscriptions printed
in the Command line and what these inscriptions refer to according to DF
as well as the final actions the script is intended to accomplish on the data
of the .txt file can also be included in the STG. Moreover, as the narrative of
the script- project indicates that several instructions are now stabilized, we
may consider these “stable packages” of instructions as one single actant.
If we consider these ele ments altogether and adapt them for T8, we end up
with a diagram that looks like figure 4.20.

170 Chapter 4

It is impor tant to remember that the STG mapping of T8 is a simplifica-
tion of T8 as initially presented in its Matlab view and enriched by DF’s
sayings. As any simplification, it omits many ele ments. But as many sim-
plifications, it may also work as an instrument to identify key features of
messy pro cesses (Star 1983).

From this point, based on the narrative presented above, we can include
T9 in the STG graph, thus slightly modifying the configurations of allies
and opponents (see figure 4.21).

For each remaining T of this programming sequence, I will first pre sent
its complete narrative (simplified Matlab IDE and transcriptions of DF’s
sayings), discuss it shortly, and then pre sent its STG translation. As both
“point of view” and “scenario” will not change throughout the program-
ming sequence, I will ignore them from now on. Moreover, in every new
STG, I shall highlight the newly enrolled actant in bold. At the very end
of the programming sequence, when DF will have completed PROG, the
succession of all the STGs should allow us to detect another set of practices
deployed by programmers that goes along with the alignment of inscrip-
tions while being, I believe, fundamentally dif fer ent.

Create a matrix whose pixel-values correspond to the numbers of rectangles
drawn by workers on each pixel

Point of view of DF

Scenario:

T8 A B C D E F G H W X Y Z

Allies Opponents

OR

AND

Figure 4.20
STG of T8. “A” refers to PROG lines 1, 2, and 4 (stabilized since T0); “B” refers to
line 3; “C” refers to lines 5, 6, and 7 (stabilized since T0); “D” refers to line 8; “E”
refers to line 9; “F” refers to line 10; “G” refers to lines 11, 12, 13 (stabilized since
T0); “H” refers to lines 14, 15, 16, 17, 18, 19 (stabilized since T6); “W” refers to the
inscription “Index exceeds matrix dimensions”; “X” refers to DF’s assertions “the
second rectangle is too big for INT”; “Y” refers to DF’s assertion “rectangles cannot
increment the values of the matrix”; and “Z” refers to the script’s incapacity to follow
the desired scenario.

A Second Case Study 171

Let us continue to follow DF as he tries to shape PROG:

DF: “ We’re gonna do it like this.”

[DF creates a new line at 7]

DF: “If ‘j+3’ is larger”

[at line 7, types “if j+3 >”]

DF: “than the size of the cell of the user”

[at line 7, types “size(users{j})”]

DF: “then it goes over it”

[DF creates a new line at 8; types “break”]
[DF runs the script]
[figure 4.22— T10]
[DF examines Command Win dow of figure 4.22— T10]

DF: “Argh, of course. I shouldn’t take ‘j.’ Can’t define anything that way.”

At T10 (figure 4.22), DF enrolls a new actant: the “if” statement that starts
at line 7 and ends at line 9. Since, at this point, he knows for a fact that INT is
blocked if the second rectangle is bigger than the first one, the addition of a
conditional statement that could ask INT to go over this dimension prob lem
makes complete sense. The addition of an “if” statement would thus allow
INT to continue its interpretation of the script even though it encounters a
rectangle bigger than the previous one. But as the red inscription and DF’s

Create a matrix whose pixel-values correspond to the numbers of rectangles drawn
by workers on each pixel

Point of view of DF

Scenario:

T8 A B C D E F G H W X Y Z

Allies Opponents

OR

AND

A C E G HT9 W X Y Z

Figure 4.21
STG of T8 and T9.

172 Chapter 4

saying indicate, the statement was inappropriately expressed: DF should
not have taken “j” as the size variable of “users” since it already equals to
zero at line 5. The consequence of this attribution mistake is that INT can-
not define anything. No rectangle can be defined, and the matrix cannot, in
turn, be incremented.

If we map T10 as an STG in line with T8 and T9, we obtain figure 4.23.
Looking at it, we can see that new actants have appeared and created differ-
ences in the proj ect, slightly altering its frontline. In the allies’ configuration,
“I” has been added by DF in order to get around the configuration of “W,”
“X,” “Y,” and “Z.” But if this new actant made “W” and “X” dis appear— that
is, the index does not exceed the matrix dimension anymore, and the second
rectangle is not too big anymore—it is only by making two new opponents
appear: “V” and “U.” “Y” and “Z” are then still solidly opposing re sis tance to
DF’s proj ect since, at this point, no rectangle can be defined.

Let us continue:

[at line 7, DF deletes “users, {j})”]

DF: “Actually, the size of the cell should just be ‘users, 2’ ”

[at line 7, types “users,2)”]
[runs the script],
[figure 4.24— T11]

DF: “OK, it may work.”

1. I = imread(images{1});
2. R = zeros(size(I,1), size(I,2));
3. users = images {1,2};
4. for i = 1:size(users), 1)
5. j = 0;
6. while 1
7. if j+3 > size(users, {j})
8. break
9. end
10. rect = users{i,j+3};;
11. if size(rect,2) == 0
12. break
13. end
14. j = j+1;
15. x = rect(1):rect(1)+rect(3);
16. y = rect(2):rect(2)+rect(4);
17. R(y,x) = R(y,x) + ones(numel(y),

. numel(x));
18. end
19. end

Cell contents indices
must be greater than
0

Figure 4.22
Editor and Command Win dow at T10.

A Second Case Study 173

T8 A B C D E F G H W X Y Z

Allies Opponents

OR

AND

A C E G HT9 W X Y Z

A C E G HT10 I V U Y Z

Figure 4.23
STG of T8, T9, and T10. At T10, “I” refers to lines 7 to 9; “V” refers to the inscription
“cell contents indices must be greater than 0”; and “U” refers to DF’s asser-
tion “nothing can be defined.”

1. I = imread(images{1});
2. R = zeros(size(I,1), size(I,2));
3. users = images {1,2};
4. for i = 1:size(users), 1)
5. j = 0;
6. while 1
7. if j+3 > size(users, 2)
8. break
9. end
10. rect = users{i,j+3};;
11. if size(rect,2) == 0
12. break
13. end
14. j = j+1;
15. x = rect(1):rect(1)+rect(3);
16. y = rect(2):rect(2)+rect(4);
17. R(y,x) = R(y,x) + ones(numel(y),

numel(x));
18. end
19. end

>>

7. size(users, {j})

Figure 4.24
Editor and Command Win dow at T11.

174 Chapter 4

At T11 (figure 4.24), DF modifies the conditional instruction: instead of
referring to “j,” the size of the new rectangle now refers to the second value
of the cell, “users.” We do not need to understand precisely what this value
and cell refer to. The impor tant thing at T11 is that the inclusion of a new
actant— the modified “if” statement— creates an impor tant difference: INT
does not print a red inscription anymore. This indicates that INT has man-
aged to translate every line, thus triggering electronic computation on the
data of the .txt files. At this point, then, it may work: the rectangles may
increment the empty matrix. But it is not over yet since, symmetrically, it
may also not work. Since the Command Win dow does not provide any indi-
cation about the incrementation of the empty matrix, something else may
also have happened.

If we continue our STG re- presentation of this programming sequence
by including T11, we obtain figure 4.25. Several changes affected the allies’
configuration at T11. “I” dis appeared: DF deleted it because it made oppo-
nents dis appear only by making new ones appear. But two new actants
are included: “J” that corresponds to the new conditional statement and
“K” that corresponds to the absence of any error inscription within the
Command Win dow (and, corollary, to DF’s assertion that “it may work”).
Did this new configuration of allies managed to get around the configura-
tion of opponents? Only partially since the incertitude suggested by “K”
has its corollary: as there is no indication in the Command Win dow, the
script may also not work (“T”), that is, it may not increment the empty
matrix properly. As a consequence, “Z”— “the script does not follow the
scenario”— holds on. At this point, DF still needs to include something else;
he still needs to pursue his proj ect by other means in order to get around the
impasse constituted by “T” and “Z.”

Let us continue to follow DF:

DF: “But I just need to be sure.”

[creates a line 20; types “imshow(R)”]
[runs the script]
[figure 4.26— T12 and figure 4.27]

FJ: “This is close!”

DF: “Yep. But it clips after the value 1.”

FJ: “Clips?”

A Second Case Study 175

T8 A B C D E F G H W X Y Z

Allies Opponents

OR

AND

A C E G HT9 W X Y Z

A C E G HT10 I V U Y Z

T11 A C E G H J K T Z

Figure 4.25
STG of T8, T9, T10, and T11. At T11, “J” refers to the new “if” statement at lines 7
to 9; “K” refers to DF’s assertion that “it may work”; and “T” refers to DF’s implicit
assertion that, symmetrically, “it may not work.”

1. I = imread(images{1});
2. R = zeros(size(I,1), size(I,2));
3. users = images {1,2};
4. for i = 1:size(users), 1)
5. j = 0;
6. while 1
7. if j+3 > size(users, 2)
8. break
9. end
10. rect = users{i,j+3};;
11. if size(rect,2) == 0
12. break
13. end
14. j = j+1;
15. x = rect(1):rect(1)+rect(3);
16. y = rect(2):rect(2)+rect(4);
17. R(y,x) = R(y,x) + ones(numel(y),

. numel(x));
18. end
19. end
20. imshow(R)

>>

Figure 4.26
Editor and Command Win dow at T12.

176 Chapter 4

DF: “Yes, it often does that. Basically, it doesn’t consider anything above
1. I mean, the matrix may have values more than one, but it does not
show it on the image.”

At T12 (figure 4.26), DF adds a new instruction— “imshow(R)”— that asks INT
to print an image of the incremented matrix (figure 4.27). The results are
convincing as well as disappointing. The positive thing is that a matrix has
effectively been incremented. The image printed by INT attests to this: it has
differentiated values that together form a white shape. But the negative thing
is that this image has only binary values: ones forming the white shape and
zeros forming the black background. According to DF, INT is once again the
cause of this prob lem: by clipping after the value 1 the printed image can only
be binary. In these conditions, it is difficult to know what values constitute
the incremented matrix. At this point, again, DF needs to include something
 else in the script in order to make it follow the desired scenario.

Let us have a look on the STG to get a condensed look on what has just
happened (figure 4.28). The configuration of allies has again expanded: “L”
and “M” allowed DF to be sure that the rectangles increment the matrix.

Figure 4.27
Screenshot of the output of PROG at T12.

A Second Case Study 177

This, in turn, made “T” dis appear so that no incertitude remains concern-
ing this aspect of the proj ect. But the binary characteristic of “M” made “R”
appear in the configuration of opponents: for unknown reasons, INT clips
 after one. This, in turn, creates “S,” the incertitude about the incrementing
capability of the script that may stop after “1.” In these conditions, Z remains,
and the script is still not following the desired scenario. Once again, DF has no
choice: he has to enroll something else to the configuration of allies; he has to
delegate the work- around of “R,” “S,” and “Z” to a new actant.

With these ele ments in mind, let us continue:

DF: “So I’ll just try to divide the value of ‘R’ by the maximal value of the
matrix. If it has other values than one, it should show it.”

[at line 20, types “/max(R(:))”]
[runs the script]
[figure 4.29— T13 and figure 4.30]

DF: “All right, this is the right image of the matrix. This is it.”

T8 A B C D E F G H W X Y Z

Allies Opponents

OR

AND

A C E G HT9 W X Y Z

A C E G HT10 I V U Y Z

T11 A C E G H J K T Z

T12 A C E G H J L M N R S Z

Figure 4.28
STG of T8, T9, T10, T11, and T12. At T12, “L” refers to the instruction “imshow(R)” at
line 20; “M” refers to the binary image of the matrix output by PROG; “N” refers to
DF’s conclusion that rectangles do increment the matrix; “R” refers to DF’s assertion
that INT “clipps” after 1; and “S” refers to the DF’s saying that the matrix should not
have only binary values.

178 Chapter 4

1. I = imread(images{1});
2. R = zeros(size(I,1), size(I,2));
3. users = images {1,2};
4. for i = 1:size(users), 1)
5. j = 0;
6. while 1
7. if j+3 > size(users, 2)
8. break
9. end
10. rect = users{i,j+3};;
11. if size(rect,2) == 0
12. break
13. end
14. j = j+1;
15. x = rect(1):rect(1)+rect(3);
16. y = rect(2):rect(2)+rect(4);
17. R(y,x) = R(y,x) + ones(numel(y),

. numel(x));
18. end
19. end
20. imshow(R / max(R(:))) >>

Figure 4.29
Editor and Command Win dow at T13.

Figure 4.30
Screenshot of the output of PROG at T13.

A Second Case Study 179

By including this last small bit of code— “/max(R(:))”— DF manages to
complete the script (figure 4.29). No incertitude remains: the matrix is cor-
rectly incremented as the new output image shows (figure 4.30). DF thus
successfully managed to make INT design an empty matrix according to
width and height values; define rectangles from width, height, and position
values; and use these rectangles to successively increment the pixel-values
of the matrix. Several technical operations had to be conducted but, in the
end, the proj ect fulfilled its initial ambitions. At this point, the script can be
considered a technical artifact that does something definable.

If we take a look at the STG (figure 4.31), we see that the inclusion of
“/max(R(:))” managed to get around the impasse previously formed by “R,”
“S,” and “Z.” At T13, the inclusion of “O” and its corollary “P” made “R,”
“S,” and “Z” dis appear. The addition of the instruction “/max(R(:))” made

T8 A B C D E F G H W X Y Z

Allies Opponents

OR

AND

A C E G HT9 W X Y Z

A C E G HT10 I V U Y Z

T11 A C E G H J K T Z

T12 A C E G H J L M N R S Z

T13 A C E G H J L M N O P Q

Figure 4.31
STG of T8, T9, T10, T11, T12, and T13. At T13, “O” refers to the instruction “/max(R(:))”;
“P” refers the output image generated by PROG; and “Q” refers to the fulfillment of
PROG’s scenario: now, the pixel-values of the new matrix correspond to the number
of rectangles drawn by workers on each pixel.

180 Chapter 4

INT print a gray- scale image of the matrix, hence showing DF that its values
do indeed variate between zero and the total number of rectangles drawn
by the crowdworkers. All the opponents to the proj ect have been replaced
by allies; all dead- ends have been bypassed. The scenario is followed. As DF
puts it, “this is it.” The programming sequence is over.

What do these STGs add to our analy sis of this programming sequence?
What does this simplification allow us to see? While the previous section
put the emphasis on the scientific moment of programming practices, I
assume that the present section puts the emphasis on the technical moment
of programming practices. Are scientific and technical practices dif fer ent? In
the middle of the action, they surely overlap to the point of appearing simi-
lar. But, following Latour (2013), I nonetheless assume that both express
themselves quite differently.

We saw that the surprising similitude between the laboratory practices
of science and the practices of programming lies in that they both multi-
ply and align inscriptions in order to shape chains of reference, thereby
allowing the assemblage of information about remote entities. Even though
both activities cannot be considered equivalent, I believe they echo well
with each other: both sometimes produce and align inscriptions in order to
access remote beings.

Although the sequence we have just documented required the formation
of a (small) chain of reference in order to be initiated, I assume the sequence
also expressed something radically dif fer ent. At T9, DF needed to change
 things in the script. What did he do? At each T, he included new actants and
delegated actions to them in order to get around impasses that were obstruct-
ing the following of the scenario. The practices involved in this sequence
did not tend toward gaining knowledge about these impasses; they tended
 toward finding ways to get around them. This is precisely why STGs were,
in the end, instructive tools: by simplifying the narrative, they allowed to
follow these successive shifts, this constant zigzag that expressed the enroll-
ment of new entities, the del e ga tion they implied, and the work- arounds
they triggered. The script, once completed at T13, became a technical arti-
fact. But it was only through technical practices, ingenious inclusions, del-
e ga tions, and work- arounds that such an artifact could come to existence.
Along with the finished script, thanks to the simplification provided by the
STGs, we can glance at the lightning strike drawn by DF and its technical
actions (figure 4.32).

A Second Case Study 181

The sequence was not linear; it was rhythmed by breaks of continuity
that vanished at soon as the script was completed. Just as chains of refer-
ence are ignored as soon as they allowed the constitution of an informa-
tion about a remote being, the constant shifts, inclusions, del e ga tions, and
work- arounds of technical practices are made invisible once they allowed
the completion of the artifact. Here lies, I believe, a serious limitation of
the studies of programming that only consider the results of programming
tests (see chapter 3). By only considering the final technical object (the
finished script), they cannot grasp the practices that were necessary to the
technicality of this object. It is only by going backward from the artifact to
the detours that have constantly modified its form, thus making it singular,
that we may capture the technical aspect of computer programming. Any
working script holds thanks to all the now- invisible allies that were added
to each configuration in order to get around— one may even say, in order
to hack (Nissenbaum 2004)— now also- invisible opponents. Just as the pro-
liferation and alignment of inscriptions made DF become knowledge- able,

T 8

T 9

T 10

T 11

T 12

T 13

Figure 4.32
Technical zigzag of DF while assembling PROG.

182 Chapter 4

the technical detours made him in- genious: by catching entities— jinns—
and enrolling them in work- arounds, he was able to include allies and get
around opponents, thus drawing a dazzling zigzag.

It is in ter est ing to note that these types of technical moments, when pro-
gramming is about the drawing of a zigzag, are often the most appreciated ones.
While the construction of chains of reference can be very frustrating— the
inscriptions keep piling up without forming any reliable chain of reference—
the practices involved in the drawing of zigzags often appears more playful.
Unfortunately, I cannot support this claim by any empirical materials; this
would imply the pre sen ta tion of many other programming figures that are
already too numerous at this point in the chapter. But in one of her literary
accounts of programming affects, Ellen Ullman nicely expressed this feeling
programmers often experience when they are engaged into technical detours
that are very difficult to catch once the artifact is completed:

“Damn! The NULL case!”
“And if not we’re out of the text field and they hit space—”
“— yeah, like for—”
“—no parameter—”
“Hell!”
“So what if we space- pad?”
“I don’t know. … Wait a minute!”
“Yeah, we could space- pad—”
“— and do space as numeric.”
“Yes! We’ll call SendKey(space) to—”
“— the numeric object.”
…
“No, no, no, no. What if the members of the set start with spaces. Oh, God.”
He is as near to naked despair as has ever been shown to me by anyone not

in a film. Here, in that place, we have no shame. He has seen me sleeping on the
floor, drooling. We have both seen Danny’s puffy, white midsection— young as
he is, it’s a pity— when he stripped to his underwear in the heat of the machine
room. I have seen Joel’s dandruff, light coating of cat fur on his clothes, noticed
 things about his body I should not. And I’m sure he’s seen my sticky hair, noticed
how dull I look without make-up, caught sight of other details too intimate to
mention. Still, none of this matters anymore. Our bodies were abandoned long
ago, reduced to hunger and sleeplessness and the ravages of sitting for hours at
a keyboard and a mouse. Our physical selves have been battered away. Now we
know each other in one way and one way only: the code.

Besides, I know I can now give him plea sure of an order which is rare in any
life: I am about to save him from despair.

A Second Case Study 183

“No prob lem,” I say evenly. I put my hand on his shoulder, intending a ges-
ture of reassurance. “The par ameters never start with a space.”

It is just as I hoped. His despair vanishes. He becomes electric, turns to the key-
board and begins to type at a rapid speed. Now he is gone from me. He is disap-
pearing into the code. (Ullman 2012, 8–9; italics added)

In this literary excerpt, an information is progressively being assembled—
the narrator provides the very last inscription (“The par ameters never start
with a space”)— and a location is, in turn, defined: let entities be enrolled,
actions be delegated, and opponents be gotten around. And the joyful tech-
nical lightning strike soon unfolds.

Let the reader forgive me if I rave a little at this point of the chapter, but
both technical and scientific practices as documented in these two sections
provide such a refreshing perspective on computer programming that it is
difficult for me to remain placid. We see indeed how the standard cognitive-
behavioral framing of computer programming as a problem- solving pro cess
(cf. chapter 3) can be misleading. Programmers may never solve any prob-
lem; when confronted to a remote entity that refuses to generate electric
pulses on data, they more or less collectively constitute a chain of refer-
ence that, if equipped enough, may indicate a problematic location, a loca-
tion that, in turn, may trigger the enrollment of new actants and technical
work- arounds of impasses. Nothing is solved; something is located, thus
eventually triggering the drawing of a zigzag that will soon be forgotten.
“Prob lem solving” and even the likable expression “debugging” may both
miss the point: by amalgamating two dif fer ent and equally impor tant sets
of practices, they may not adequately catch the subtle practical tempos a
programmer goes through when defining appropriate lists of instructions.

Yet, despite my enthusiasm, this tentative model still lacks something
crucial. Indeed, where does this “appropriateness” come from? Is it not
something I surreptitiously invoke from outside, without defining its attri-
butes? At this point, it surely is. Fortunately, this is precisely the topic of the
next section of this chapter.

Attached to a Scenario

We have seen so far that programming can be viewed as the expression of
two sets of intimately related practices. The first set implies the multiplica-
tion and alignment of inscriptions in order to assem ble chains of reference

184 Chapter 4

that can provide information about remote entities whose trajectories are
affected in undesirable ways. These practices echo well, to some degree,
with some of the laboratory practices required for the construction of sci-
entific facts. The second set of practices— much more difficult to capture—
implies the inclusion of new actants in order to get around impasses. These
practices of inclusion, del e ga tion, and bypassing echo well, to some degree,
with practices required for the running of technical proj ects. From this
point, we may conjecture that during a computer programming episode,
scientific and technical practices are intimately articulated, the program-
mer constantly shifting from one mode to the other. This tentative but
empirical look at computer programming unfolds many crucial ele ments—
inscriptions, chains of reference, impasses, detours— that most standard
takes on computer programming do not stress.

At this point of the chapter though, something essential to computer
programming is still taken for granted. While I keep on talking about “pro-
gramming episodes,” what defines the limits and the scope of such epi-
sodes? Where do these “meta- instructions” that establish the bound aries
of the programming episodes come from? What is this wind that pushes
programmers in the back, making them inquire into remote entities, enroll
actants, and get around impasses? In the previous section of the chapter,
readers may have noticed that I surreptitiously used the term “program-
ming proj ect” to speak about the technical skills DF was deploying for the
composition of PROG. But where does this projection come from? At this
point, this aspiration, this desire shall not be ignored anymore. It is time
now to address the issues of projection and attachment without which there
would simply be no programming practices.

Lucy Suchman thoroughly explored this relationship between proj ects
and situated actions or, as she put it, “the utility of projecting future actions
and the reliance of those projections on a further horizon of activity they do
not exhaustively specify” (Suchman 2007, 19; emphasis in the original). Ini-
tially struggling against mid-1980s artificial intelligence experts who tended
to consider the relationship between plans and actions as deterministic—
the former rigorously defining the latter— she proposed an alternative view
of plans as resources that set up horizons without specifying the actions
required to reach them. To clarify her proposition, she used the example
of canoe:

A Second Case Study 185

In planning to run a series of rapids in a canoe, one is very likely to sit for a while
above the falls and plan one’s descent. The plan might go something like “I get
as far over to the left as pos si ble, try to make it around that next bunch.” A great
deal of deliberation, discussion, simulation, and reconstruction may go into such
a plan. But however detailed, the plan stops short of the actual business of get-
ting your canoe through the falls. When it really comes down to the details of
responding to currents and handling a canoe, you effectively abandon the plan
and fall back on what ever embodied skills are available to you. The purpose of the
plan in this case is not to get your canoe through the rapids, but rather to orient
you in such a way that you can obtain the best pos si ble position from which to
use those embodied skills on which, in the final analy sis, your success depends.
(Suchman 2007, 72)

Plans do not determine actions. Rather, by suggesting future orientations,
plans help express skills in appreciable conditions. Moreover, building on
Suchman’s example, we can also assume that plans create something like
another world, another layer of existence: by telling stories, plans express
figures that could not exist without them. Before running the rapids, when
I am expressing my plan above the fall, I am projected into another space
(“into the rapids,” “as far over to the left as pos si ble”), another time (“ later”),
and toward other human and nonhuman actants (“me, alive, at the end of
the rapids,” “the canoe, struggling to get around the next bunch,” “the
power ful rapids I— hopefully— managed to run”). In this re spect, by estab-
lishing a triple shifting out (Latour 2013, 234–257) into other space and
time, and toward other actants, plans are also narratives that help us engage
into desirable pro cesses.

Yet this definition of plans as narratives establishing desirable hori-
zons without specifying how to reach them is still quite loose. In what
sense are these narratives dif fer ent from, say, bedtime stories for children
or Hollywood mega- productions? What specific transformations do plans-
narratives institute? How do we address the modifications they suggest?
To better understand the specificity of these narratives—or, as I will soon
call them, these scenarios—we shall consider the narrative DF constructed
for the completion of PROG. One point of departure could be two days
before the programming episode we have followed in the last sections. At
that time, I was struggling with the data I had previously collected from a
crowdsourcing task. Unable to make sense of these data, I asked the director
of the Lab (DIR) for some advice:

186 Chapter 4

Thursday February 4, 2016, at the office of DIR

FJ: The thing is that I am still struggling to find mea sures that could
make sense of the variations of the rectangles drawn by the workers [and]
depending on the images.11 Because at this point, I have this kind of result:

[FJ shows images on his laptop to DIR, see figure 4.33]

FJ: But the rectangles vary both in terms of size and alignment. That
is, some rectangles are well aligned and small compared to the image;
 others are aligned but vary in terms of dimensions; others are aligned but
in groups of dif fer ent sizes; and others are just spread out everywhere.

DIR: Well, there’s surely a way to mea sure how much overlap there is. But
in any case, you should get other views than these. You can’t see anything
 here.

…
 There are many ways; but for example, you could go through each pixel
and see how often they are in a rectangle. And once you get these graphs,
we can help you find a mea sure that explains the variations.

FJ: You mean, something like getting for each pixel, the relative differ-
ence of the number of rectangles they are part of?

DIR: Yes. Or rather, I guess in your case, for each image, the proportion
of pixels that are part of one rectangle, two rectangles, and so on. …
And then you can get gray- scale images, or graphs like histograms. For
example, assume you’re giving zero to every pixel that is labeled by no
one, one for every pixel that is labeled by only one worker, etc. You add
this up and you’ll get a maximum or, like twenty. Then you can normal-
ize between zero and one or do other things. But for now at least, you
should get better matrices from these images.

DIR’s advice was clear: if I wanted to find correlations between the pixel-
values of the images and the rectangles drawn by the workers, the very first
step was to simplify the collected results through the design of better matri-
ces. But how should these matrices be designed? This issue was the raison
d’être of PROG: in order to define simpler/better matrices whose values can
be expressed by graphs, PROG should instruct my computer to transform
the values of each image and its associated rectangles. In short, the graphs
that could help me explain the dispersion/alignment of rectangles required
matrices that still needed to be designed computationally by an instructed

A Second Case Study 187

Figure 4.33
Sample of labeled images shown to DIR.

188 Chapter 4

computer. The first narrative—or plan— that further supported the formula-
tion of PROG can thus be summarized as such: “FJ shall make a computer
assem ble matrices whose pixel-values correspond to the number of rect-
angles each pixel is part of.”

I soon tried to write this program that could help me have a better grip
on the data I had collected but was soon confronted to my incapacity to
specify the prob lem with Matlab. What should be the first step? And the
second step? Using the proj ect’s helping clause that allowed me to ask for
help whenever I needed to (cf. above), I sent an email to DF:

Monday, January 15, 2016. Email from FJ to DF, header “Struggling with
Matlab. …”

Hi DF,

For my proj ect I need to pro cess each pixel of each image individually in
order to count how many rectangles belong to each pixel. I got the idea,
I think, but am still struggling with Matlab to write the script. Would
you have some time to help me do it? That’d be great!

Have a great day,
FJ

Monday, January 15, 2016. Email from DF to FJ, header “Struggling with
Matlab. …”

Hi Florian,

No prob lem. What about this after noon then? It should be quite easy.
 We’ll check this together.
DF

Monday, January, 15, 2016. Email from DF to FJ, header “Struggling
with Matlab. …”

This after noon is great. I’ll be in my office. Come whenever you want.

See you then!
FJ

A couple of hours later, DF arrived at my office. Before starting to program,
he told me what he intended to do:

DF: “Well, I think I know how to compute this. It shouldn’t be difficult.
So for each rectangle, we have the x and y coordinates right?”

A Second Case Study 189

FJ: “Well, a rectangle is defined by four values”

DF: “Yes so x and y [coordinates] and then the size, right?”

FJ: “Yes.”

DF: “So basically we have this.”

[DF starts to write in FJ’s logbook]

DF: “And this, and then size. And all this defines the rectangle.”

[DF draws figure 4.34 (A)]

DF: “ Here [pointing at figure 4.34 (A)], you initialize all pixels of the
matrix with the value 0. Then you iterate on all rectangles. So for the first
rectangle of the image [starts to draw in FJ’s logbook], you have the coor-
dinates and you check what pixels of the matrix are in the rectangle.”

[DF draws figure 4.34 (B1)]

DF: “And you add one for these pixels in the matrix. And then you do
the same for the second rectangle [starts to draw in FJ’s logbook] that
might be here.”

[DF draws figure 4.34 (B2)]

DF: “And you also add one for all these pixels. So here [pointing at fig-
ure 4.34 (B2)], some pixels in the matrix will have the value 0, some will
have the value 1, and some others will have the value 2.”

FJ: “OK, I see.”

DF: “And you do this for all the rectangles. And once you have a script
that works for one image, it’s easy to adapt it [the script] to go through
all the images.”

FJ: “Sure.”

DF: “And well, when you have these matrices with values 0, 1, 2, etc.,
you can make all the graphs you want like gray- scale images or histo-
grams [draws in FJ’s logbook] like this.”

[DF draws figure 4.34 (C)]

DF: “Where x is the number of rectangles and y the number of pixels.”

At this point, the narrative of PROG has thickened. From “FJ shall make a
computer create matrices whose pixel values correspond to the number of
rectangles they are part of,” it has become “for every image, DF shall first
make a computer use the dimension of the image to create an empty matrix,

190 Chapter 4

then define the first rectangle of this image according to its coordinates as
defined in its correlated .txt file, then add this rectangle to the matrix, then
define the second rectangle, then add it to the matrix, and so on for every
rectangle of the image.” Even though the topic is slightly dif fer ent from Such-
man’s (2007, 72) example of canoe, DF’s narrative also works as a resource that
sets up a horizon without specifying the actions required to reach it. Nothing
is said about how to define the empty matrix, how to define a rectangle, and
how to increment the matrix with these rectangles. Yet, altogether, the pileup
of these steps institutes a desired future that the following actions should try
to reach. Moreover, similar to Suchman’s example, DF’s narrative also creates

(A)

(B1) (B2)

(C)

Figure 4.34
Drawings of DF in FJ’s logbook.

A Second Case Study 191

another layer of existence. His story proj ects us into another time (“in a
 couple of minutes”), another space (“in front of the Matlab IDE”), and toward
other actants (“incremented matrices,” “gray- scale images,” “histograms,” “FJ
being able to produce meaningful graphs thanks to the new program”).

But DF’s narrative— when considered in the light of the last two sections
of this chapter— also suggests an impor tant difference between narratives
that institute desired futures and, say, bedtime stories for children or Holly-
wood mega- productions. When after the narrative has been expressed—
that is, after having been projected into other times, other locations, and
 toward other actants—hopefully children fall into sleep and spectators
leave the movie theater to carry on their occupations, DF’s narrative still
has a hold on him. More than just establishing a triple shifting out into
other space and time and toward other actants, DF’s narrative engages DF;
it asks DF to do things. In this sense, as soon as DF expresses the narrative,
he finds himself si mul ta neously in two positions: he is the writer of the
narrative who can modify it any time he wants but also the actor who has
to follow the narrative he has just expressed (Latour 2013, 391). Following
Austin (1975) and recent works in STS (Barad 2007), we can consider these
narratives as performative in the sense that they engage those who articulate
them. In our case, DF holds the narrative but is also held by it.

To underline the literary and performative dimensions of these par-
tic u lar narratives that are crucial for computer programming— since they
institute a desired horizon to be achieved, hence supporting both align-
ments of inscriptions and technical detours— I shall call them scenarios.12
The cinematographic connotation is voluntary. Indeed, a scenario—in the
case of cinema or computer programming—is a narrative: it tells a story and
therefore instantiates a beginning, an end, a plot, and characters that all
possess ontological weights. Second, in both cases, a scenario is performa-
tive: it has a hold on both the movie director who is asked to transform it
into a movie as well as on the programmer who tries to make it become an
 actual computer program. Third, if a scenario roughly describes the succes-
sive scenes of a movie or the successive steps of a computer program, it says
almost nothing about how to shoot these scenes or implement these steps.
While in both cases, the scenario draws desirable horizons, almost every-
thing still needs to be done in order to reach them. Fourth, if the plot, steps,
characters, or variables are described by the scenario, nothing prevents the
movie director, the programmer, movie stars, or recalcitrant instructions

192 Chapter 4

to modify some of its constitutive ele ments. In both computer program-
ming and movie production, a scenario can be revisited to better take into
account unpredictable contingencies.

While they are not sufficient to assem ble computer programs, scenarios
are nonetheless crucial for computer programming. These flexible yet per-
formative narrative resources institute horizons on which programmers can
hold— while being held by them— thus establishing the bound aries of com-
puter programming episodes. Scenarios both trigger and are blended with
alignments of inscriptions and technical detours; altogether, they form pro-
gramming courses of action we can now consider in all their sinuosity.

But again, at this point, something is still missing. We are very close but
are not there yet. If the notion of “scenario” is useful to better understand
what helped DF shift between scientific and technical modes of practice,
thus framing the programming sequences we have previously followed, it
does not make us understand why DF wanted to engage himself in it. If sce-
narios provide the frame and the energy of programming episodes, where
does this energy initially come from?

Something is definitely overflowing scenarios, making them “put into gear”
more or less delightful affects: how do we consider them as well? If scenarios
give horizons, they do not by themselves allow to grab what arises from pro-
gramming episodes. INT’s stubbornness, the multiple inclusions of actants,
and the numerous work- arounds of impasses; all of this—in the middle of the
action—is terribly uncertain. But when the program accomplishes what was
hoped for at the beginning of the episode—or modified during the episode—
something is happening that cannot be reduced to the consequence of what
allowed it to happen. This is the impor tant contribution of the sociology of
attachments against the social science of taste: reducing beloved objects to the
conditions— social or material—of their appreciations tells us nothing about
the objects themselves (Hennion 2015, 2017). While an object— a painting, a
piece of music, a computer program—is constructed, it also exists in its own
right. Or perhaps even more; as it is constructed, it exists more intensely. But
how do we grab this appreciation of the constituted object? In our case, how
do we consider the upsurging of PROG? We may perhaps refer to what DF
tells me at the end of the programming episode:

FJ: “Well, thanks. I’m always impressed by your patience.”

DF: “ You’re welcome. It was quick. And you know, I love it so it’s not a
prob lem.”

A Second Case Study 193

FJ: “You love spending time on these lines of code?”

DF: “Sure. It’s fun. What I really like is that you should never lose the
thread. And when the script does the thing, it means you didn’t lose it.”

What may this excerpt tell us about the affects of computer programming?
The notion of scenario seems, by itself, unable to provide a clearer under-
standing of what PROG, once assembled, does to DF. But, following DF
and using the scenario as stepping stone, it helps to make appear some-
thing lovable: being able to constantly evaluate what has been done against
what still needs to be done. This is what DF steadily needs to grab, the
thread he tries never to lose: this scenario suggests a path, a plot, but also
says nothing about how to follow it. Following a story by tracing his own
path: a curious experience of establishing something by reaching it. But
this reach, this access to the horizon— one should not simply consider it
as the satisfaction of realizing something that was previously projected.
Taking DF seriously— but also other Lab collaborators who participated in
other “helping sessions”—we may consider it as the asymptote of a con-
stant evaluation. “This” had to be done, then “this,” then “this,” and now,
 there is nothing else to do until the next affect- bearing scenario, of course.
The specificity of the affects of computer programming may lie in the recur-
rent upsurging of this temporary “nothing else.”

This is only an adventurous proposition about the attachments that
bind programmers to the scripts they may instaure (Latour 2013, 151–178;
Souriau [1943] 2015). More systematic studies are obviously necessary to
enrich the above speculations. But let the reader not forget, once again, that
one goal of this chapter, besides its analytical ambitions, is also to point to
innovative ave nues of research on computer programming situated prac-
tices. In that sense, looking at the formation of scenarios and their com-
plex relationships with the attachments they may suggest— but not strictly
produce— could be a relevant way to inquire into what moves programmers,
sometimes to the point of spending huge amount of unpaid (or detoured)
hours on uncertain free and open- source software proj ects. In the light of
programmers’ attachments to scenarios, what Demazière, Horn, and Zune
(2007, 35) called the “enigma of free software development”— the ability
to produce coherent programming results from evanescent involvement—
could, for example, be tackled in an alternative way. While entangled modes
of regulations among these voluntary collectives are certainly impor tant for
the actual production of free and open- source software, these arrangements

194 Chapter 4

may also benefit from being considered in the light of the passions they
make exist. What is indeed happening when a scenario is realized through
a computer script? Can such an affective event only be reduced to the orga-
nizational pro cesses (Demazière, Horn, and Zune 2007), individual incen-
tives (Lerner and Tirole 2002), or ideologies (Elliott and Scacchi 2008) that
made it pos si ble? Is there not something in DF’s emotive spark that may
also contribute to the formation and maintenance of programmers’ com-
munities? It is the whole ecol ogy of programming work—be it free, open-
source, or corporate— that may deserve to be considered also in the light
of what programmers are after when they are writing numbered lists of
instructions.

* * *

Despite its lengthy and tortuous aspect, the point I wanted to make in
this part II is quite simple. Once we inquire into computer programming
courses of action, we see that they engage the alignment of inscriptions,
the work- around of impasses, and the definition of scenarios. These three
modes of practices are intimately related: Working around impasses implies
the localization of a problematic phenomenon that itself requires a scenario
to be considered problematic. DF and more generally, perhaps, programmers
constantly shift from one mode to the other until temporally realizing their
desired narratives.

The main difficulty lay in the preparatory work required to distinguish
the pro cess of programming from its result. For complicated reasons we
covered in chapter 3, a confusing mix has progressively been established
between human cognition and programmed computers. This confusion
led, in turn, to impor tant misunderstandings such as cognitive studies of
programming that ended up being tautological as they supposed the exis-
tence of what they tried to account for. As I wanted to analyze the situated
practice of programming, I had to distance myself from cognitivism and
embrace very minimal, yet power ful, enactivism that considers cognition
as the pro cess by which we grasp affordances of local environments.

Unfortunately, I could play only at the edge of computer programming
practices, and many questions were left unanswered. Regarding the align-
ment of inscriptions, it would be insightful to learn more about the dif fer-
ent modalities, organ izations, and even institutions that participate in a
programmer’s multiplications and articulations of inscriptions. Regarding

A Second Case Study 195

the working around of impasses, what about exploring more thoroughly
the equipment that supports the identification and enrollment of new
actants? This may even lead to innovative programming devices and equip-
ment. Concerning scenarios, I will soon document the formation of some
specific, easily transposable ones. But in light of the fascination exerted by
computer programming as well as its importance for con temporary socie-
ties, I wish there were more studies documenting the actions that some-
times make the joy of programming emerge. In these times of controversies
over algorithms— entities that seem to rely on ground- truthing and pro-
gramming activities— these are, I believe, crucial research directions.

III Formulating

It is easy to study laboratory practices because they are so heavi ly equipped, so
evidently collective, so obviously material, so clearly situated in specific times
and spaces, so hesitant and costly. But the same is not true of mathematical prac-
tices: notions like … “calculating,” “formalism,” “abstraction” resist being shifted
from the role of indisputable resources to that of inspectable and accountable
topics. … We seem to be inevitably contaminated by [these notions], as if abstrac-
tion has rendered us abstract as well!

— Latour (2008, 444)

We are not out of the woods yet. We may have a clearer idea about the whys
and wherefores of ground- truthing (part I) and programming (part II), yet we
still lack, at this point of the inquiry, one activity that is sometimes crucial
to the formation of algorithms in computer science laboratories. Without
accounting for these practices, I could only propose an extremely partial con-
stitution of algorithms.

One way to become sensitive to the “missing mass” of our inquiry could
be to look at a recent academic paper in computer science. And why not
choose the subfield of image pro cessing since it is the empirical ground of
this ethnographic venture? While browsing, for example, through a paper
entitled “Learning Deep Features for Discriminative Localization” (Zhou
et al. 2016), we would encounter many things we are now familiar with.
We would read about a specific prob lem (localizing class- specific image
regions) that, according to the paper’s authors, is solved satisfactorily by
means of a computer program they call CAM, which stands for “class acti-
vation mapping.” We would see that the prob lem, CAM, and what this
program should retrieve all derive from an already- assembled ground truth

200 Part III: Formulating

(in this case, ImageNet Large Scale Visual Recognition Challenge [ILSVRC]
2014) that has been split into two parts: a training set and an evaluation
set. We would also feel, behind the printed words and numbers, the long
and fastidious computer programming episodes that were necessary to pro-
vide and discuss the paper’s results. After all, if the authors did not write
lists of instructions capable of triggering electric pulses in meaningful ways,
they could not have provided any statistical evaluations of their algorithm’s
per for mances.

However, while browsing through this academic paper that pre sents
and tries to convince us about the relevance of a new image- processing
algorithm, we would very quickly bump into cryptic passages such as this
one:

By plugging Fk = ∑x,y fk (x, y) into the class score, Sc, we obtain

Sc = wk
c f k x,y() =
x,y
∑

k
∑ wk

cf k x,y()
k
∑

x,y
∑ (1)

We define Mc as the class activation map for class c, where each spatial ele-
ment is given by

Mc x,y() = wk
cf k x,y()

k
∑ (2)

Thus, Sc = ∑x,y Mc (x,y), and hence Mc (x,y) directly indicates the importance of
the activation at spatial grid (x,y) leading to the classification of an image to class c.
(Zhou et al. 2016, 2923)

Such sentences that mix En glish words with combinations of Greek and
Latin letters divided by equals signs are indeed widely used by computer sci-
entists when they communicate about their algorithms in academic jour-
nals. Of course, as grown-up readers, we immediately understand that such
an excerpt deals with mathe matics and that (1) and (2) are proper formulas
(or equations once their variables are replaced by numerical values). But if
we only consider the descriptive system developed so far in this inquiry,
we have no grip on these mathematical inscriptions. The conceptual appa-
ratus of the inquiry enables us to deal with graphs and numeric values as
they refer somehow to both data and targets as defined by ground truths.
The inquiry’s apparatus also enables us to deal with lines of code as they
refer to numbered lists of instructions that trigger electric pulses in desired
ways. But what about mathematical formulas? Where do they come from?
Why do computer scientists need them, and how are they assembled?
At this point, I do not have any other choice. In this last and impor tant

Part III: Formulating 201

part III, I will have to consider the role of mathe matics in the formation of
algorithms.

The road I am about to take is dangerous; one second of inattention and
my action- oriented method will be lost. For intricate reasons that I will
cover, mathematical entities such as “theorems,” “proofs,” or “formulas” are
indeed extremely resistant to empirical considerations; even though they
certainly are the products of situated activities, they are often considered
fundamental ingredients of thoughts. This tenacious habit is frequently the
starting point of a downward spiral, itself leading to grand questions such
as: “Are mathe matics the expressions of abstract structures or individual
consciousness?” So many innocent souls have been consumed by such float-
ing interrogations! To avoid digging my own grave in this cemetery of prac-
tice, I will have to be extremely cautious and pro cess one small step at a
time. But with some patience, the construction of mathematical knowledge
as well as its further enrollment in the formation of algorithms may be par-
tially accounted for. Altogether, these efforts to define formulating practices
 will allow me to link both ground- truthing practices (necessary to establish
the terms of solvable prob lems) and programming practices (necessary to
make computers compute in desired ways). Within the pre sent constituent
effort, what we tend to call “algorithms” may then be described as uncer-
tain products of (at least) these three interrelated activities.

As in part II— and largely for similar reasons— I will require operation-
alization efforts before diving into ethnographic materials. I will first have
to put aside the vast majority of studies on mathe matics. Too many top-
ics, too many studies, too many methods; without preliminary cleaning
efforts, dealing with mathe matics in an action- oriented way is doomed
to fail. As we shall see in chapter 5, the only way not to duck will be to
start (almost) afresh, from very basic observations and hypotheses. Progres-
sively, these hypotheses— well inspired by several STS on mathe matics— will
make us realize that mathematical entities such as “theorems,” “proofs,” or
“formulas” are quite akin to more familiar scientific facts. If mathematical
knowledge is often considered the expression of some superior real ity, it
might only be due to its extreme combinability. Once the vascularization
of mathe matics is put forward, we will realize that its indubitable power
also comes from the humble instruments and actions that make nonmath-
ematical topics mathematicable. This impor tant point will, in turn, allow me
to define formulating practices as the empirical pro cess of merging networks

202 Part III: Formulating

that sustain given domains of activity with networks that sustain certified
mathematical knowledge. In chapter 6, I will account for a small yet suc-
cessful formulating effort that took place within the Lab. This third and last
case study will underline the centrality of certified mathematical knowledge
for the progressive formation of algorithms as it both forces the refinement
of ground truths and unfolds scenarios for further programming episodes. It
 will also allow me to consider recent issues related to machine learning and
artificial intelligence in an unconventional way. The last section of chap-
ter 6 will be a brief summary.

This chapter aims to consider mathematical knowledge not as the expres-
sion of some superior real ity but as a huge collection of scientific facts whose
shaping necessitated a fair amount of practical work. As we will see, by con-
sidering mathematical knowledge to be one specific product (among many
 others) of scientific activity, we may provide a reasonable explanation of its
capacity to make impor tant differences in other scientific domains (neurol-
ogy, geography, gambling, computer science, etc.). Once this operational-
ization exercise is over, I will come back to the main goal of this part III:
understanding when, how, and why mathematical knowledge takes active
part in the constitution of algorithms (chapter 6).

Where Is the Math?

If we want to better understand how mathematical entities (formulas, theo-
rems, conjectures, equations) are manipulated and related to ground truths
and programming languages, we first need to better understand where they
come from. Such entities surely do not exist by themselves; they need to be
assembled by people in specific designated places. Where are these places?
Who are these people, and what do they do?

Such trivial questions lead to many, many heterogeneous answers. This
is one reason why dealing with mathe matics can be dangerous: Where shall
we start? From the mathe matics of ancient Greece (Heath 1981a, 1981b;
Netz 2003)? From mathe matics of medieval Islam (Berggren 1986; Netz
2004)? From baroque mathe matics of continuous change (Bardi 2007;
Boyer 1959)? But if we use the adjective “baroque,” we already define the
seventeenth century in quite an orientated way (Deleuze 1992). Shall we

5 Mathe matics as a Science

204 Chapter 5

then focus on more con temporary mathe matics such as set theory (Ferreirós
2007; Tiles 2004), Weierstrass functions (Bottazzini 1986), and the subse-
quent “crisis of foundations” that shook up mathe matics at the beginning
of the twentieth century (Ewald 2007; Ferreirós 2008; Hesseling 2004; Man-
cosu 1997)? But what do we mean by “mathe matics” anyway? Do we mean
mathematical texts (Rotman 1995, 2006; Sha 2005)? Do we mean famous
mathematicians such as Leibniz (Antognazza 2011), Gauss (Tent 2006), or
Cantor (Dauben 1990)? Do we mean philosophies of mathe matics that try to
define what mathe matics is (Aspray and Kitcher 1988; Corfield 2006; Hack-
ing 2014)? Our head is spinning and we start to feel dizzy. But it is not over
yet! Indeed, are we talking about arithmetic (Husserl 2012), algebra (Everest
2007), geometry (Netz 2003; Serres 1995, 2002), or logic (Fisher 2007; Rosental
2003)? Maybe are we talking about the evolution from numbers to logic (Kline
1990a), from logic to geometry (Kline 1990b; Netz 2003), from geometry to
algebra (Kline 1990c; Netz 2004)? And even within arithmetic, geometry,
algebra, or logic, are we talking about theorems (Villani 2016), proofs (Lakatos
1976; MacKenzie 1999, 2004, 2006) or conjectures (O’Shea 2008)? We do not
know. We are lost in questions whose only enunciation makes us want to
do something else. But we cannot; we must find a way to address mathe-
matics as it seems impor tant for the constitution of algorithms. How can
we do so?

One way to avoid this spiral of confusion could be to start from some
very basic hypotheses. We would, of course, have to develop these hypoth-
eses and justify them by using concrete examples. To do this, we may need
to mobilize a tiny part of the gigantic mathe matics lit er a ture that scares
us. One step after the other, one hypothesis after the other— coupled with
some STS assumptions—we may end up with an operative definition of
mathematical knowledge that could suffice to achieve our specific task:
accounting for the way that computer scientists, when they try to assem-
ble new algorithms, are sometimes able to mobilize certified propositions
previously shaped by their mathematician colleagues. We surely do not
need to revolutionize our understanding of these power ful statements we
sometimes call “theorems,” “conjectures,” or “formulas.” If we just manage
to shape one simple version of what mathematicians do (instead of what
mathe matics is), our last duty— accounting for formulating practices— will
be greatly facilitated.

Mathe matics as a Science 205

Written Claims of Relative Conviction Strengths

To initiate our operationalization exercise and shape our first hypotheses, let
us start with three scenes that all gravitate around mathematical notions:1

Scene 1

January 1994. Charles Elkan is in turmoil: his theorem demonstrating
that only two truth values can be expressed by a system of fuzzy logic is
highly contested.2 What went wrong? The initial pre sen ta tion of his the-
orem at the Eleventh National Conference on Artificial Intelligence went
very well. The paper that further appeared in the conference proceed-
ings was even selected for the “Best Written Paper Award” (Elkan 1993).
The program committee saluted the elegance of the proof as well as its
significance for further developments in expert systems. Every thing was
in place for his theorem to be accepted. But many logician colleagues—
who did not attend the conference but did read some of its proceedings
published by MIT Press— are quite upset. Elkan can even follow their
dissatisfaction on the newly established internet forum “comp.ai.fuzzy”
that is dedicated to advanced discussions in fuzzy logic theories and sys-
tems. The critiques are harsh. Some say— and try to demonstrate— that
Elkan’s basic hypotheses are flawed. Others accuse him of deliberately
weakening fuzzy logic as it is a threat to old, “dusty” classical logic. Some
colleagues even suspect him to be a thick- headed Aristotelian! As one
of his friends advises him, Elkan should now “cool things down” and
publish a “smoother” version of his theorem that could include some of
its soundest critiques.

Scene 2

Summer of 1890. Alfred Kempe is puzzled;3 although not really because
Percy Heawood recently managed to find a flaw in the proof of the four
colors conjecture Kempe previously published in the American Journal of
Mathe matics (Heawood 1890; Kempe 1879). Heawood did a great job, and
being refuted is part of the game anyway. No, it is more that even though
his proof was shown to be erroneous, Kempe does not think that Fran-
cis Guthrie’s 1852 candid proposition— that says that four colors suffice
to color any map drawn on a plane in such a way that no neighboring

206 Chapter 5

countries have the same color—is wrong. But how could such a basic
intuition lead to such great difficulties? Do mathematicians not have the
tools to prove this conjecture and make it a theorem once and for all?
“Poor Heawood,” thinks Kempe. “He is now hooked on it, as I was fifteen
years ago. He’d better drop it; this four colors thing is old hat.”

Scene 3

November 8, 2013, 3 p.m. I sit at the back of the lecture hall.4 Around
three hundred undergraduate students are also attending this Friday after-
noon “Information, Computing and Communication” class that aims to
inculcate (communicate?) the foundational concepts of computer science
to future civil and mechanical engineers. I see my younger brother and
his friends— good students—in the second row. They’ve just started their
academic curriculum; I’ve almost finished mine. But here we are in the
same classroom, waiting for the same information (orders?). The professor
adjusts his microphone: “All right. Hi, every one. So, last week we talked
about the Nyquist- Shannon sampling theorem. Today, we’ll start with
another contribution of Claude Shannon to the mathematical under-
standing of digital signals, which is the Shannon- Hartley theorem. It is
quite a power ful theorem that can be summarized with this formula here:

C = B log2(1+
S
N
).

Of course, we’ll go through it together.”

At this point, we do not need to make any a priori distinction between “the-
orems” (scenes 1 and 3), “conjectures” (scene 2), “proofs” (scene 1 and 2),
and “formulas” (scene 3). We just need to notice that all three scenes, while
presumably concerning mathe matics, deal with claims that attract more or
less adherence. In scene 1, Elkan’s claim about fuzzy logic first attracts the
adherence of the Eleventh National Conference on Artificial Intelligence’s
program committee. But then, in January 1994, his claim repulses many
logician colleagues who do not hesitate to publish “counterclaims” on the
web forum “comp.ai.fuzzy.” In scene 2, Kempe’s claim about the veracity of
Francis Guthrie’s claim (the “four colors conjecture”) also first attracts the
adherence of the editorial board of the American Journal of Mathe matics. But
then, in the summer of 1890, Kempe dissociates himself from his own claim

Mathe matics as a Science 207

and adheres to that of Heawood. However, Guthrie’s 1852 “candid” claim
has not lost all of its conviction strength yet, which makes Kempe puzzled
about the fate of Heawood. Scene 3 is quite straightforward: Shannon and
Hartley’s claim— and its correlated formula projected on the lecture hall’s
whiteboard—is about to be taught to a crowd of undergraduate students in
engineering. There is little room for doubt here: in November 2013, Shan-
non and Hartley’s claim attracts the adherence of quite a lot of people. In
fact, their claim is so strong that a well- known pedagogical device— the
exam— will soon verify that all students properly adhere to it.

 These basic but fair observations are all we need to start our operation-
alization exercise. Mathematicians certainly do a lot of things, but among
 these things, they make claims that attract the adherence of more or fewer
individuals. Let us assume then that the grand notions of “theorems,”
“conjectures,” “formulas,” or “proofs” can all be grasped in a down- to- earth
manner; let us assume that, to a certain extent, they are claims that con-
vince more or fewer individuals.

This way to consider mathematical knowledge— theorems, conjectures,
proofs, formulas—as the product of some rhe toric may sound odd at first.
Many grand narratives have indeed chanted the abstract power of mathemati-
cal truths that, by themselves, supposedly describe some superior real ity.5 But
this is precisely the road we do not want to take, at least not yet. If we do not
want to crash on the sharp rocks of epistemological accounts of mathe matics,
we need to plug our ears and, for the moment, ignore the sirens of necessity.
Fortunately for us, our first operational hypothesis— mathematicians make
claims that convince more or fewer individuals— echoes well the central the-
sis of Lakatos’s (1976) impor tant book on mathe matics. As he showed, instead
of an accumulation of self- evident discoveries, mathe matics should be con-
sidered a creative pro cess during which concurrent claims are subjected to
criticism and improvement. But how are such claims criticized or improved?
How do they gain or lose their relative conviction strength? Shannon and
Hartley’s claim in scene 3 seems much stronger than Elkan’s claim in scene 1.
Similarly, in 1890, the claim Kempe made in 1879 is now powerless in front
of Heawood’s claim (scene 2). How do such differences come about?

To better understand how (mathematical) claims gain or lose conviction
strength, we need to make another basic observation about scenes 1, 2, and
3. If more or fewer individuals could adhere to the scenes’ claims, it means

208 Chapter 5

that they could access these claims. What medium allowed such access?
Some claims are oral, but we are obviously not dealing with them here.
The claims in scenes 1, 2, and 3 are all written. This impor tant characteris-
tic allows individuals to read them and eventually— very rarely— adhere to
them. In scene 1, it is Elkan’s written claim as it appears in the conference’s
proceedings that makes the program committee adhere to it. But in Janu-
ary 1994, it is the multiplication of written counterclaims on the web forum
“comp.ai.fuzzy” that begins tormenting Elkan. In scene 2, both Kempe and
Heawood access their respective claims by reading mathematical journals.
Fi nally, the engineering students in scene 3 are asked to adhere to Shannon
and Hartley’s claim projected on the classroom’s whiteboard. Of course,
Shannon and Hartley did not write their claim on the projected document;
many individuals intervened to carry their claim further through time and
space until reaching this specific lecture hall. But this translation pro cess
does not change the overall shape of the claim; it is still something that
is written down on a flat surface. At this point, we can therefore slightly
refresh our first hypothesis: mathematicians surely do a lot of things, but
among these things, they write claims that attract the adherence of more or
fewer individuals.

It is also fair to assume that the written claims in the above scenes did
not appear ex nihilo. In order to be published in proceedings, specialized
web forums, mathematical journals, or the slides of a computer science
professor, they all had to overcome a series of tests, trials upon which their
existence as written claims depended. I agree that this hypothesis flirts
with the metaphysics of subsistence— close to “pro cess thought” (cf. intro-
duction)—as proposed by influential, yet contested, thinkers. Let us then
consider it an assumption we need for our operationalization exercise.
“What ever resists trials is real” (Latour 1993a). The above (mathematical)
written claims are real; they thus resisted trials. But what trials?

Resisting Trials, Becoming Facts

The first kind of trial we can consider regarding the conviction strengths
of (mathematical) written claims such as those in scenes 1, 2, and 3 are the
 trials they must endure before their actual publication. Examining what we
often call the “sources” of claims is indeed a common way to evaluate their
seriousness.

Mathe matics as a Science 209

For example, we can make the fair assumption that, all things being
equal, a claim published in the journal Nature will generally have more con-
viction strength than a claim posted on some social media platform with
very little monitoring. Without even considering their respective content,
both claims will have dif fer ent capabilities. Why is that? We must immedi-
ately put aside the question of prestige or symbolic power; these are short-
cuts our so cio log i cal method of inquiry forbids us to manipulate. A more
empirical grip on this topic would quickly point to the number of indi-
viduals who could prevent the publication of a claim. Very few people—or
bots— can prevent me from publishing a claim on, say, Facebook. Con-
versely, many individuals can prevent me from publishing a claim in the
journal Nature. Taking into account those who have to be convinced by
claims in order for them to circulate and reach a broader audience is crucial
as it somewhat calibrates the cost of disagreement. If someone disagrees
with a claim I publish on Facebook, they can just shrug their shoulders and
move on to something else.6 But if the same person disagrees with a claim
I publish in Nature, they will have to disagree with me, my institution,
the funding agencies that supported my research, Nature’s editorial board,
 those responsible for the nomination of this board, and so on. Compared
with a claim I publish on Facebook, a claim I publish in Nature is initially
supported by a far bigger team of external allies (Latour 1987, 31–33).

But if we consider our three scenes, we quickly realize that surviving
publication trials— and thus enrolling external allies—is not enough to
assure any durable conviction strength of (mathematical) claims. Although
this lecture, in terms of convinced gatekeepers, may be enough to quickly
account for the conviction strength of Shannon and Hartley’s claim within
the lecture hall— the students being literally crushed by all its external allies
(their professor, their manuals, all those responsible for the engineering
curriculum of their university, the exam they will soon have to pass)—it
does not help us understand the relative strengths of Kempe’s, Heawood’s,
and Elkan’s claims (scene 1 and scene 2). In scene 2, both Kempe’s and
Heawood’s claims survived similar publication trials; both propositions
 were initially supported by roughly the same number of individuals.7 Yet
Kempe’s claim became distrusted as Heawood’s appeared certified. The situ-
ation is even more confusing in scene 1: even though Elkan’s claim suc-
cessively resisted the scrutiny of the sixty- eight individuals responsible for
the publication of the proceedings and the se lection of the “Best Written

210 Chapter 5

Paper,”8 his claim is seriously shaken up by posts on a web forum with
almost no monitoring (Rosental 2003, 81–86). Again, these counterclaims
must have survived other kinds of trials in order to gain such strength.

Another kind of trial that may provide strength to written claims is one
that consists in successively enrolling internal allies by means of citations
and references (Latour 1987, 33–45). Equipping one’s claim with previously
published claims is indeed an impor tant conviction strategy that has even
become a whole field of study.9 In addition to allies outside of the writ-
ten document, a claim with references and citations is now supported by
allies inside of it. Or is it? While often necessary, augmenting the convic-
tion strength of a claim by means of references and citations can be a risky
endeavor. What if the references do not match the claim, or worse, what if
some unmentioned references contradict the presented claim? In some cases,
this citation trial is overcome. One example is Shannon’s initial paper that
presented the basic ele ments of what would later be called the “Shannon-
Hartley theorem” (Shannon 1948). In this paper, Shannon enrolls previ-
ously “solidified” claims made by Ralph Hartley (hence his later inclusion in
the theorem’s name) and thirteen other impor tant mathematicians. As far as
I know, no serious disagreements about the use of these references emerged
 after Shannon’s initial publication. But the same was not true of Elkan’s
publication. Although he mobilized thirty- nine internal allies to strengthen
his claim about the limitations of fuzzy logic, his contradictors managed to
find and publish many strong “ counter references” on the specialized web
forum. Elkan soon appeared as someone unaware of many recent uses of
fuzzy logic in advanced expert systems (Rosental 2003, 157–168). Although
they were at first certainly useful to convince the program committee of the
Eleventh National Conference on Artificial Intelligence, the internal allies
of Elkan’s paper ended up working as stepping stones for his contradictors.

However, surviving or not surviving citation trials is, again, not enough
to account for the relative conviction strengths of the claims in all of our
scenes. Indeed, in scene 2, Kempe’s 1879 paper makes only three references
to former mathematical propositions, the first two being loose statements
made by Augustus De Morgan and Arthur Cayley to the London Mathemat-
ical Society (Kempe 1879, 193–194) and the third one being a more impor-
tant claim made by Augustin- Louis Cauchy about polyhedrons (Kempe
1879, 198). Yet this scarcity of references did not prevent his claim— the
proof that Guthrie’s 1852 proposition was correct— from convincing his

Mathe matics as a Science 211

mathematician colleagues for eleven years. The same is even truer of
Heawood’s claim, for his 1890 paper includes no references other than
Kempe’s 1879 paper. Again, this scarcity did not prevent his claim from
attracting the adherence of the chief person concerned: Kempe himself
(MacKenzie 1999, 22). There must be something else in published (math-
ematical) claims that makes them gain, sometimes, in persuasion strength.

Some potential objectors of published (mathematical) claims will not be
impressed by lists of convinced gatekeepers nor by the references invoked
by the author. To be convinced by a claim, these skeptical readers want to
see the thing the author asks them to believe in. This strategy that consists
of presenting the thing in question to the reader was precisely the one used
by Heawood in his paper against Kempe. He did not only rely on external
allies; he also showed a figure (see figure 5.1) that, according to Kempe’s
1871 claim, was impossible to draw:

Mr. Kempe says— the transmission of colours throughout E’s red- green and B’s
red- yellow regions will each remove a red, and what is required is done. If this
 were so, it would at once lead to a proof of the proposition in question [the four-
colours conjecture]. … But, unfortunately, it is conceivable that though either
transposition would remove a red, both may not remove both reds. Fig [below] is
an actual exemplification of this possibility. (Heawood 1890, 337–338)

We do not need to spend too much time on the specificities of Heawood’s
figure10 nor on the role of drawings in published mathematical claims.11
 Here, the impor tant thing to notice is the conviction strategy; just as scien-
tists engaged in many other fields— biology (Rheinberger 1997), chemistry
(Bensaude- Vincent 1995), climatology (Edwards 2013)— mathematicians
try to gain in persuasion strength by adding the referent of what they write
about. At this point, then, “this is not a question any more of belief: this is
seeing” (Latour 1987, 48). If, until now, I put the adjective “mathematical”
in parenthesis, it was not to grant too much specificity to mathematical
claims; they too are part of the scientific genre that tries to silence poten-
tial objectors by gathering more and more supporters. Scientific as well as
mathematical texts can indeed be compared with bobsled tracks allowing
very little room for maneuver while implying high level of skills. In both
cases, readers must start at point A, pass through checkpoints B1,2,…,n, and
fi nally finish at point C, the claim that tries to be established as a fact.

If scientific lit er a ture can be described as texts gathering many external
and internal allies in order to isolate their readers and force them to take

212 Chapter 5

Figure 5.1
Reproduction of Heawood’s figure showing that Kempe’s proof does not hold. Source:
MacKenzie (1999). Reproduced with permission from Sage Publications.

Mathe matics as a Science 213

only one path, dif fer ent scientific domains progressively shaped their own
specific rhetorical habits.12 In the case of mathe matics, this whole captation
trial (Latour 1987, 56–61) that consists in subtly controlling the movements
of potential objectors has been finely analyzed by Rotman (1995, 2006). As
he showed, mathematical publications are full of verbs in the imperative
form, such as “construct,” “define,” “connect,” or “compute.” But a close
analy sis of these imperative forms reveals that they are in fact split into two
distinctive types: inclusive imperative to establish premises— often equipped
with references— and exclusive imperative to pre sent lists of actions an imagi-
nary reader should perform to reach the claimed result:

Inclusive command marked by the verbs “consider,” “define,” “prove” and their
synonyms— demand that speaker and hearer institute and inhabit a common
world or that they share some specific argued conviction about an item in such a
world; and exclusive commands— essentially the mathematical actions denoted
by all other verbs— dictate that certain operations meaningful in an already
shared world be executed. (Rotman 2006, 104)

 These ele ments are crucial for our operationalization exercise as they indi-
cate the felicity conditions of captation trials within mathematical texts.
If skeptical readers, thanks to all the allies mobilized by the writer, have
no other choice than to accept the premises and follow one specific path
in order to reach one necessary conclusion, a mathematical text and its
concomitant claim have, at least temporally, overcome their captation trial.
In this re spect, Kempe’s 1879 paper on the four colors conjecture is quite
illustrative. Remember that Kempe wanted to prove that four colors suf-
fice to color any map drawn on a plane in such a way that no neighboring
countries have the same color. How did he enjoin his readers to reach this
conclusion? With a succession of inclusive commands, both Kempe and his
imaginary skeptical reader start by defining a perfectly four- colored “singly
connected surface” divided into many “districts” (Kempe 1879, 193). Once
this basic common world has been instituted, they then consider two sets
of “detached regions” either colored in red and green or in yellow and blue
(Kempe 1879, 194). These premises allow Kempe and his reader to further
define the properties of “points of concourse” (points where bound aries
and districts meet) that themselves permit the definition of six classes of
districts with dif fer ent characteristics: “island districts,” “island regions,”
“peninsula districts,” “peninsula regions,” “complex districts,” and “ simple
districts” (Kempe 1879, 195–196). Once this quite complex common world

214 Chapter 5

has been instituted, Kempe then switches to exclusive commands and asks
his reader to execute a series of operations:

Now, take a piece of paper and cut it out to the same shape as any simple- island
or peninsula- district, but larger, so as just to overlap the bound aries when laid on
the district. Fasten this patch (as I shall term it) to the surface and produce all the
bound aries which meet the patch … to meet at a point, (a point of concourse)
within the patch. If only two bound aries meet the patch, which will happen if
the district be a peninsula, join them across the patch, no point of concourse being
necessary. The map will then have one district less, and the number of bound aries
 will also be reduced. (Kempe 1879, 196–197; italics added)

By asking the reader to reiterate this patching pro cess, the whole imagined
map is progressively reduced to one single district with no bound aries or
points of concourse. Kempe then asks the reader to reverse the pro cess; that
is, to “strip off the patches in reverse order, taking off first that which was put
on last. As each patch is stripped off it discloses a new district and the map
is developed by degrees” (Kempe 1879, 197). At this precise point, Kempe
switches to inclusive command again, thus instituting a second common world
based on the first one that has just been modified. The author and the reader,
together again, define the progressive reconstitution of all districts, bound-
aries, and points of concourse. Little by little, they soon realize that their
recombination of districts, bound aries, and points of concourse is equivalent
to, respectively, faces, edges, and points of polyhedrons as already defined by
Augustin- Louis Cauchy in 1813 (Kempe 1879, 198). Once this polyhedron
world has been instituted, Kempe switches one last time to exclusive com-
mand and makes the reader reach the claimed result: obviously— look, we
have just done it together!— four colors suffice to color any map drawn on a
plane in such a way that no neighboring countries have the same color.

We do not need to understand every little step of Kempe’s paper. We just
need to appreciate how Kempe manages to control the movements of his
reader; from the initial premises to the conclusion, the reader is literally car-
ried through Kempe’s line of argument. His allies are quite numerous— “single
connected surface,” “districts,” “detached regions,” Cauchy’s “polyhedrons”—
and his transitions are smooth enough to transport the reader through the
flow of necessity. But as we saw, Kempe’s captatio was only temporary, for as
eleven years later, Heawood managed to escape from Kempe’s line of argu-
ment and propose a figure that dismantled the whole rhetorical edifice (see
figure 5.1).

Mathe matics as a Science 215

Publication, citation, and captation trials— just as any other claim trying
to gain conviction strength and become a fact, mathematical claims must
survive many jeopardies. Yet this is still not enough. A claim published in
an impor tant journal, with well- arrayed references and a smooth line of
argument, may still vanish if it is not carried further by later claims. This is a
sine qua non condition as there is no such thing as a solitary scientific fact:
“Fact construction is so much a collective pro cess that an isolated person
builds only dreams, claims and feelings, not facts” (Latour 1987, 41). The
fate of a claim, its progressive transformation into a solidified fact, depends
ultimately on how it is used by later claims. We saw that Kempe’s claim,
despite its captation strength, ended up being refuted by Heawood. From
the status of mathematical fact, it turned into mere fiction. What about
Heawood’s claim? It is difficult to call it a fact as it only concerned Kempe’s
fiction; it successively refuted Kempe’s claim but did not provide any con-
firmable, or refutable, proposition. What about Elkan’s claim, then? Despite
Elkan’s efforts to make it stronger— especially via the inclusion of many
coauthors, better arrayed references, and smoother transitions (Elkan et al.
1994; Rosental 2003, 282–331)—it ended up being known for the doubt-
ful reactions it gave rise to; that is, precisely, for not being a fact. Among
our arbitrary mathematical examples, only Shannon’s claim survived this
impor tant posterity trial, as scene 3 already suggested it. In fact, Shannon’s
claim survived the posterity trial so well that it progressively became part
of a very small number of facts that are constantly used as resources in later
claims. As it became more and more enrolled without any skeptical modali-
ties, it became a black box with certified content presented in a clear- cut
form. This stylization pro cess (Latour 1987, 42) is typical of scientific facts
that are much enrolled in later claims. Although Shannon went through
several demonstrations in his initial paper, only the results of these demon-
strations were progressively retained. These results were later concatenated,
polished, and linked with former results established by Hartley until reach-
ing a stylized form expressed by the formula presented in scene 3. Soon,
perhaps, this strong mathematical fact may even become a “single sentence
statement” (Latour 1987, 43): a scientific fact that is so accepted that it no
longer needs any reference. If this happens, Shannon and Hartley’s theo-
rem will be part of tacit, undisputable, and necessary knowledge.

 These last ele ments about blackboxed polished facts that may become
part of tacit knowledge allow us to respond to an impor tant objection:

216 Chapter 5

Objection of a skeptical reader

But is not mathe matics dif fer ent from all the other scientific disciplines
in that it deals with fundamental truths? We could feel it when you
presented Kempe’s paper: in order to overcome the captation trial, he
followed the timeless laws of deduction, did he not?

Not so long ago, it would have been very difficult to respond to this classi-
cal objection.13 But thanks to the philological efforts made by Reviel Netz
(2003, 2004), we now know that what we call “deduction” and “logical
relations” are themselves blackboxed polished facts that were initially pub-
lished around the middle of the fifth century BCE in Greece and southern
Italy.14 At that time, several self- educated amateurs who, presumably, tried
to distance themselves from ancient Greece’s highly polemical culture,15
 were surprised to discover that when they wrote only about the properties
of lettered diagrams drawn on wax tablets, they could, step by step, express
indisputable propositions. More precisely, by starting with some lettered
parts of a diagram— say, two segments— they could, in turn, compare them
with another lettered part of the same diagram. This very basic operation,
made pos si ble by the combination of drawings and letters on a flat surface,
can be reconstituted as such: “This segment A here is equal to that segment
B there. And that segment B there is equal to that segment C over there.” In
turn, thanks to the lettered diagram, Greek geometers could surreptitiously
use conjunctive adverbs in a necessary way: “Therefore this segment A here is
equal to that segment C over there.” The shift seems trivial but is in fact cru-
cial. Indeed, this first necessary result could be used to compare other parts
of the diagram: “And that segment D over there is two times segment C.
Therefore, segment A is half segment D.” Progressively, by comparing more
and more parts of the diagram, using more and more conjunctive adverbs
and cumulating more and more intermediary results such as “A is half seg-
ment D,” the Greek geometer could end up with a complicated yet neces-
sary true proposition— the written list of indexical steps going from his first
basic assertion to his last complicated one being the proof of the veracity of
his claim.

For the sake of this section that only tries to pre sent mathematical claims
as part of the broader family of scientific claims, we do not need to dig fur-
ther into the fascinating work done by Netz. Suffice it here to say that thanks
to his efforts, we can now assert with some confidence that even deduction

Mathe matics as a Science 217

is the solidified product of past accepted claims. These constructed- yet-
fully- logical laws of necessity must certainly have been surprising in ancient
Greece.16 But after centuries of enrollments in further claims, this style of
reasoning— that obviously overcame its posterity trial— was progressively
blackboxed, polished, and stylized until acquiring the status of indisput-
able knowledge.17 Who would now quote Aristotle when using the infer-
ence rule of modus ponens? Yet even these princi ples of logic— dear to the
formalist school of mathe matics18— went through a pro cess similar to that of
Shannon and Hartley’s theorem that very few mathematicians in signal pro-
cessing would now try to contest. Just as the theorem they helped to shape,
deductive laws were themselves shaped a long time ago by people equipped
with specific instruments (in this case, lettered diagrams drawn on wax tab-
lets and indexed to small Greek sentences).

Flat Laboratories

In the previous sections, we spent some time trying to stress the similarities
between mathematical and scientific claims. It appeared that both need to
survive similar trials to become, eventually, indisputable facts. No supe-
rior necessity helps mathematical claims to become certified facts; they too
need to convince their readers in order to be enrolled in later claims and
become, very rarely, polished black boxes.

However, so far, we have only considered one side of the coin. Although
looking at mathematical published claims helps us realize that successful
mathematical propositions could be considered genuine certified knowledge,
we can legitimately assume that mathematicians do not prepare, write, and
read papers all their working time. They must also spend time and energy on
the things they write about. All the claims we considered in the last sections
 were indeed about things: limitations of fuzzy logic systems for Elkan, the
four colors conjecture for Kempe, Kempe’s claim about the four colors con-
jecture for Heawood, and maximum rate of information transmission over
noisy channels for Shannon (and later, Hartley). But how are these things
assembled? What practices lead to the pre sen ta tion of these mathematical
 things—or objects—in published materials? Are these practices dif fer ent
from laboratory practices in other scientific communities?

As we prepare to look inside the locations in which mathematical objects
are shaped, we immediately face a difficulty: there are very few empirical

218 Chapter 5

studies of such locations. Although there are robust studies about contro-
versies within mathematical domains (Warwick 1992, 1993; MacKenzie
1999, 2000, 2004, 2006; Rosental 2003, 2004) and historical reconstruc-
tions of the shaping of mathematical objects from famous mathematicians’
logbooks (Lakatos 1976; Pickering and Stephanides 1992), there are very
few laboratory studies of mathe matics.19 It is thus with limited means that
I will now try to stress the scientific aspect of mathe matics a little bit more:

Scene 4

Salk Institute for Biological Studies at La Jolla (California), winter of 1972.20
Paul Brazeau is on edge. His boss, Professor Roger Guillemin, is after him,
casting doubts on his ability to handle the lab’s brand new— and very
expansive— radioimmunoassay. It is true that the graphs recently printed
by the massive bioelectronic instrument are surprising; instead of show-
ing that Guillemin’s newly purified peptide triggers the growth hormone,
it shows that it decreases it. This drives Guillemin crazy. But Brazeau
and his technicians retro- inspected the whole experimental procedure a
dozen times: there were no mistakes. The right amount of purified pep-
tide was injected in the carefully assembled rat pituitary cell culture, and
no mishandling occurred during the operationalization of the radioim-
munoassay. “It’s terribly simple,” thinks Brazeau. “ Either I am no consci-
entious professional or, for the last three years, we were all wrong about
this peptide.”

Scene 5

Dublin, fall of 1843. William Rowan Hamilton is in a challenging mood:
even though he bumps into another impasse in his attempt to extend
complex number theory to a three- dimensional space, he is obviously
making impor tant pro gress.21 He is particularly proud of his new start-
ing point; what a mistake it was to start his previous experiments from
tiring algebraic models! As he now starts geometrically by moving from
x + iy to x + iy + jz, he possesses a three- dimensional line segment that is
far easier to test (even though it adds a second imaginary number j right
from the start). His first experiment was, in that sense, very conclusive.
Thanks to the advice of his German colleague Gotthold Eisenstein, he
could reach an equivalence between algebraic and geometrical defini-
tions of the square of his three- dimensional segment by abandoning the

Mathe matics as a Science 219

assumption of commutation between i and j. He could then further test
his model by multiplying two arbitrary coplanar triplets according to his
new noncommutative rule for ij. Although he strug gled at first to define
the orientation of his new product, he realized— after several attempts—
that Pythagoras’s theorem could nicely do the trick. Here again, an
encouraging achievement. Yet this last move led him to another prob-
lem: the algebraic and geometrical repre sen ta tions of this coplanar mul-
tiplication differ by a factor of (bz— cy)2. “I must find a way to remove
this superfluous term,” he thinks. “I don’t want to start the whole thing
over again!”

Despite their cryptic aspects, what do these two scenes tell us about labora-
tory practices? Can we draw similarities between what takes place within
Guillemin’s laboratory of endocrinology (scene 4) and what takes place
within Hamilton’s laboratory of mathe matics (scene 5)?

We can first notice that both scenes deal with experiments; they both put
something to the test in order to evaluate its reactions. The peptide in scene
4 is, in 1973, still undefined. Guillemin—in line with recent claims about
this class of amino acid polymer—is convinced that it should trigger the
rat’s growth hormone.22 But how much is such growth hormone triggered?
And under what circumstances? To have a clearer view on the capacities of
this peptide, he puts Brazeau in charge of implementing an experiment he
recently designed. In scene 5, a complex three- dimensional line segment
x + iy + jz is, in 1843, still undefined.23 Hamilton hopes that this “triplet”—
as he calls it— will allow him to extend the geometrical repre sen ta tion of
complex number theory.24 But at this point, nothing is certain. To better
understand the capacities of his complex three- dimensional line segment,
he puts it through two successive experiments: he first squares it and then
multiplies it with another arbitrary coplanar triplet.

In both scenes then, experiments are run to test undefined entities. Yet
experiments do not happen by themselves; in both scenes, instruments are
used by scientists in order to help them probe their undefined entities.
In scene 4, the delicately assembled rat pituitary cell culture and the very
expansive radioimmunoassay are the two principal tools used to test the
peptide. It is worth noting that both instruments are highly vis i ble and take
up a lot of space. The instruments in scene 5 are a priori less impressive but
equally impor tant. The first instrument is, obviously, the algebraic apparatus

220 Chapter 5

as progressively defined by medieval Islamic mathematicians; without any
means to express relationships among variables in a condensed and succinct
manner, Hamilton could not juggle his triplet.25 But he also needs a coor-
dinate space to express his triplet geometrically. In that sense, without the
efforts of seventeenth- century mathematicians such as Descartes, de Fermat,
Newton, and Leibniz, Hamilton would have no means to consider the trans-
formations of his triplet. He further requires some insight from noncommu-
tative algebra, as then recently proposed by Gotthold Eisenstein, to handle
the complex product ij (Hankins 1980). Fi nally, he needs good old Pythago-
ras’s theorem to multiply his initial triplet with another arbitrary coplanar
triplet.26

At this point, we need to make another down- to- earth observation:
although both laboratories have instruments to conduct experiments on
undefined entities, the shapes of these instruments differ from each other.
On the one hand, there is a bioelectronic assemblage that gathers peptides,
Brazeau, rat cells, laboratory technicians, and an imposing metal box full of
electronic parts; on the other hand, there are books, paper, Hamilton, and
a pencil. There is little room for doubt here: the instruments do not take up
the same amount of space. Hamilton’s instruments appear dryer and thinner
whereas Guillemin’s instruments appear wetter and thicker. One could say—
and that is the terminology I will use for the remainder of this section— that
Hamilton’s laboratory is flat whereas Guillemin’s laboratory is bulky. Both
laboratories are engaged in the same process— testing the reactions of an
undefined entity— but they use instruments that are dif fer ent in terms of
occupied space.27

Can we in turn say that Guillemin’s laboratory is more expansive than
Hamilton’s laboratory? If we only consider the relative price of their instru-
ments, it seems indeed to be the case: paper is cheaper than laboratory
technicians, most books (even in nineteenth- century Ireland) are cheaper
than a radioimmunoassay from the 1970s, and pencils are cheaper than a
rat pituitary cell culture. Yet if one considers the relative networks of both
laboratory apparatuses, the question appears trickier. Indeed, how many
efforts were needed to cultivate and sell standardized rat cells? Many, indu-
bitably. But how many efforts were required to establish coordinate spaces?
Many, indubitably. And what about algebra? As Netz (1998, 2004) showed,
without centuries of commentaries on Greek geometrical writings, without

Mathe matics as a Science 221

Byzantine libraries, and without the classification efforts of Bagdad mathe-
maticians, no algebraic system of notation could have come into existence.
The same is true of Pythagoras’s theorem; many long- standing efforts were
required to gather, compile, and preserve Pythagorean propositions from
early antiquity to nineteenth- century Ireland. Let us then stick to the topo-
logical difference between our two laboratories: Hamilton’s laboratory is
flatter than Guillemin’s.

If we continue to analyze both scenes, we can see that despite their
topological differences, both bulky and flat instruments end up producing
comparable inscriptions; that is, readable traces on documents. Indeed, the
bulky bioelectronic experimental assemblage of scene 4 ends up produc-
ing graphs whose curves indicate that the rat’s hormone decreases. The
results of the experiment on the undefined peptide conducted by Brazeau
are pieces of paper anxiously examined by Guillemin.28 Similarly, the flat
experimental assemblage of scene 5 ends up producing a series of coupled
algebraic and geometrical equations; at first, both equations appeared
equivalent (which was good news for Hamilton), but in the second step of
the experiment, both appeared dissimilar (which was bad news for Ham-
ilton). Yet, just as for Brazeau and Guillemin, the results of Hamilton’s
flat experiments are readable traces on documents he examines with his
eyes.29

At this point then, we can tentatively say that both scenes deal with
experiments, instruments (of dif fer ent topologies), and series of inscrip-
tions. But where does all this work lead to? At this stage, it certainly cannot
lead to any published claim that may later become a scientific fact. Within
 these two laboratories, scientists impose tests on undefined entities, but
how can these practices lead to the formation of objects capable of being
described in academic papers?

Scene 6

Salk Institute for Biological Studies at La Jolla (California), January 1973.30
 There is nothing to do about it; even after two other meticulous experi-
ments, the graphs printed by the radioimmunoassay still show that the
rat’s hormone decreases when put in contact with Guillemin’s peptide.
The rat pituitary cell culture is indisputable as are the composition of Guil-
lemin’s peptide, the radioimmunoassay, and Brazeau’s professionalism

222 Chapter 5

(Guillemin quickly admits it). The only way to escape from this impasse is
to cast doubt on what the peptide does. Leading figures in endocrinology—
including Guillemin— thought that this class of peptide triggered the
growth hormone; obviously, it does the opposite. After being in contact
with rat pituitary cell culture for a certain amount of time and after having
gone through the radioimmunoassay with some consistent par ameters,
this new thing significantly decreases the rat’s growth hormone. As it is cer-
tain that there have been no mistakes during the experimental procedures,
a paper is now being prepared to convince skeptical readers about the exis-
tence of this new scientific object Guillemin starts to call somatostatin (lit-
erally, “that which blocks the body”).

Scene 7

Dublin, fall of 1843.31 There is nothing to do about it: the superfluous
term (bz— cy)2 within the geometrical expression of the length of a com-
plex line segment cannot be removed without adding a new imaginary
quantity. The rules of algebra— including noncommutativity— are indis-
putable, as are Pythagoras’s theorem and Hamilton’s scriptural opera-
tions (he ran the whole experiment several times). The only way to
escape from this impasse is to cast doubt on the premises of the experi-
ment: What if the extension of the geometrical repre sen ta tion of com-
plex number theory required not three but four dimensions? Indeed,
only the inclusion of a third imaginary quantity k as the product of i
and j can make the superfluous term (bz— cy)2 dis appear. It is true that
this new imaginary quantity needs in turn a fourth axis in order to be
geometrically represented, but who cares? After the introduction of k as
 either an imaginary quantity (in the algebraic repre sen ta tion) or a fourth
dimensional axis (in the geometrical repre sen ta tion), this new thing can
be squared and multiplied while producing equivalent equations, hence
effectively extending the geometrical repre sen ta tion of complex number
theory. If Hamilton now manages to define the quantities k2, ik, kj, and
i2— almost a formality at this stage—he will be able to completely define
the be hav ior of this new mathematical object he starts to call quaternion
(literally, “that which is made of four”).

Again, beyond their cryptic aspects, what do these two scenes tell us about
the formation of new objects within scientific laboratories? Can we draw

Mathe matics as a Science 223

some similarities between the progressive shaping of somatostatin (scene 6)
and quaternions (scene 7)?

We can first see that in both scenes, inscriptions printed out by instru-
ments begin by expressing singular phenomena. In scene 6, the graphs
printed by the radioimmunoassay indicate confidently that after the pep-
tide is injected in the rat pituitary cell culture over a specific period of time
and after it goes through the radioimmunoassay with specific par ameters,
the growth hormone decreases significantly. This is what is inscribed within
the graphs Guillemin can read; the whole experimental pro cess ends up
decreasing the rat’s growth hormone. Trustful graphs become flatter; there-
fore the growth hormone decreases.

Similarly, in scene 7, the inscriptions produced by the hands of Hamil-
ton indicate that after a fourth dimension is added to the triplet in order
to geometrically express the new imaginary quantity k— itself required to
make the superfluous term (bz— cy)2 dis appear— both algebraic and geomet-
rical repre sen ta tions of complex number theory become equivalent. Again,
this is the phenomenon described by the inscriptions Hamilton can read
on a sheet of paper; the whole experimental pro cess ends up expressing an
extension of the equivalence between geometrical and algebraic repre sen-
ta tion of complex number theory. A trustful geometrical equation becomes
equivalent to another algebraic equation; therefore, the geometrical repre-
sen ta tion of complex number theory is extended.

However, and this is the crucial point, by virtue of the experimental set-
ting, the origins of these two phenomena— “quantifiable inhibition of the
growth hormone” and “extension of the equivalence between geometry
and complex number theory”— can be attributed to specific things. In scene
6, the only ele ment whose actions were undefined at the beginning of the
experimental pro cess was the peptide. The actions of rat pituitary cell cul-
tures, radioimmunoassay, Brazeau, and the technicians were all predictable;
the unpredictable phenomenon— the graphs becoming flatter— must thus
result from the action of this peptide- thing that “blocks the body.” Similarly,
in scene 7, the only ele ment whose actions were undefined at this stage of
the experimental setting was the third imaginary quantity k geometrically
expressed by a fourth dimensional axis. The actions of noncommutative
algebra, Pythagoras’s theorem, and Hamilton’s pencil and paper operations
 were all predictable; the unpredictable, yet anticipated, phenomenon—
geometrical and algebraic equations becoming equivalent— can only be

224 Chapter 5

attributed to this four- dimensional thing that “groups together four num-
bers.” In both scenes, new things emerge from the same attribution pro cess;
scriptural traces of a new phenomenon are imputed to the be hav ior of a
previously undefined entity.

At the end of both scenes, this attribution pro cess that imputes a be hav-
ior to a previously undefined entity by virtue of an experimental setting
ends up being summarized by a term that encapsulates what the now
defined thing does: “that which blocks the body” becomes somatostatin and
“that which groups four numbers” becomes quaternion. New objects come
into existence, but there has been no miracle; in both cases, the shape of
the new object was progressively defined as scientists made it “grow” from a
list of actions to the name of a thing. In scene 6, somatostatin was first “the
graphs become flatter,” then “ under these experimental conditions, there
is a diminution of the growth hormone,” then “our new peptide decreases
rat’s growth hormone,” and fi nally “somatostatin decreases rat’s growth
hormone.” The same reification pro cess (Latour 1987, 86–100) happened in
scene 7: quaternion was first “two equations become equivalent,” then “ there
is an extension of geometrical repre sen ta tion of complex number theory,”
then “four- dimensional repre sen ta tion allows the extension of geometrical
repre sen ta tion of complex number theory,” and fi nally “quaternions express
geometrically complex number theory in a four- dimensional space.” In
both cases, experiments, instruments, and alignments of inscriptions—in
short, laboratory practices (Latour and Woolgar 1986)— progressively led to
the shaping of scientific objects whose properties and contours could, in
turn, become the topics of papers claiming their existence.32

However, as we saw in the previous section, both somatostatin and qua-
ternions as presented in papers that can be read by skeptical colleagues still
need to overcome many trials to become certified scientific facts capable
of being blackboxed, stylized, polished, and enrolled in further claims and
experimental settings. Although both objects came into existence within
their respective bulky and flat laboratories, they still need to attract the
adherence of a wider community. But when the doubts of skeptical read-
ers are removed, when the veracity of both claims are certified by the
scientific institution, we can in turn confidently say that Guillemin dis-
covered somatostatin and that Hamilton discovered quaternions. Or can we?
We saw indeed that both objects were the results of laboratory practices
that progressively shaped them. Can scientists discover objects they were

Mathe matics as a Science 225

previously constructing? Were somatostatin and quaternions already part
of “nature” even though they had to be shaped in well- equipped (yet topo-
logically dif fer ent) laboratories? This is where the story starts to become
tricky. If STS has long shown that scientific objects need to be manufac-
tured in laboratories, the heavy apparatus of these locations as well as the
practical work needed to make them operative tend to vanish as soon as
written claims about scientific objects become certified facts. Once there
are no more controversies or disagreements about a new scientific object,
nature tends to be invoked as the realm that always already contained this
constructed scientific object. Here, we encounter something we discussed
in chapter 4 where we were dealing with computer programming practices:
when facts are certified and enrolled in further studies, the experiments,
instruments, communities, and practices that allowed their progressive for-
mation are generally put aside (Latour and Woolgar 1986, 105–155). This is
what makes the history and sociology of sciences (including mathe matics)
so difficult to conduct; as established facts are purified from the artificial
setting that supported their formation, the temptation is great to start from
 these established facts and extrapolate backward (Collins 1975).33

However, if one is not interested in the history or sociology of sciences, if
one “just” wants to speak about objective facts and eventually enroll them in
further claims, the reference to nature appears completely justified. In that
sense, one may of course say—as a kind of con ve nient shortcut— that Ham-
ilton “discovered” quaternions or that Guillemin “discovered” somatostatin,
but only because these objects ended up being accepted as certified facts, put
in black boxes, translated, polished, and enrolled in later claims. As both ini-
tially manufactured objects presented in written claims successively resisted
 trials, the conditions of their production within dedicated laboratories can
be, temporarily, neglected; nature can take over and support their raison
d’être. In this re spect, Latour’s funny analogy is quite instructive:

Nature, in scientists’ hands, is a constitutional monarch, much like Queen Eliza-
beth the Second. From the throne she reads with the same tone, majesty and
conviction, a speech written by Conservative or Labour prime ministers depend-
ing on the election outcome. Indeed she adds something to the dispute, but only
 after the dispute has ended; as long as the election is going on she does nothing
but wait. (Latour 1987, 98)

The notion of “nature” is thus con ve nient to speak about noncontrover-
sial scientific facts— why not?— but as soon as one speaks about scientific

226 Chapter 5

controversies or about scientific objects in the making, one needs to consider
nature as the uncertain result of scientific practices.34 This cautious posi-
tion toward nature applies to “conventional” bulky scientific objects such
as somatostatin as well as to “unconventional” flat scientific objects such as
quaternions. Again, no superior real ity makes mathematical objects appear
to mathematicians. They too need to be shaped within (flat) laboratories
equipped with instruments that print inscriptions.

Mathematicable

A good thing has been taken care of: it seems indeed that the construc-
tion pro cess of scientific facts is quite similar to the construction pro cess of
mathematical facts. Theorems (cf. scenes 1 and 3), mathematical systems
(cf. scenes 5 and 7), conjectures (cf. scene 2), and even formulas (cf. scene
3) may all be considered genuine scientific claims that try to convince col-
leagues of the existence of objects previously shaped within (flat) laborato-
ries. If the vast majority of these claims do not overcome the trials that can
make them become certified facts, some of them (e.g., Shannon- Hartley’s the-
orem, Hamilton’s theory of quaternions) may become stylized and polished
black boxes that are used as instruments in further experimental settings. It is
this huge— and changing— repository of certified mathematical facts that we
may call “mathematical knowledge.” Moreover, several ele ments of this certi-
fied body of knowledge may, sometimes, become part of tacit, indisputable,
and necessary knowledge (e.g., the logical laws of deduction).

However, despite the striking similarities between their respective con-
struction pro cesses, certified scientific and mathematical facts— and their
correlated objects— still seem to differ significantly:

Objection of a skeptical reader

All right, let’s assume that both facts— and correlated objects—go through
similar construction pro cesses, as you obviously believe (while only rely-
ing on small, incomplete examples). An impor tant difference subsists:
mathematical objects never stop being used for the constitution of non-
mathematical objects! We could even see it in the laboratory of endo-
crinology you used to illustrate your point. The graphs printed by the
radioimmunoassay, which quantify how much the growth hormone is

Mathe matics as a Science 227

decreased by the peptide, are importations of solidified mathematical
facts (in this case, basic analytical geometry). The same is certainly true
of the inner mechanisms of the radioimmunoassay; complex mathemat-
ical theories must have been used to develop this costly instrument. Sim-
ilar pro cesses happen all the time in demography, climatology, po liti cal
science, biology, and so on. Mathematical objects such as logarithms,
Gaussian functions, or probabilities infiltrate all domains of “hard” sci-
ence, helping scientists to shape new objects and facts. Yet the inverse
is not true: how could peptides or radioimmunoassay help mathemati-
cians shape new objects? Mathematicians have to do things by them-
selves, without the help of the other sciences. This is why mathe matics
is the queen of all sciences: without the work of mathematicians in their
“flat laboratories”—we may keep that— there would simply be no exact
sciences. Mathematical objects are so power ful; they must be of some
superior nature. How could it be other wise?

 There are two glitches in this classical objection. First, it is not tenable to
say that the practice of mathe matics is self- sufficient, for many disciplines
intervene in the construction pro cess of mathematical objects and facts.
Netz (1998, 2004) showed, for example, how archiving and standardization
 were central to overcome the stagnation of Greek geometry.35 Thanks to the
assembling of well- arrayed corpora of papyruses and parchments— especially
in Byzantium— late antiquity commentators such as Eutocius became able to
compare, annotate, and complete the entangled multiplicities of Greek geo-
metrical writings. Progressively, these systematic standardization efforts made
early antiquity’s geometrical propositions commensurable; unlike Greek
geometers,36 medieval mathematicians— especially in Bagdad’s House of Wis-
dom (Netz 2004, 131–186)— could see what Greek geometry was. Equipped
with “intellectual technologies” (Goody 1977)— here, collections of standard-
ized Greek geometrical treatises— mathematicians such as al- Khwarizmi and
Khayyam could systematize and classify the geometrical prob lems solved
by the Greeks. These systematic comparisons progressively led, according to
Netz, to the formation of the algebraic language: “Al- Khwarizmi’s algebra was,
ultimately, a fairly unambitious ambition, translated into major transforma-
tions. Without himself doing anything beyond classifying the results of the
past, Al- Khwarizmi, effectively, created the equation” (Netz 2004, 143).

228 Chapter 5

Since archiving and standardization were, and are,37 central to the for-
mation of mathematical objects, do we have to say that these two respect-
able disciplines are the queens of the queen of all sciences? To me, a more
reasonable position would be to accept that hierarchal classification of
disciplines is misleading. When something allows something else to come
into existence, it may not be a matter of vertical hierarchy but of horizontal
arrangement.

This leads us to the second objection regarding the usability of mathe-
matical objects for the assembling of nonmathematical objects. It is true that
the combinational capabilities of mathematical facts are surprising. In every
scientific discipline, recent or ancient mathematical discoveries are used to
conduct experiments, or ga nize inscriptions, express new phenomena, and
eventually define new objects. I would go even further than our skepti-
cal reader and expand this extreme combinability of mathematical objects
to everyday life. For example, how many times a day do we use the basic
precepts of arithmetic? Obviously, mathe matics is everywhere, from labo-
ratories of high energy physics to cashiers’ desks. This capacity to infiltrate
heterogeneous domains of activity is very impressive. But does it neces-
sarily mean that mathematical objects come from a dif fer ent nature? Does
their plasticity necessarily manifest a super natural essence?

Let us consider Guillemin’s laboratory of endocrinology since it is the
example used by our skeptical reader. It is true that the results printed by the
computer of the radioimmunoassay required the application of elementary
mathematical theories in order to indicate a diminution of the growth hor-
mone. Was there some magic? Not if we consider more precisely the pro cess
by which the rat pituitary cell culture was “flattened” to become represent-
able as a graph with numerical values varying through time. What hap-
pened indeed within the radioimmunoassay? Schematically, the very small
radioactive waves emitted by the rat pituitary cell culture were captured
and, after a series of translations, counted by the costly equipment. Radio-
active waves became signals that, in turn, became discrete values varying
through time. This transubstantiation process—or, more succinctly, transla-
tion process— that made a cell culture go from the state of complex liquid
to the state of a writable list of (radioactive) values spread over time is pre-
cisely what allowed the enrollment of the elementary mathematical notion
of “ratio” and the further calculation of the growth hormone’s decreasing.
How did the ancestral theory of ratios as developed by the Pythagoreans

Mathe matics as a Science 229

become applicable to the world of endocrinology? The concrete efforts to
form differently (trans- form) the cell culture into quantifiable inscriptions,
thus making it become a geometrical graph, allowed the connection between
ratios and Guillemin’s peptide. It was by flattening the cell culture and
adapting it to the flat ecol ogy of ratios that these mathematical objects
became applicable to the cell culture. Nothing mysterious happened; by
progressively translating a complex entity into a scriptural form, it became
pos si ble to link it with certified mathematical facts.

Another— better— example of such an empirical pro cess that makes non-
mathematical entities become mathematicable is provided by Michal Lynch
(1985) in his book Art and Artifact in Laboratory Science. During the 1970s, an
impor tant topic in neurology was the plasticity of the brain; that is— briefly
stated— its capacity to recover lost functions through the reor ga ni za tion of
some of its tissues. How this reor ga ni za tion occurs was a controversial topic
at the time of Lynch’s laboratory study. Two major conjectures were in com-
petition. The first one considered that the reor ga ni za tion occurred through
the densification of the synapses— the structures that allow interneuro-
nal communication between axons and dendrites— within the damaged
brain territory.38 The second theory, labeled “axon sprouting,” considered
that the reor ga ni za tion was due to the extension of axons adjacent to the
damaged territory. For many reasons encompassing results of then recent
laboratory experiments as well as promising industrial applications, the
director of the laboratory studied by Lynch believed that axon sprouting
was the main ingredient for the brain’s reor gan i za tional capacity (Lynch
1985, 32–33). But how could he demonstrate it? Many pitfalls got in his
way. First, neurons are very small. Observing their (re)organ ization required
power ful zooms. Fortunately, the advent of electron microscopy— a tech-
nology recently purchased by the laboratory— allowed him to make ultra-
structural observations. But this led to another issue: at that time, these
observations could only be made on tiny slides whose flat topology was
dif fer ent from the bulky topology of neurons. Fortunately, a “methodic
series of renderings of laboratory rats” (Lynch 1985, 37) could be or ga-
nized to properly slice brains and adapt them to ultrastructural visibility.
But this extraction of brain slides led to another issue as a reor gan i za tional
brain pro cess can only happen within a living brain. How could it then be
pos si ble to observe brain plasticity on dead sliced samples? Fortunately,
the availability of many standardized laboratory rats with almost identical

230 Chapter 5

brains allowed the organ ization of a “chain of sacrifices” (Lynch 1985, 38).
Although it was not pos si ble to observe the reor ga ni za tion of one living
damaged brain, it progressively became pos si ble to observe the reor ga ni-
za tion of “same” damaged brains killed at dif fer ent time intervals. A regu-
lar series of discrete— and meticulously referenced— dead slices permitted
the reconstitution of the evolution of one living brain trying to palliate its
damages. Yet the scientists followed by Lynch still needed to discern spe-
cific events within the mess of every single slide. They were indeed trying
to account for axon fibers that were expanding their territories to damage
zones. But how could they define territories of axons as well as their poten-
tial expansions? Fortunately— and this greatly contributed to designing
the whole proj ect— one in ter est ing characteristic of the “dorsal hippocam-
pus” helped them to establish points of reference common to all electron
microscopic observable sections. It had indeed been demonstrated— and
accepted— that the structure of the dorsal hippocampus looks like a grid,
the dendrites of its cell bodies regularly intersecting axons indexed to dif fer-
ent brain regions (Ramón y Cajal 1968). Therefore, if the brain researchers
managed to produce electron microscopic observable slices of dorsal hip-
pocampus extracted from similarly damaged rats’ brains (killed at dif fer ent
time intervals), the “natu ral” grid structure produced by the intersections
of the dendrites of dorsal hippocampus’s body cells with axons indexed to
dif fer ent brain regions could constitute an initial empirical base for further
mea sure ments (Lynch 1985, 35–39). In other words, as it was certified that
one specific part of the dorsal hippocampus contained cell bodies whose
dendrites always intersected regularly with axons indexed to two dif fer ent
brain regions, which I call here α and β, it became pos si ble to damage the β
brain regions of all rats and then check if the axons indexed to α “sprouted”
to infiltrate the territory of the axons previously indexed to β. But again,
a new prob lem arose: how to go from specific electron microscopic views
on slices to a pa norama of many slices distributed over time? At the time
of Lynch’s study, the easiest way to operate this translation was first to
take analogical photo graphs of electron microscopic dorsal hippocampus
displays. Brain scientists then had to develop these photo graphs in high
definition and equip them with a coordinate system scaled according to
the ultrastructural levels of observation (between 2,160 and 24,000 times,
depending on the photo graphs). How did Lynch’s scientists concretely
manage to equip these high- definition photo graphs? They pinned down

Mathe matics as a Science 231

the photo graphs on a cardboard sheet, hence creating a chronological
montage of the microscopic displays. As Lynch put it, “ these successions of
photo graphs provided the vis i ble configuration of brain ultrastructure that
was addressed in the analytical phase of the study” (Lynch 1985, 38). But
 here again, it was not enough to mea sure an extension of axons indexed to
α. Even though the dendrites of dorsal hippocampus’s cell bodies regularly
intersected axons indexed to α and β, it remained necessary to affix a refer-
ential common to all photo graphs. How did the brain scientists do this? It
is difficult here not to quote Lynch’s account:

As each montage was constructed, it was analytically addressed in the follow-
ing manner: a clear plastic sheet was laid over the surface of the photo graphs,
and a linear scale was drawn over the surface of the sheet running in a vertical
direction which paralleled the edge of the columnar montage of photo graphs. …
A scale of “microns” (computed with reference to the magnificational power of
the photo graphs) was plotted for the drawn- line, where the “zero” point was set
at a horizontal line that approximated the alignment of the granule cell body
layer. … Mea sure ment along this scale was used to estimate linear distance along the
“vertical” alignment of granule cell dendrites as they arose from the cell bodies and
coursed “upward.” (Lynch 1985, 38; italics added)

Flat linear distances are a priori far removed from neurons and the poten-
tial sprouting of their axons. Yet, once enlarged photo graphs of tiny little
slices of standardized rats’ dorsal hippocampus are mounted on cardboard
and equipped with a linear scale drawn on clear plastic sheets whose “zero”
point corresponds to the cell body of each slice, this venerable mathe-
matical theory and its correlated objects become very, very close (Latour
1987, 244). The experimental setting of the laboratory and all of its instru-
ments producing “alignable” inscriptions— standardized rats; tiny, care-
fully washed (and stained) slices of rats’ dorsal hippocampus; montages of
enlarged photo graphs; linear scales drawn on clear plastic sheets— end up
conferring to rats’ dorsal hippocampus the same form as graphs on which
linear distances can be estimated. At the end of this mea sure ment pro cess,
ratios of intact/dead terminals— junctions between axons and dendrites—
plotted in terms of days post the lesion could even be computed by the
scientists, thus demonstrating statistically the phenomenon of axon sprout-
ing: “Mea sure ment of this expansion showed a consistent reoccupancy of
the lower 25 per cent of the region of the granule cell dendrites formerly
occupied by the [damaged] layer of axons” (Lynch 1985, 35).

232 Chapter 5

Again, as Lynch demonstrated, no magic intervened; laboratory prac-
tices made the relationships between axons and dendrites become mathe-
maticable. Standardized rats became dorsal hippocampus, tiny slices became
enlarged photo graphs, and a montage of cardboard became one regular
geometrical space whose occupancy evolved through time. If some pol-
ished mathematical facts— computation of surfaces progressively occupied
by intact terminals— did help demonstrate the existence of a nonmathe-
matical phenomenon (axon sprouting), this event necessitated a succession
of translations in order to connect the wet and bulky ecol ogy of the brain
with the dry and flat ecol ogy of mathe matics.

Formulating: A Definition

Mathe matics does not apply to the world. A cascade of translations is required
to connect nonmathematical entities with certified mathematical facts. But
at this point of our operationalization exercise, one question remains: if
the rats’ dorsal hippocampus of the brain research laboratory we have just
considered and the rat pituitary cell culture of Guillemin’s laboratory both
end up being trans- formed in order to fit with the networks sustaining
solidified mathematical objects (themselves formerly described by claims
that progressively became certified facts and even, sometimes, single sen-
tence statements part of tacit undisputable knowledge), do they not lose
many properties on the road? After all, from a rich and complex region of
the brain, the dorsal hippocampus becomes a tinkered montage of gridded
photo graphs; from a rich and complex soup of cells, the rat pituitary cell
culture becomes a simple graph. To make both entities mathematicable,
they must endure impor tant reductions. But is it worth it? What justifies
such flattening and drying?

In these specific situations, the gains of these reductions are impor tant
 because the properties of the mathematical objects as formerly defined
by mathematicians within their flat laboratories are progressively “lent”
to the pituitary cell culture and the dorsal hippocampus. First, both enti-
ties become easier to handle. After the translation pro cess from a cell soup
to a graph, Guillemin does not need the cell soup anymore. He certainly
conserves it for potential verifications, but whenever he needs to see or
show the rat pituitary cell culture, he can now use the graph printed by the
radioimmunoassay that expresses only the tiny impor tant part of the soup’s

Mathe matics as a Science 233

properties. The same is true of the brain research laboratory studied by
Lynch: instead of handling tiny slices of hippocampus, brain scientists can
now consider gridded photo graphs. One direct consequence of this ergo-
nomic gain is that the reduced entities become also more sharable. Although
it is impossible to e- mail—or, in these cases, fax— wet and bulky dorsal hip-
pocampus, after their translation into a succession of photo graphs, trustful
brain scientist colleagues based on the other side of the world are also able to
scrutinize them. Transforming the hippocampus into gridded pieces of paper
allows it to invest extended— yet expansive and fragile— communication
networks. Such a reduced and flattened hippocampus therefore also becomes
more comparable; if the brain scientists based on the other side of the world
also manage to operate similar reductions on the dorsal hippocampus, they
may be able to compare both successions of gridded photo graphs. The same
is also true of Guillemin’s graphs: instead of comparing cell soups, endocri-
nologists can compare graphs, a far easier endeavor.

Another gain of reducing entities and making them fit with the flat net-
work of certified mathematical knowledge is that reduced entities become
much more malleable; new takes appear that, in turn, suggest new instru-
ments, tests, and inscriptions. For example, when active junctions between
axons and dendrites become points within a uniform geometrical space, the
instruments already defined by mathematicians for this geometrical space
can be used to further probe the still undefined phenomenon of axon sprout-
ing, thus producing new inscriptions that will precisely help to define it.
Within this geometrical space, new tests can be made, such as mea sur ing sur-
faces, counting terminals, and calculating ratios of occupancy. These tests and
their correlated instruments will, in turn, produce readable inscriptions—
here, lists of numbers— that will help further characterize the phenomenon
 under scrutiny. The same is true of Guillemin’s rat pituitary cell culture: once
complex biochemical reactions become discrete values varying through
time, all the instruments that become available through this graphic form
can be used to further probe the cell soup. What is the slope of the graph?
What is the speed of the growth hormone’s decreasing? Again, a flat reduced
form enables the use of new instruments and the production of new readable
inscriptions that help with the characterization of a new phenomenon.

This leads us to one last gain of these crucial reduction pro cesses, perhaps
the consequence of all the other gains:39 when an entity is made compatible
with mathematical facts, it also becomes enrollable within the written claim

234 Chapter 5

that will try to attest to its reified existence. This ele ment is crucial if we
want to understand the full additional strength these reduction pro cesses
may give to undefined entities. How indeed to include axons within a text
claiming their ability to sprout? How to include Guillemin’s new peptide
within a paper attesting to its decreasing effect on the growth hormone?
Reducing them until they reach the same form as certified “flat” mathe-
matical facts allows them to become the referents of the prose that pre sents
them to their respective scientific communities. In addition to making both
axons and peptide easier to handle, more shareable, more comparable, and
more malleable, reducing them to make them compatible with the flat ecol-
ogy of mathematical facts allows them to be included inside the texts that
talk about them. The reified object “axon sprouting,” more than just being
described in a paper, is also pre sent within the paper in the flat and dry
form that precisely allowed its mathematization (in this case, according to
Lynch [1985, 40–49], as a succession of gridded photo graphs whose points
move “upward”). Similarly, the reified object “somatostatin,” more than
just being described in a paper, is also within the paper in the form of a
graph summarizing its be hav ior (Brazeau et al. 1973). The attentive reader
may have noticed that we have now come full circle from the beginning of
this operationalization exercise where we were talking about written claims
of relative conviction strengths. The end results of laboratories, experi-
ments, instruments, and inscriptions are indeed the formulation of claims
that try to attract the adherence of individuals. In this re spect, we should
now be in a position to better understand the fascinating power of math-
ematical objects and facts; they may go through construction pro cesses that
are similar to other scientific facts, but their par tic u lar flat and dry ecol ogy
makes them relevant for the formation of nonmathematical objects and
facts. They make undefined entities easier to handle, more shareable, more
comparable, more malleable, and more enrollable within claims they pre-
cisely help to formulate.

It is not mathematical facts and their correlated objects that give, by
themselves, some additional strength to the transformed entities they some-
times encounter. Rather, it is the flat ecol ogy within which mathematical
knowledge deploys itself that, sometimes, provides advantages to the entities
that acquire the same form. This last ele ment allows me to fi nally define the
activity of formulating more technically; for the remainder of this part III, I
 shall call formulating the empirical pro cess of translating an undefined entity

Mathe matics as a Science 235

 until it acquires the same form as already defined mathematical object. The
encounter between a “made- flat” entity and a mathematical object— that
previously had to be constructed in a laboratory and presented in a claim
whose conviction strength made it a polished fact— will, in turn, help scien-
tists to further characterize the be hav ior of the entity and pre sent its reified
version in a written claim. Just as any scientific claim (including those for-
mulated by mathematicians), this written claim will still have to overcome
publication, citation, captation, and posterity trials to become, eventually, a
certified fact. A circle has been drawn; we are now back to where we started.
With all these ele ments in mind, it is high time to return to computer science
in the making and engage with ethnographic materials.

As in part II when we were dealing with computer programming, the journey
was long and full of zigzags. But we did not have any other choice: in order not
to get lost in our further explorations of the role of mathe matics in the forma-
tion of algorithms, we needed to understand where certified mathematical facts
come from; how they solidify; and how, sometimes— very rarely— they become
part of tacit necessary knowledge. Thanks to STS works on mathe matics as well
as heterogeneous examples taken from nineteenth- century protograph theory,
con temporary controversies in fuzzy logic, a well- accepted theorem in theoreti-
cal signal pro cessing, and the laboratory practices that led to the shaping/discov-
ery of quaternions, we progressively realized that mathematical objects— and
the certified facts that describe them— need academic papers, trials, labora-
tories, instruments, and inscriptions to come into existence. Moreover, when
nonmathematical disciplines, such as endocrinology or brain research, need
to borrow the heuristic and ergonomic strength of certified mathematical
objects and facts to qualify bulky and wet entities (e.g., a new peptide, axons
of dorsal hippocampus), a cascade of translations is required in order to make
 these entities compatible with the flat ecol ogy of certified mathematical facts.
Consequently, we saw that the indubitable power of mathe matics should be
understood in the light of the mundane practices that allow nonmathemati-
cal entities to become “mathematicable.” These mundane yet often ignored
practices aiming to connect undefined entities to certified mathematical
knowledge are what I call “formulating.”

But how do formulating practices express themselves within computer
science laboratories? What is their role in the construction of algorithms?
In light of the previous parts of this book, how does formulating articulate
with ground- truthing and programming activities? This is what we are going
to consider in this third case study.

6 A Third Case Study

238 Chapter 6

Pre sen ta tion of the Empirical Materials

This case study is taken from the saliency- detection proj ect we already
encountered in chapter 2. Just to refresh the memory of the reader, this
saliency- detection proj ect included two PhD students and a postdoc— BJ,
GY, and CL— that I shall keep on referring to as a single entity: “the Group.”
In a nutshell, the Group’s argument that framed the proj ect was that
saliency detection in image pro cessing may become industrially more in ter-
est ing if saliency- detection algorithms could detect, segment, and evaluate
the varying importance of salient objects and human faces within complex
digital photo graphs. This new problematization of the saliency prob lem
called for the construction of a new ground- truth database gathering unla-
beled complex digital images and their manually labeled counter parts, the
“targets.” The new ground truth was central to the formation of the Group’s
algorithm as this database materially established the terms of the prob lem
to be solved computationally. To effectively shape its algorithm, the Group
divided its new ground- truth database into two sets: a training set and an
evaluation set. The training set was used to study the relationships between
input- data and their targets. Once these relationships were defined and
expressed in a computational model, the Group translated this model into
numbered lists of machine- readable instructions, thus assembling a genu-
ine computer program. The per for mances of this program could then be
evaluated on the evaluation set of the ground truth by means of standard
statistical mea sures. The new ground- truth database, the princi ples of the
computational model, and the pro cessing per for mances of the correlated
computer program were later presented in an academic paper that was
rejected by the committee of an impor tant conference in image pro cessing.
Yet one year later, a revised version of the article won the “Best Short Paper
Award” at a smaller conference.

In the following sections, I will mainly focus on the training set and
the practices that led to the formulation of the relationships between input-
images and their targets that was then translated into lines of code. As the
targets of the Group’s new ground truth were quite complex, I will focus
exclusively on one of the targets’ component: the relative importance values
of the detected and segmented faces (see figure 6.1). My goal is to account
for the formulating practices that led to the characterization of a way to
automatically calculate the relative importance values of detected faces,
thus retrieving one— small— part of the ground truth’s targets. Accounting

A Third Case Study 239

Figure 6.1
Montage assembled from the data of Group’s ground truth. On the left, an “input-
image” of the Group’s new ground- truth database. In the middle, the same image
as labeled by the workers of the crowdsourcing task. The crowdworkers did not all
agree on the salient features of the image. If all of them labeled the whole body of the
 woman, then some others also labeled her face, the face in the middle of the image,
and the face on the right- hand side of the image. The gray- scale image on the right
is based on the labeled image in the middle. It was post- processed within the Lab
 after the crowdsourcing experiment. Each gray- scale zone corresponds to one target
of the unlabeled image on the left. These zones are what the computer program,
as defined by the computational model, should retrieve in the best pos si ble way.
The relative saliency values of the targets— expressed by dif fer ent gray- scale values—
were defined as the ratios of the number of rectangles that surround them over the
number of workers who performed the labeling task on the image. In this case, four-
teen workers performed the labeling task. Fourteen rectangles surrounded the whole
 woman, which makes the shape of her body have the maximum value 1. But thirteen
rectangles also specifically surrounded the face of the woman, making it have the
value 0.93. Twelve rectangles surrounded the face in the middle (value 0.85), and
ten rectangles surrounded the face on the right (value 0.71). The background of the
gray- scale image— every thing that is not labeled— has the value zero. All these values
and zones have been defined with the help of the labels drawn by the workers. At this
point, the goal of the Group’s proj ect was to find a way to automatically transform
the image on the left into the image on the right without the help of the labels. In
this case study, we will only examine how the Group found a way to automatically
retrieve the relative saliency values of faces. We will not deal with nonface ele ments
nor with any sort of segmentation. Following the Group, the question we will have
to answer is thus the following: How do we retrieve face importance values (e.g.,
0.93, 0.85, 0.71) from input- images such as the one on the left?

for these practices will allow me to link this part III with part I (ground-
truthing) and part II (programming). This case study will also serve as step-
ping stone to touch on the now widely discussed topics of machine learning
and artificial intelligence.

To better understand the practices that lead to the definition of a computa-
tional model for face importance, we will have to closely examine the Group’s
training set and the progressive reor ga ni za tion of its data. Yet, as a Matlab

240 Chapter 6

Figure 6.2
Screenshot of the Group’s training set used for the modeling of face importance val-
ues as it appeared in the Matlab software environment. On the right, the Workspace
of Matlab IDE indicates all the variables used to create the database. In the center of
the screenshot, a spreadsheet that summarizes the organ ization of the database. The
first column of the spreadsheet gathers the IDs of the input- images of the training
set. The second column indicates the number of crowdworkers who performed the
labeling task on the input- image of the same row. The third column gathers the coor-
dinates of the face- detection rectangles as provided by BJ’s algorithm when run on
the input- image of the same row (more on this below, in the main text). Each group
of four coordinates refers to (a) the point on the x axis of the input- image where the
rectangle starts; (b) the point on the y axis where the rectangle starts; (c) the point
on the x axis where the rectangle ends; and (d) the point on the y axis where the
rectangle ends. The fourth column indicates the number of salient feature within
the input- image according to the crowdworkers. This value can be dif fer ent from the
number of groups of four coordinates in column 3. The fifth column refers to the
importance values of the faces as the Group computed them based on the labels of
the crowdworkers. On the left of the spreadsheet, the win dow Current Folder indi-
cates the folder currently accessed by Matlab IDE. On the far left, the Editor shows a
small part of the Matlab script that was required to parse the data of the crowdsourc-
ing task and or ga nize it as a Matlab database. The computer programming practices
that were needed for the completion of this Matlab script were similar to those I
described in chapter 4.

A Third Case Study 241

training set is quite confusing (see figure 6.2), I will not be able to base my
analy sis on “real” screenshots. Just like in chapter 4 when I was accounting
for programming practices, I will have to simplify the Group’s training set
and retain only the ele ments that are relevant for the pre sent analy sis. The
simplified version of the Group’s training set will thus be presented as in
 table 6.1. As we are going to follow a succession of translations, the first trans-
lation of the Group’s training set will be counted as one, the second transla-
tion as two, and so on. The initial form of the training set will be counted as
translation 0.

This case study is or ga nized as follows. I will first start by illustrating
how the anticipation of formulating practices may sometimes impact on
the design of ground truths. It seems indeed that translating undefined

 Table 6.1
Translation 0: Simplified Matlab IDE as it will be presented for the remainder of
the analy sis

Input- images ID
Coordinates of labeled faces
(BJ’s model)

Face importance
values of labeled faces

image1.jpg [52; 131; 211; 295] [479; 99;
565; 166] [763; 114; 826; 168]

[0.928] [0.857]
[0.714]

image2.jpg [102; 181; 276; 306] [501;
224; 581; 304]

[0.916] [0.818]

image3.jpg [138; 256; 245; 379] [367;
142; 406; 202]

[0.916] [0.636]

… … …

image152.jpg [396; 151; 542; 280] [0.928]

Note: The term “Translation 0” indicates that it is the “initial” state of the train-
ing set. This “Translation 0” is of course relative to the sequence we will follow:
many other translations were necessary to give this dataset its “initial” form. The
first column refers to the input- images’ IDs. For this case study, we will only need
to consider the first three and the very last input- images. For the sake of clarity,
I simplified their IDs. All the rows between image3 and image152 are summarized by
the ellipsis “…”. The second column indicates the coordinates of the labeled faces in
the input- images. These coordinates were provided by BJ’s face- detection algorithm
(more on this in the main text). The last column gathers the importance values of
 these faces as provided by the crowdworkers. These are the only data we need in
order to follow the group as it tried to define the relationship between input- images
and the varying importance values of their faces.

242 Chapter 6

data- target relationships to make them fit with certified mathematical
knowledge requires, sometimes, preparatory efforts. In the subsequent sec-
tion, I will account for the formulating practices that led to the charac-
terization of a computational model that could satisfactorily retrieve face
importance values from input- images. As we shall see, many parallels can
be drawn between what the Group did to its data- target relationships and
what other scientists do to the undefined entities they try to characterize.
In that sense, apart from the fact that they often rely on ground- truth data-
bases, the formulating practices that sometimes take place within computer
science laboratories may not be very dif fer ent from formulating practices that
take place within laboratories of biology, anthropology, or physics. In the
next section of the chapter, I will link formulating practices with program-
ming practices as defined in chapter 4. As we shall see, formulating data- target
relationships can make appear polished mathematical facts that operate as
scenarios for further programming episodes. Fi nally, I will consider machine-
learning techniques as audacious attempts at automating formulating prac-
tices at the cost of more ground- truthing and programming efforts. This last
ele ment will make me tentatively deal with what is nowadays called (often
indiscriminately) “artificial intelligence.”

But first things first; for the moment, let us go back to November 2013
at the Lab’s cafeteria.

Ground- Truthing— Formulating

November 2013, at the Lab’s cafeteria: I meet the Group for the very first
time. As I know almost nothing about image pro cessing, ground truths, and
saliency detection, this first Group meeting is for me difficult to follow. But
during the pre sen ta tion of the proj ect, the Group soon shares with me one
impor tant assumption:

Group meeting, the Lab’s cafeteria, November 7, 2013

CL: “Experiments have shown that saliency of faces varies according
to their size and number. Basically, one large face is considered more
impor tant than many small faces.”

GY: “And when there are many faces, each face ‘loses’ some saliency, so
to speak.”

FJ: “But when there are many faces, they are also smaller, no?”

A Third Case Study 243

GY: “Well, not necessary. You can have one large face on the foreground
and many faces in the background.”

FJ: “I see. And the other algorithms don’t do that?”

SL: “No, they don’t pay attention to faces. At least in saliency. And that’s
precisely the point of including faces to saliency.”

As I will find out a few days later, the experiments CL mentions at the
beginning of the above transcription come from papers in gaze predic-
tion (Cerf, Frady, and Koch 2009), cognitive psy chol ogy (Little, Jones, and
DeBruine 2011), and neurobiology (Dekowska, Kuniecki, and Jaśkowski
2008) published in peer- reviewed journals. These papers claim that the rela-
tive size and number of faces within a given scene tend to affect their attrac-
tion strength. Roughly stated, in a given scene, one large face will generally
attract more attention than one small face that itself will attract more atten-
tion than many small faces but less attention than, for example, two larger
 faces. That the importance of faces is somehow related to their size and
number within a given image is an impor tant assumption for the Group as
it further contributes to defining the se lection criteria of the images of the
new ground truth:

Group meeting, the Lab’s cafeteria, November 7, 2013

CL: “So if it’s OK for you, you can start downloading images. Mean-
while, we’ll keep working on the code [of the experiment].”

FJ: “Sure.”

CL: “But again, it has to be complex images. And most of them must
also contain faces.”

BJ: “And faces of dif fer ent sizes and number.”

FJ: “You mean, images with many faces as well?”

BJ: “Yes because it impacts on their importance. Other wise every body
 will agree and we won’t have continuous values.”

How could crowdworkers disagree if the dataset only includes simple images
with one centered face or object? As one goal of the Group’s proj ect is to
refine saliency and make it become more flexible, the images the workers
 will be asked to label should also give interpretative opportunities. In that
sense, the recent findings in gaze prediction and neurology are decisive:
gathering images with more or less faces of dif fer ent sizes may guarantee
some healthy disagreement among workers.

244 Chapter 6

Still dazed by all these new stories about ground truths and models, I
soon started downloading images on the Lab’s server. At the second Group
meeting, on November 14, 2013, I showed the Group sample images just to
be sure I understood the instructions correctly. As the feedback was positive
I continued to download photos. On November 16, 2013, nine hundred
carefully selected complex images were available on the Lab’s server. But
the day after, I received an email from BJ:

Friday, November 17, 2013. Email from BJ to FJ, header “About the
distribution of faces”

Hey FJ,

I’ve quickly pro cessed the faces in the images you selected and binned
the x axis. Here is the distribution of our database over number of faces
and face size so far.
[see figure 6.3]
 We’ll try to model things later so we need to equalize a little with more
images with two or more large faces. So if you can keep on digging for
such images (say two hundred), that’d be great.

Best,
BJ

Many questions immediately arose. First, how did BJ manage to count the
number of faces and calculate their respective sizes for every image I put on
the server? It turned out that BJ had previously worked on a face- detection
algorithm that does precisely this: detecting, counting, and mea sur ing the
size of faces within images.1 Capitalizing on BJ’s previous work on face
detection was even a reason why this saliency proj ect was launched in the
first place (see chapter 2). But why would the current distribution impact
the model the Group will have to shape after the crowdsourcing task that
was not even submitted? This is precisely the question I asked BJ:

Friday, November 17, 2013. Email from FJ to BJ, header “About the
distribution of faces”

Sure, no prob lem. But, if I may, why is it so impor tant to equalize at this
stage of the proj ect?

Best,
FJ

450

400

350

300

250

200

150

100

50

0
0 1 2–3 4–7 8–14 15–24 25–50 0

450

400

350

300

250

200

150

100

50

0

0–
0.0

1

0.0
1–

0.0
5

0.0
5–

0.1

0.1
–0

.12

0.1
2–

0.1
5

0.1
5–

0.1
8

0.1
8–

0.2

0.2
–0

.25

A

B

N
um

be
r

of
 im

ag
es

Number of faces

N
um

be
r

of
 im

ag
es

Size of faces

0.2
5–

0.3

Figure 6.3
Two graphs sent by BJ illustrating the distribution of the database on November 17,
2013.

246 Chapter 6

Saturday, November 18, 2013. Email from BJ to FJ, header “About the
distribution of faces”

 Great if you can do it.
It’s just that if face importance really varies with size and number, we’ll
surely need a bigger range of cases to fit the data.

Best,
BJ

At this stage of the chapter, we do not need to understand what “fit the
data” means (we will cover this in the next section). Suffice here to notice
the projection BJ makes toward the Group’s forthcoming analy sis of the rela-
tionship between input- images and the importance values of faces, the one
small aspect of the output- targets I de cided to cover in this case study. In
November 2013, the Group does not possess any ground- truth database yet:
the web application is not finished; the crowdworkers have not labeled any
images; no coordinates of rectangles have been stored in the Lab’s server; no
multilevel targets have been post- processed. At this stage, there is nothing. Or
is there? We saw indeed that the Group has an assumption based on papers
it considered trustworthy: the perceived importance of faces is somehow cor-
related to their size and number. This assumption suffices to make BJ foresee
a con ve nient way to connect the output- target relationship of face values
with— hopefully— some certified mathematical claim that will, in turn, help
to qualify it. It is indeed not the first time that BJ and the other members
of the Group have embarked on the construction of a new algorithm. They
have done it before— especially the postdoc CL— and know what to expect.
It is perhaps this habit that pushes them to be on the safe side. If equalizing
face data can facilitate the future work that will consist in automating the
passage from input- images to output- targets that still need to be constructed,
it is indeed impor tant to do it.

At the end of chapter 1, I suggested two complementary analytical per-
spectives on algorithms: a “problem- oriented perspective” that should
inquire into the problematization pro cesses leading to the formation of
ground truths and an “axiomatic perspective” that should inquire into the
numerical procedures extracted from already constituted ground truths. The
distinction between these two perspectives was motivated by the need to
better understand the formation of the ground truths from which algorithms
ultimately derive— hence the “problem- oriented” perspective— while not

A Third Case Study 247

completely reducing algorithms to these ground truths— hence the “axi-
omatic” perspective. But I also stipulated, though quite loosely, that both
perspectives should be intimately articulated as ground- truthing and what I
now call formulating activities may sometimes overlap, specific numerical
features being suggested by ground truths (and vice versa). We see here
concretely how these two pro cesses can overlap; the uncertainty related
to the construction of a ground truth relying on anonymous and scattered
crowdworkers certainly encourages the development of equalizing habits
that can further help connect with certified mathematical facts capable of
specifying a new phenomenon.

Reaching a Gaussian Function

March 2014: the post- processing of the crowdworkers’ rectangular labels is
now over. The Group fi nally possesses a new ground- truth database gather-
ing input- images and their corresponding multilevel targets (see chapter 2,
figure 2.8). At this stage, one can say that the Group effectively managed
to redefine the terms of the saliency prob lem, at least at the “laboratory
level” (Fujimura 1987). The task of the not yet fully designed algorithm
is now clear: from the input- images of the ground truth, it will have to
retrieve their corresponding targets in the best pos si ble way. The ground-
truth database is thus the material base that will allow both the shaping
of the algorithm as well as its evaluation in terms of precision and recall
statistical mea sures.

The next move of the Group is to split the ground truth into two subsets:
a training set and an evaluation set. Only the training set containing two
hundred images and targets is used to design the computational model. The
remaining six hundred images and targets are stored in the Lab’s server and
 will only be used to test the accuracy of the model’s program and compare
it with other models’ programs already proposed by concurrent laboratories
(cf. figure 2.9).2 Within the training set, 152 images contain faces. It is thus
this subset of the training set that is used to define a way to automatically
retrieve face importance values from input- images without the help of the
workers’ labels.

Let us have a closer look on this subset of the training set. What does it
look like? For the case that interests us here— the definition of the relation-
ship between input- images and face importance values— the training set

248 Chapter 6

concretely looks like a spreadsheet of 152 rows and five columns (only the
first three columns are represented in the simplified table 6.2).3

The first column of table 6.2 refers to the IDs of the input- images, the
second column refers to groups of four coordinates— each group providing
information about one face of the input- image (more on this below)— and
the third column refers to the importance values attributed by the crowd-
workers to each labeled face of the input- images. The data of this Matlab
spreadsheet— actually, a genuine database—is crucial as it is the material
base of the still to be defined model that will have to retrieve face impor-
tance values as provided by the labels of the crowdworkers without the help
of these labels. But arranged in such a spreadsheet, these data remain quite
confusing. How indeed to discern the relationship between the faces of
input- images and their correlated face importance values in such an austere
classification? Something needs to be done to better appreciate what this
relationship looks like.

A con ve nient way to get a better grip on this relationship between faces
of input- images and their importance values— the still- undefined entity
the Group tries, precisely, to define—is to make it seeable all at once. But
how to see faces and their importance values within one legible document?
Importance values are numbers so they can be represented as dots within
a readable drawing— for example, a graph— rather easily. But what about
 faces? What are they? Technically, within the training database— thanks to
BJ’s face- detection algorithm— the faces of input- images are groups of four
coordinates linked to one image ID. But how then do we make these groups

 Table 6.2
Translation 0 of the Group’s training set

Input- images ID
Coordinates of labeled faces
(BJ’s model)

Face importance values
of labeled faces

image1.jpg [52; 131; 211; 295] [479; 99;
565; 166] [763; 114; 826; 168]

[0.928] [0.857]
[0.714]

image2.jpg [102; 181; 276; 306]
[501; 224; 581; 304]

[0.916] [0.818]

image3.jpg [138; 256; 245; 379]
[367; 142; 406; 202]

[0.916] [0.636]

… … …

image152.jpg [396; 151; 542; 280] [0.928]

A Third Case Study 249

commensurable with face importance values? One necessary operation is
to reduce these groups and translate them into something else, hopefully
comparable to the face importance numerical values. In line with its doc-
umented initial assumption regarding the size and number of faces—an
assumption that participated in the collection of the data in the first place
(cf. above)— the Group de cided to summarize every group of coordinates
with only two numerical values: a “number- value” and a “size- value.” The
number- value is provided by BJ’s face- detection algorithm. It refers to the
absolute number of faces within each input- image. This value can some-
times be superior to the number of labeled faces as crowdworkers have not
always labeled as salient all the faces within the input- images. The “size-
value” refers to the size of the faces labeled as salient by the crowdwork-
ers. Again, BJ’s face- detection algorithm helped to produce these values as
it computed the faces’ sizes as the ratio of the area of the face- detection
rectangle over the size of the image. After the Group wrote the appropriate
scripts in the Matlab Editor to compute these values with the help of BJ’s
face- detection algorithm, the spreadsheet of its training set is reor ga nized
as in table 6.3.

If this first translation successively reduces each labeled face of input-
images to two numerical values— a “number- value” (column 2) and a
“size- value” (column 3)—it remains difficult to compare them with their
importance values deriving from the workers’ labels. Indeed, how would
it be possible to represent such dif fer ent orders of magnitude on the same
scale? We saw that face importance values can vary between zero and one.
But what about “number- values” and “size- values”? Number- values can be
problematic as they can vary from one to ninety- eight. But the real issue
comes from the size- values that can vary from 0.0003 (smallest labeled face
of the training set) to 0.7500 (the biggest labeled face of the training set):
four orders of magnitude separate the smallest size- value from the high-
est. And six orders of magnitude separate the smallest size- value (0.0003)
from the highest number- value (98). With such differences of scale, it is
extremely difficult to gather all these values in one readable document.

Yet all these numerical values possess an impor tant property: they are
numerical values and can thus be written down, studied, and tested in flat
laboratories by researchers called mathematicians (as we saw in chapter 5).
In fact, a whole subfield of mathe matics— number theory— daily dedicates
itself to the study of these flat and dry entities. An impor tant proto number

250 Chapter 6

theorist, John Napier, even shaped/discovered what he called, in 1614,
“logarithm”: the inverse of exponentiation.4 Thanks to this mathematical
fact that is now a “single sentence statement” (Latour 1987, 21–62), it is
nowadays easy to translate values of dif fer ent orders of magnitude and re-
present them on one same readable drawing. Thanks to the instrument
of logarithm, both number- values and size- values referring to the faces of
input- images can be further translated by the Group into logarithmic values.
Thanks to this basic operation— imbedded in Matlab— the initial prob lem
of scale vanishes, and a whole set of comparable integers now appears in
the Group’s dataset (see table 6.4). And the undefined entity “relationship
between faces of input images and their importance values” the Group tries
to describe becomes a little bit more characterizable.

But still, at this stage, the training set remains hard to read. Whereas the
Group is mainly interested in the faces of its training set, the database keeps
being or ga nized around the IDs of the input- images. This organ ization of
the data was impor tant at the beginning of the translation pro cess as it
helped to indicate what BJ’s face- detection algorithm was to look at. But at
this stage, this image- centered organ ization is cumbersome. It is then time
for the Group, once again, to reor ga nize its spreadsheet to center it around
its face- related data: log(number- values), log(size- values), and face impor-
tance values. When put together, these “triplets” of values give a unique
“signature” to each of the 266 labeled faces of the training set (see table 6.5).

 After this third translation, the training set has become a list of signa-
tures gathering triplets of relatively close values. Though quite common
and mundane, the efforts undertook by the Group from Translation 0

 Table 6.3
Translation 1 of the Group’s training set

Input- images ID
number-
values

size- values of labeled
 faces

Face importance values
of labeled faces

image1.jpg 3 [0.065] [0.014]
[0.008]

[0.928] [0.857]
[0.714]

image2.jpg 2 [0.042] [0.012] [0.916] [0.818]

image3.jpg 3 [0.030] [0.0054] [0.916] [0.636]

… … … …

image152.jpg 1 [0.053] [0.928]

A Third Case Study 251

start to pay off: every labeled face is now described by a unique combina-
tion of numbers. But still, in this list form, it remains hard for the Group
to discern a relationship among the values of these triplets: how do face
importance values interact with both number- values and size- values? Even
though this list well simplifies the initial spreadsheet, it still has an impor-
tant incon ve nience: it looks like any other list— from shopping lists to
lists of bond prices. The values within these lists may differ, but the lists
themselves have always roughly the same shape: they remain successions
of lines (Goody 1977, 78–108). How then to grasp the particularity of the
undefined entity the Group tries to characterize? How to define its shape,
its unique be hav ior?

 Table 6.4
Translation 2 of the Group’s training set

Input- images ID
log(number-
values) log(size- values)

Face importance
values

image1.jpg 0.477 [-1.187] [-1.853]
[-2.096]

[0.928] [0.857]
[0.714]

Image2.jpg 0.301 [-1.376] [-1.920] [0.916] [0.818]

Image3.jpg 0.477 [-1.522] [-2.267] [0.916] [0.636]

… … … …

image152.jpg 0 [-1.275] [0.928]

 Table 6.5
Translation 3 of the Group’s training set

Face signatures

1 [0.477; -1.187; 0.928]

2 [0.477; -1.853; 0.857]

3 [0.477; -2.096; 0.714]

4 [0.301; -1.376; 0.916]

5 [0.301; -1.920; 0.818]

6 [0.301; -1.522; 0.916]

7 [0.301; -2.267; 0.636]

…

266 [0; -1.275; 0.928]

252 Chapter 6

If the forms of lists of numbers are difficult to differentiate, these lists
have nonetheless a crucial quality: they can—at least since the second half
of the seventeenth century— give form to the values they contain. Indeed,
when coupled with an appropriate coordinate space, the numbers contained
by lists can be transformed into points that draw distinguishable shapes.
As the transformation of lists of values into graphs is nowadays a “single
sentence statement” part of tacit and necessary knowledge, the Group just
needs to write the Matlab instruction “scatter(data(:,1), data(:,2),
data(:,3))” to create the scatterplot of figure 6.4.

 Every labeled face of the training set is re- presented in this Matlab scatter-
plot of log(number- values)— x axis— and log(size- values)— y axis— against
importance values— z axis, ψ in the plot. At this point, the undefined entity
the Group tries to characterize starts to get a shape. Its be hav ior begins to
appear; a genuine phenomenon is being drawn that has specific characteris-
tics. It starts “slowly” with low ψ values before drawing a steep slope. This
slope then stops to form a kind of ridge before abruptly dropping again.
The bell shape of this phenomenon might not talk to every one. Yet to the
Group’s members, who are used to encountering mathematical objects, it
soon reminds them of a Gaussian function:

Friday April 14, 2014. The terrace of CSF’s cafeteria, discussion with BJ

FJ: But how did you know that face importance was a Gaussian?5

BJ: Well, once we got the plot, it was sure that it was a Gaussian.

FJ: I mean, it could have been something else?

BJ: Sure, but here, the data drew a Gaussian.

FJ: But you juggled the data in the first place!

BJ: Yes, but it’s just to make something appear. You have to do these
 things; other wise you have nothing to model.

Thanks to this fourth translation of the training set, the Group has a strong
intuition: the relationship between faces of input images and their impor-
tance values is surely close to some kind of Gaussian function, a polished
certified mathematical object whose be hav ior is now decently understood
and documented. But how could the Group be certain that the phenom-
enon its experiment created really behaves like a Gaussian function? After
all, a Gaussian function is something smooth while the scatterplot the Group
asked Matlab to draw is quite discontinuous. From a distance, this heap of

A Third Case Study 253

points may look like a Gaussian function but when one looks closer, its shape
appears rough and uneven.

This is where Matlab, as a huge repository of certified mathemati-
cal knowledge, is again crucial as the simple instruction “fit(x.’, y.’,
‘gauss2’)” allows the Group to verify its intuition by producing other
graphs and captions (see figure 6.5).

Once again, the training set is translated, trans- formed. Its shape is now
smooth and homogeneous; it becomes an actual function. This new transla-
tion of the training set also produces a series of new inscriptions describing
the junction between the previous rough heap of points and its smooth
counterpart. Let us have a look at these inscriptions: What do they refer
to? The last piece of inscription— “R2 = 0.8567”— indicates that more than
85 percent of the variability in the z data points that constitute the phe-
nomenon the Group tries to qualify can be described by this mathemati-
cal function. The inscriptions “μ1 = -1.172” and “μ2 = 0.4308” refer to
the peak of the function. They assert that the xy point [−1.72; 0.4308] cor-
responds to the function’s highest z value. Fi nally, the inscriptions “σ1 =
0.9701” and “σ2 = 0.7799” indicate the standard deviation of the function

−4
−2

0

0

1
2

0

0.2

0.4

0.6

0.8

1

log(facesize)
log(#face)

im
po

rt
an

ce
 ψ

Figure 6.4
Translation 4 of the Group’s training set.

254 Chapter 6

along the x axis and y axis, respectively. Altogether, “μ1,” “μ2,” “σ1,” and
“σ2” form the par ameters of the Gaussian function.

In this chapter, I try to account for the formulating practices required
for the shaping of an image- processing algorithm (and potentially many
 others). As a consequence, we do not need to understand every subtlety
of these mathematical objects called Gaussian functions. All we need to
understand is, first, that Gaussian functions do not come from some
superior real ity: just as any other mathematical object, Gaussian func-
tions had to be shaped within flat laboratories and described in written
claims that had to overcome many trials to become polished certified facts
(see chapter 5). Second, we need to understand that thanks to the par-
ameters provided by Matlab— themselves relying on the training set as
transformed into a list of coordinates (see table 6.5)— the Group becomes
able to deduce face importance values as provided by crowdworkers from
log(number- values) and log(size- values) as provided by the input- images

–3 –2
–1

0
0.51

1.5
0

0.2

0.4

0.6

0.8

1

log(facesize)
log(#face)

im
po

rt
an

ce
 ψ

Figure 6.5
Translation 5 of the Group’s training set: Gaussian function fitted on the distribution
and normalized between 0 and 1. Function’s information: General model Gauss2:
f(x,y) = exp(-((x-μ1)^2/2σ1^2)-((y-μ2)^2/ 2σ2^2)). Coefficients: μ1 =
-1.172 ; μ2 = 0.4308 ; σ1 = 0.9701 ; σ2 = 0.7799 ; R2 = 0.8567.

A Third Case Study 255

 after being pro cessed by BJ’s algorithm. In other words, the Group can
now decently retrieve face importance values without any labels. This is
the consequence of a certified mathematical fact about Gaussian func-
tions. As Matlab reminds the Group after the fifth translation, any z value
of this Gaussian function at any point (x,y) can be expressed by the follow-
ing formula:

z = f(x,y) = exp(-((x- μ1)^2/2σ1^2)-((y- μ2)^2/2σ2^2)).

When reor ga nized more elegantly, this formula provided by the certified
mathematical knowledge embedded in Matlab gives us:

z = f xi ,yi() = exp(−
xi − µ1()
2σ1

2

2

−
yi − µ2()
2σ 2

2

2

).

A connection has been made with the flat ecol ogy of mathe matics; thanks
to this fifth translation and its correlated inscriptions, the Group now pos-
sesses all the ele ments it needs to compute face importance values. With the
fourth translation, the undefined entity “relationship between face impor-
tance values and faces” became an observable phenomenon. With this fifth
translation and the connection it creates with a certified mathematical
fact, the be hav ior of this phenomenon is describable: for any duets (x, y)
with coordinates (log[number- value],log[size- value]), there is a z coordinate
described by the following equation:

z = f xi ,yi() = exp(−
xi − (−1.172)()
2 0.9701()2

2

−
yi − 0.4308()
2 0.7799()2

2

).

But how does the parametrized equation of the formula that describes the
Gaussian function work concretely? How does this equation effectively
output face importance values close to those provided by the crowdwork-
ers? Let us consider the first input- image of the training set— the one we
used to introduce the topic of the case study in figure 6.1. We saw that,
thanks to BJ’s face- detection algorithms, the faces of this input- image can
be described as [0.065; 3], [0.014; 3], and [0.008; 3], the first values of
 these duets representing the size- value of the face, the second value repre-
senting its number- value. Now, by plugging the log values of these three
duets (x1, y1), (x2, y2), and (x3, y3) into the formula provided by the certified
mathematical knowledge embedded in Matlab (itself deriving from the
Group’s translations of the training set), one obtains the three following
equations:

256 Chapter 6

f x1,y1() = exp(− (log 0.065()− (−1.172))
2(0.9701)2

2

−
(log 3()− 0.4308)

2 0.7799()2
2

) = 0.998

f x2 ,y2() = exp(− (log(0.014)− (−1.172))
2(0.9701)2

2

−
(log(3)− 0.4308)

2(0.7799)2
2

) = 0.779

f x3,y3() = exp(− (log(0.008)− (−1.172))
2(0.9701)2

2

−
(log(3)− 0.4308)

2 0.7799()2
2

) = 0.633

The values [0.998], [0.779], and [0.633] are the three face- importance val-
ues of the three faces of input- image1 as computed by the Group’s com-
putational model. We can see that these values are close but not similar to
the “original” values [0.928], [0.857], and [0.714] as computed from the
crowdworkers coordinates. This is the cost but also the benefit of the whole
formulation as the Group now possesses a face importance model that can
retrieve dif fer ent, yet close, face importance values without the help of the
crowdworkers’ labels.

But the translation pro cess is not over yet. After the statistical evalua-
tion of the whole algorithm on the evaluation set (see chapter 2), one last
operation needs to be done; the Group still has to pre sent its reified object
within the claim that attests for its existence. This is another advantage of
formulating practices— more than connecting undefined entities with cer-
tified mathematical facts that help to characterize them, it also allows the
inclusion of the characterized object inside the text that pre sents it to the
peers. At this point, I must then quote the passage of the Group’s initially
rejected manuscript where the computational model for face importance is
presented:

We use the following function, denoted as G in Eqn. 2, as a model for varying
importance of faces in our saliency algorithm.

ψ i
f ≈G si

f ,ni() = exp(−
(log si

f()− µ1)

2σ 1
2

2

−
(log ni()− µ2)

2σ 2
2

2

) (2)

 Here, ψ i
f is the importance values of f th face in ith image. si

f and ni are the
size of the f th face in ith image and the number of faces in ith image, respectively.
Note that si

f is the relative size compared to the size of the image, therefore it is
between 0 and 1. The par ameters of the Gaussian fit are μ1 = −1.172, μ2 = 0.4308,
σ1 = 0.9701. σ2 = 0.7799, and the base of the logarithm is equal to 10.

Our efforts paid off: we fi nally managed to account for these sentences
that mix En glish words with combinations of Greek and Latin letters
divided by equal signs that are widely used by computer scientists when

A Third Case Study 257

they communicate about their algorithms in academic journals. We first
had to better understand how mathematical facts and objects come into
existence. We then had to accept that the power of these facts and objects
does not come from a superior real ity but from the mundane formulat-
ing practices that progressively translate and reduce undefined nonmath-
ematical entities— peptides, axons, relationships between values of Matlab
databases—in order to, eventually, connect them to the flat ecol ogy of math-
ematical knowledge. We also had to better appreciate the extra strength
 these connections provide to undefined entities: formulating practices—
and the reductions that go with them— make undefined entities easier to
 handle, more sharable, comparable, malleable, and enrollable within texts
claiming for their existence and be hav ior. With all these ele ments of chap-
ter 5 in mind, we further had to account for how formulating practices
are expressed in the construction of new image- processing algorithms (and
potentially many others). We first saw that the anticipation of these prac-
tices may sometimes impact on the shaping of ground truths. We then saw
how these practices— and all the translations they call for— progressively
make an undefined entity become a mathematical object capable of being
described by a formula. These connections with the flat ecol ogy of mathe-
matics—in fact, genuine transformations into well- documented mathemati-
cal objects— participate in the assemblage of computational models that
further appear in academic publications. To paraphrase Latour (1999a, 55),
we saw in this section that mathe matics has never crossed the great abyss
between ideas and things. Yet it often crosses the tiny gap between the
already geometrical graph of Translation 4 (figure 6.4) and the solid formula
as provided by Translation 5 (figure 6.5). Once this tiny gap is crossed— and
this requires many preparatory small gaps— mathe matics provides full addi-
tional strength to the object under scrutiny.

Yet despite this small victory, something remains mysterious. Indeed, a
mathematical formula such as the one summarizing the (very small part of)
the Group’s model within its academic paper is surely power ful as it allows
us to retrieve face importance values without the data provided by the
crowdworkers. In that sense, this formula decently describes the be hav ior
of the phenomenon “relationship between faces of input images and their
importance values” that was still an undefined entity at the beginning of
the formulating pro cess. But in this “formula state,” such a computational
model cannot make any computer compute anything. In this written form,

258 Chapter 6

within the Group’s manuscript, the model might be understandable to
 human beings, but it is not able to trigger electric pulses capable of making
computers compute. Yet it somehow needs to; as the per for mances of the
Group’s model will also be evaluated on the evaluation set of the ground
truth, the model must also take the shape of an actual program. What is
then the relationship between the mathematical inscriptions that describe
computational models and the actual computer programs that effectively
compute data by means of electric pulses?

Formulating— Programming

The point I want to make in this section is quite simple: if mathemati-
cal inscriptions that describe computational models in academic papers
cannot, of course, trigger electrical pulses capable of making computers
compute actual data, they nonetheless work, sometimes, as transposable sce-
narios for computer programming episodes.

In chapter 4, we saw that computer programming practices imply the
alignment of inscriptions to produce knowledge about a remote entity (e.g.,
a compiler, an interpreter, a micropro cessor) that is negatively affected in
its trajectory. We also saw that programmers constantly need to enroll new
actants to get around impasses. More importantly for the case that interests
us here, we also found that both aligning and contouring actions needed to
be “triggered” by special narratives that engage those who enunciate them.
Building on Lucy Suchman and Bruno Latour, I de cided to call these perfor-
mative narratives “scenarios.”

Scenarios are crucial as they provide the bound aries of programming
episodes while enabling them to unfold. But their irritating drawback is
that while they constitute indispensable resources that set up desirable
programming horizons, they often tell little about the actions required to
reach these horizons. We experienced this when we were following DF in
his small computer programming venture. Even though his scenario stipu-
lated the need for the incrementation of an empty matrix with rectangles
defined by coordinates stored in .txt files, the scenario said almost nothing
about how to do this incrementation. The lines of code had to be progres-
sively assembled as this pro cess was required to align inscriptions and to get
around impasses.

A Third Case Study 259

Yet some scenarios might be more transposable than others. Let us
imagine the following programming scenario: “FJ shall make a computer
compute the square root of 485,692.” Though quite short, this imaginary
example can be considered a genuine scenario as it operates a triple shifting
out into other space (at my desk) and time (later) and toward other actants
(the Matlab Editor, my having completed the script, etc.) while also engag-
ing me, the one who enunciated it. How could I reach the horizon I am
projecting? If I am using Matlab or many other high- level programming
languages, the program would be the single instruction “sqrt(485692).”
The passage from the scenario to its completion would thus seem quite
direct. Let us imagine a trickier scenario: “FJ shall make a computer com-
pute k-means of five clusters over dataset δ.” How could I reach this horizon?
For the case of Matlab and several other high- level programming languages,
the program will, once again, be the single instruction “kmeans(δ,5)”—
another straightforward accomplishment.6 Both imaginary scenarios thus
appear quickly transposable into lines of code; the horizon they establish
can be reached without many tedious alignments of inscriptions and work-
arounds of impasses.

Are both imaginary scenarios simpler that the scenario defined by DF in
chapter 4? It is difficult to say as both square roots of large numbers and
k-means of five clusters are not so trivial operations.7 Rather, it seems that
 there is a difference of density: while our imaginary scenarios can be trans-
lated into code almost as they stand, DF’s scenario needs to be completed,
patched, and refreshed. If nothing seems to stand in between the terms
of the statements “square root of 485,692” and “k-means of five clusters,”
many gaps surely separate each term of the statement “empty matrix incre-
mented with coordinates of rectangles.”

The issue is trickier that it seems. One may indeed think that these differ-
ences of density within programming scenarios come from scenarios them-
selves. One may, for example, think that if DF’s scenario is less transposable
than our two examples, it is because it is less precise. But it is actually the
opposite: whereas “square root of 485,692” and “k-means of five clusters”
tell us almost nothing about how to perform such tasks, DF’s scenario takes
the trou ble to specify a succession of actions. Yes, there are differences of
density, but no, they are not necessarily related to what is inside scenarios.
So where do these differences come from? I believe these differences of

260 Chapter 6

density might be linked to the diffusion of the operations necessary to real-
ize a scenario. My hypothesis, which still needs to be further verified, is that
the more an operation is common to the community of users and designers
of programming languages, the less it will need to be decomposed, trans-
lated, and completed. The most striking example of such diffusion- related
difference of density within a programming scenario is certainly arithmetic
operations. What can be more common to users and designers of program-
ming languages than adding, subtracting, dividing, and multiplying ele-
ments? Electronic computers themselves have been progressively designed
around these widely distributed operations (Lévy 1995). The terms “add,”
“subtract,” “multiply,” or “divide”— when part of a scenario— will thus be
immediately translated into their well- known mathematical symbols “+,”
“/,” “– ,” and “*.” The same is true of many other widely diffused calculat-
ing operations. “Sine,” “cosine,” “greatest common divisor,” “logarithms,”
and even sometimes “k- means clustering” are all operations that can be
straightly transposed from scenarios to programs.

Though quite wild, these propositions will allow us to better understand
how the Group’s computational model can be almost directly transposed
into an actual computer program. Let us first consider once again the for-
mula describing the model shaped by the Group. We saw that the phenom-
enon observed by the Group was a par tic u lar Gaussian function that could
be described as

zi = f xi ,yi() = exp(−
log(xi)− µ1()

2σ 1
2

2

−
log(yi)− µ2()

2σ 2
2

2

),

where xi is the size- value of the ith face, yi is the number- value of the ith face,
and μ1, μ2, σ1, σ2 are the par ameters of the Gaussian fit. When all the par-
ameters of this formula are replaced by the numerical values provided by
Matlab, the model becomes the following equation:

zi = f xi ,yi() = exp(−
log(xi)+1.172()
1.88218802

2

−
log(yi)− 0.4308()
1.21648802

2

).

From that point, the Group just needs to transpose this mathematical sce-
nario almost as it is within Matlab Editor. This translation gives us the fol-
lowing line of code:

z=exp(-((log10(x)+1.172)^2/1.88218802)-((log10(y)-0.4308)
 ^2/1.21648802));

A Third Case Study 261

As we can see, there is an almost one- to- one correspondence among the
mathematical operations as expressed within the equation and the mathe-
matical operations as expressed within the program of this equation: “exp,”
“– ,” “log,” and “+” all keep the same shape. Only the squaring and dividing
operations had to be slightly modified.

Yet in this state, the Group’s program of the model will not do anything; it
still needs to become iterative to pro cess the changing values of x1,2,…,266 and
y1,2,…,266. Here again, the scenario as defined by the computational model is
quickly transposable. We saw in the last section that the training set could
be reor ga nized as needed, as long as the Group manages to write the appro-
priate Matlab scripts to instruct the training set’s reorganization. To opera-
tionalize its computational model, the Group just needs to or ga nize the
 faces of its training set according to their size- values and number- values.
Expressed within the Matlab software environment, this reor ga ni za tion
takes the (simplified) form of table 6.6.

This reor ga nized Matlab spreadsheet will allow the program to know
what data it should pro cess. With Matlab programming language, the data
of every cell of such spreadsheets can be accessed by inscribing a duet of
values in between curly brackets. For our case, the instruction “cell{1,1}”
 will ask INT to consider the value [0.065]; the instruction “cell{1,2}” will
ask INT to consider the value [3]; and so on.8 Thanks to this referential
system, it is pos si ble to ask INT to go through all the cells of the spread-
sheet and iteratively plug their values inside the equation. Moreover, the

 Table 6.6
Simplified view on the Group’s reor ga ni za tion of the training set

1 2

1 [0.065] [3]

2 [0.0143] [3]

3 [0.008] [3]

4 [0.042] [2]

5 [0.012] [2]

6 [0.030] [3]

7 [0.0054] [3]

… … …

266 [0.053] [1]

262 Chapter 6

spreadsheet has a finite length of [266]. This easily accessible information—
it is the number of rows of the spreadsheet— can be used to instruct INT
to start at line 1 of the spreadsheet and stop at its end. When all the size-
values and number- values are pro cessed, they will fi nally be integrated in
the spreadsheet for their further use in the definition of the remainder of
the Group’s algorithm (remember that we only considered one tiny part
of the Group’s whole algorithm). The small yet crucial script that permits to
operationalize the Group’s computational model for face importance takes
the form of figure 6.6. When run, this small script outputs something close
to table 6.7.

At this point, we can say that the Group managed to assem ble a model
that effectively computes data. The deal is now changed: every digital
image can now— potentially—be pro cessed by the Group’s model program
for face importance evaluation. Of course, it only forms one small aspect
of the Group’s saliency- detection proj ect that ended up being rejected by

 Table 6.7
Simplified view on the results of the Matlab script as instructed by the Group’s
mathematical model

1 2 3

1 [0.065] [3] [0.998]

2 [0.0143] [3] [0.779]

3 [0.008] [3] [0.633]

4 [0.042] [2] [0.964]

5 [0.012] [2] [0.732]

6 [0.030] [3] [0.935]

7 [0.0054] [3] [0.527]

… … … …

266 [0.053] [1] [0.853]

1. for i = 1:length(cell)
2. x = cell{i,1};
3. y = cell{i,2};
4. z = exp(-((log10(x)+1.172)^2/1.88218802)-((log10(y)-0.4308)^2/1.21648802));
5. cell{i,3} = z;
6. end

Figure 6.6
Operational script for the computation of face importance values.

A Third Case Study 263

the reviewers of the conference (before being awarded the “Best Short Paper
Award” at a smaller conference one year later). But still, some existence
must be granted to this tiny entity we carefully followed. For three tortur-
ous parts divided into six chapters, we have looked for these things we like
to call “algorithms”; now we fi nally glimpse one. And in such a prototypi-
cal state, this small piece of algorithm is the uncertain product of account-
able courses of action.

The (Varying) Real ity of Machine Learning

So far in this case study, we saw that although ground- truthing activities—in
their capacity as producers of training and evaluation sets and enablers of per-
for mance measures— influence formulating activities, expectations regarding
future formulating requirements may also influence the initial generation of
ground truths. We then saw how formulating courses of action unfold in situ.
As we continued to follow the Group in its algorithm proj ect, we saw that
many practical translations were necessary to make a training set acquire the
same form as a mathematical object. Moreover, we saw how the results of
formulating activities—in this case, a mathematical formula— relate to pro-
gramming activities, the former providing transposable scenarios to the latter.

When we combine these empirical ele ments with those of part I and part
II, we get a quite unusual action- oriented conception of algorithms (see
figure 6.7). Indeed, it seems that sometimes what we tend to call an algo-
rithm may be the result of three interrelated activities that I call ground-
truthing, programming, and formulating. Of course, these activities may not
be the only ones partaking in the constitution of algorithms (hence the inter-
est in launching other ethnographic inquiries). At least, however, in these
days of controversies, we can now realistically account for some of the con-
stitutive associations of algorithms.

Yet this action- oriented conception of algorithms remains unduly nar-
row. Nowadays, is there such a thing as a solitary algorithm? As we have seen
throughout the chapters of this book, the constitution of one algorithm under-
takes the enrollment of many other algorithms. This was noticeable when we
 were dealing with ground- truthing practices; whether the se lection of images
on the Flickr website, their uploading onto the Lab’s server, the administration
of the crowdsourcing task, or the subsequent pixel- level segmentation of mul-
tilayered salient ele ments, these moments were all supported by additional

264 Chapter 6

algorithms, among many other things. The same is true of computer pro-
gramming. Even though this specialized activity currently contributes signifi-
cantly to the constitution of new algorithms, it goes itself through numerous
algorithms, many of which operate close to the computer’s hardware to help
interpreters, compilers, or pro cessors compute digital data in appreciable
ways. Moreover, as we just saw in this chapter, formulating practices are also
irrigated by algorithms, an especially vis i ble example being BJ’s algorithm that
reliably counted the number of faces in an image and calculated their respec-
tive sizes. During the constitution of algorithms, algorithms are everywhere,
actively contributing to the expression of ground- truthing, programming,
and formulating activities. Yet we may reasonably assume that, one way or
another, these other algorithms also had to be constituted in specific times
and places, being themselves—if my proposition is right— the products of, at
least, the same three activities (see figure 6.8).

This conception of algorithms as the joint product of ground- truthing,
programming, and formulating activities— themselves often supported
by other algorithms that may have under gone analogue constituting

??
G-T

F P

Figure 6.7
Schematic of the interpolation of ground- truthing (G- T), programming (P), and for-
mulating (F) activities. The gray area in the middle of the figure is where algorithms
sometimes come into existence. The fourth ellipse tagged “??” stands for other
potential activities my inquiry has not managed to account for.

A Third Case Study 265

processes— complicates the overall picture while making it more intelli-
gible. Indeed, whenever controversies arise over the effect of an algorithm,
disputants may now refer to this basic mapping and collectively consider
questions such as: How was the algorithm’s ground truth produced? Which
formulas operated the transformation of the input- data into output- targets?
What programming efforts did all this necessitate? And, if deeper reflections
are required, disputants may excavate another layer: Which algorithms
contributed to these ground- truthing, programming, and formulating pro-
cesses? And how were these second- order algorithms constituted in the first
place? These are the kinds of empowering questions the pre sent book aims
to suggest to fuel constructive disputes about algorithms— a po liti cal argu-
ment I will develop further in the next, and concluding, chapter.

??G-T

F P

??G-T

F P

??G-T

F P

??G-T

F P

??G-T

F P

??G-T

F P

??G-T

F P

Figure 6.8
Complementary schematic of constituted algorithms partaking in the constitutive
activities of other algorithms.

266 Chapter 6

Again, however, something is still missing. Although the inquiry may
sharpen the overall picture, it still fails to address a massive issue—an issue
that may even be the most discussed algorithm- related topic at pre sent
among the press and academia: machine learning. Machine learning is an
extremely sensitive topic, sometimes considered in itself (Alpaydin 2010),
other times in relation to closely related, yet evolving, terms such as “big
data” (Bhattacharyya et al. 2018) or “artificial intelligence” (Michalski, Car-
bonell, and Mitchell 2014); it is sometimes presented as industrially well
established (Finlay 2017) and at others, as still in its infancy (Domingos
2015); it is sometimes praised for its per for mance (Jordan and Mitchell
2015), and other times criticized for the danger it (but what is it?) seems
likely to represent to the collective world (Müller 2015). As soon as it is
articulated, the term “machine learning” triggers warring feelings of famil-
iarity and ignorance, hopes and fears, utopia and dystopia; a strange mad-
ness that seems very incompatible with the down- to- earth vision I am
trying to constitute here. In these difficult conditions, how do we address,
even superficially, iterations of machine learning as expressions of lived
courses of action?

One way to scratch the very surface of machine learning, in the light
of our empirical and theoretical equipment, may be to make the follow-
ing observation: during the formulating pro cess accounted for in the sec-
tion entitled “Reaching a Gaussian Function,” something crucial happened
just after the Group wrote and ran the Matlab instruction “fit (x’, y’,
‘gauss2’).” Before this quick Matlab computation— which took only a few
seconds— face values (x), size- values (y), and importance values (z) were sim-
ply put in the same three- dimensional coordinate space. As we saw, putting
this together required several translations of the training set, but at a cer-
tain point, it was pos si ble to arrange variables x, y, and z together within the
same vector space (figure 6.4). At this point, these values were attached to
dif fer ent desires (themselves progressively shaped during ground- truthing
pro cesses); x and y values were the Group’s desired inputs, and z values were
its desired outputs. But their respective antecedence and posteriority— there are
first inputs that should then become outputs— were not operationalized;
x, y, and z values coexisted si mul ta neously in one mathematical world.
But after INT had computed the translated training set by means of the
instruction “fit (x’, y’, ‘gauss2’)” and printed the correlated graph,
formula, and par ameters (figure 6.5), number- values and size- values became

A Third Case Study 267

mathematical inputs, and face importance values became mathematical out-
puts. The Gaussian fit, as the Group happened to call it, made x and y values
become operands, just as it made z values become the results of an operation.
From the Group’s perspective, temporality shifted, it was now pos si ble to
start with input values and end with output values. An operation has been
implemented to allow sequential transformations; dimensionality has been
reduced by extracting a before and an after.

This turning point, a shift in temporality, was enabled by the enrollment
of and del e ga tion to another algorithm. Indeed, when the Group wrote
the Matlab instruction “fit,” it asked INT to estimate the par ameters of a
function—in this case, a Gaussian one— from a series of coordinate points.
At this precise point for the Group, this was a routine intuitive action that
required only a handful of characters in the Editor of the Matlab IDE. For
INT, however, which effectively computed this estimation of par ameters,
this was a not so trivial endeavor. How did INT do it?

If we refer to MathWorks’ official 2017 documentation, the instruction
“fit (… ‘gauss2’)” uses a nonlinear least square computerized method
of calculation to estimate the optimal par ameters of a Gaussian function
from coordinate points.9 It can thus be inferred that INT does something
not so dissimilar to, first, defining the error associated with each point and
then defining a function that is the sum of the squares of these errors before
taking the partial derivative of the function’s equation— with re spect to the
four par ameters— thereby establishing four nonlinear equations that can in
turn be solved by using, for example, the Newton- Gauss method. Though
contested by several researchers in the field of statistical signal pro cessing
(e.g., Hagen and Dereniak 2008; Guo 2011)— thereby making it a genuine
research topic— the nonlinear least square algorithm is currently a standard
way of estimating par ameters of Gaussian functions. Further, by writing
this Matlab- imbedded instruction, the Group deployed another computer-
ized method of calculation— one with its own shaping history—to take an
impor tant step toward formulating the relationships between the data and
the targets of its training set.

That the Group used another algorithm to formulate its new algorithm
should not surprise us; ground- truthing, programming, and formulating
activities are full of moments where past algorithms contribute to the con-
stitution of a new algorithm (see figure 6.8). What should beg our atten-
tion, however, is the decisive temporal shift provoked by the nonlinear

268 Chapter 6

least square algorithm subtending the Matlab “fit” instruction during the
formulating pro cess. Before the appearance of the Gaussian fit’s par ameters
in the Command Win dow, the Group had no means to effectively com-
pute the face importance values without the labels of the crowdworkers; its
appearance, however, furnished the Group with such an operative ability.
Can this specific algorithmically based predictive capacity for the constitu-
tion of the Group’s algorithm be our entry point to the topic of machine
learning?

It is tempting to assert that the algorithm invoked by the Group to
help formulate its model found the Gaussian function. In fact, it would
be more appropriate to say that the algorithm found an approximation of
the initial function that already underlined the reor ga nized training set.
In other words, given the ground- truth function f(x,y) that, presumably,
structured the relationship among size- values, number- values, and face
importance values within the translated training set, the algorithm found
a useful estimate f′(x,y) that further allowed the production of prediction
with an admittedly low probability of errors (hence its usefulness). Accord-
ing to Adrian Mackenzie (2017, 75–102), it is this very specific action that
fundamentally consists of processing— some authors even say “torturing”
(Domingos 2015, 73)— data to generate an approximation of an initially
assumed function that is the main goal of machine learning algorithms,
 whether they are simple linear regressions or complex deep convolutional
neural networks. As Mackenzie, building on the authoritative lit er a ture on
this now widely discussed topic, astutely summarized it:

 Whether they are seen as forms of artificial intelligence or statistical models,
machine learners are directed to build “a good and useful approximation to the
desired output” (Alpaydin 2010, 41) or, put more statistically, “to use the sample
to find the function from the set of admissible functions that minimizes the prob-
ability of errors (Vapnik 1999, 31).” (Mackenzie 2017, 82)

It seems, then, that machine learning algorithms—or “machine learners,” as
Mackenzie calls them— may be regarded as computerized methods of calcu-
lation that aspire to find approximations of functions that presumably or ga-
nize training and evaluation sets’ desired inputs and outputs, themselves
deriving from ground- truthing practices (that are still sometimes oriented
 toward future- formulating practices, as we saw in a previous section of this
chapter). This general argument allows us to better grasp the role played by

A Third Case Study 269

the Gaussian fit during the Group’s formulating pro cess. By virtue of Mack-
enzie’s proposition, the Matlab- embedded algorithm enrolled by the Group
during its formulating pro cess worked as a machine learner, building the
mathematical approximation of the ground- truth function and its related
formula (itself working as an easily transposable programming scenario).

Yet if the Matlab least square algorithm can be considered a machine
learner, is it reasonable to say that there was machine learning during the
Group’s formulating episode? From Mackenzie’s point of view as well as
the perspective of the specialized lit er a ture, it may appear so; as soon as the
Group ran the “fit” instruction, the proj ect became a machine- learning
proj ect as its model relied on a statistical learning method that found a
useful approximation of the desired output. However, from the Group’s
perspective, the story is more intricate than that as GY and BJ suggested to
me after I shared some of my thoughts:

Wednesday, April 12, 2014. Terrace of the CSF’s cafeteria. Discussion
with GY

FJ: I’m still holding on to the Gaussian fit moment. … To find the par-
ameters, there was some kind of machine learning under neath in Mat-
lab, was there not?10

GY: Huh, yes perhaps. Some kind of regression, I guess.

FJ: Which is a kind of machine- learning technique, no?

GY: Maybe, technically. But I wouldn’t say that. You know, we saw it was
a Gaussian anyway, so it was no real machine learning.

FJ: Real machine learning?

GY: Yes. For example, like when you do deep- learning things, you first
have no idea about the function. You just have many data, and you let
the machine do its things. And there, the machine really learns.

Friday, April 14, 2014. Terrace of the CSF’s cafeteria. Discussion with BJ

FJ: So, machine learning is not what you’ve done with the Gaussian fit?11

BJ: No, no. I mean, there was a fit, yes. But it was so obvious, and Matlab
does that very quickly, right? It’s nothing compared to machine learn-
ing. If you look at what people do now with convolutional neural net-
works, it’s very very dif fer ent! Or with what NK is doing here with deep
learning [for handwritten recognition]. There you need GPUs [graphical

270 Chapter 6

pro cessing units], parallelization, etc. And you pro cess again and again
a lot of raw data.

 There seems to be some uncertainty surrounding the status of the Gaussian
fit. If it “technically” can be qualified as machine learning, it is also opposed
to “real” machine learning, such as “deep learning” or “convolutional neu-
ral networks,” where the machine “ really learns.” It seems that, for GY
and BJ— and also for CL, as I learned later on— regarding the Gaussian fit
moment as machine learning would misunderstand something constitutive
of it. How should we qualify this uncertainty? How should we seek to grasp
what, at least for the Group, gives machine learning its specific expression?

An ele ment that, for the Group, seems to subtend the distinction between
real and less real machine learning is the visual component that puts the
instruction “fit” into gear: “We saw it was a Gaussian anyway, so it was
no real machine learning.” The visual component was indeed decisive in
qualifying the phenomenon the Group tried to formulate; after several trans-
lations/reductions of the training set, the scatterplot of figure 6.4 literally
looked like a Gaussian, and this similarity, in turn, suggested the use of the
“fit” instruction to the Group. The dependent variables— size- values and
number- values— were hypothesized before the formulating episode (they
even contributed to the construction of the ground truth), and these were
parsimonious enough to be visualized in an understandable graph. The
group may well have used a machine learner made by others, in other places
and at other times; this del e ga tion was minimal, in the sense that most of
the work involved in approximating the function had already been under-
taken. This is evidenced by the instruction “gauss2” within the instruction
“fit,” which oriented INT’s work toward a 2D Gaussian function with four
par ameters.

What about deep learning? Why do GY and BJ use it to distinguish
between real and less real machine learning? It is impor tant to note that in
the spring of 2014—at the time of our discussions at the CSF’s cafeteria—
deep learning was becoming a popu lar trend among image- processing
communities that specialized in classification and recognition tasks. This
popularity was closely related to an impor tant event that occurred during
a workshop at the 2012 Eu ro pean Conference on Computer Vision, where
Alex Krizhevsky presented a model he had developed with Ilya Sutskever
and Geoffrey Hinton— one of the founding fathers of the revival of neural

A Third Case Study 271

networks (more on this later)— for classifying objects in natu ral images.
This model had partaken in the 2012 ImageNet challenge (more on this
 later) and won by a large margin, surpassing the error rate of competing
algorithms by more than 10 percent (Krizhevsky, Sutskever, and Hinton
2012). The method Krizhevsky, Sutskever, and Hinton used to design their
algorithm was initially called “deep convolutional neural networks” before
receiving the more generic label of “deep learning” (LeCun, Bengio, and
Hinton 2015; Schmidhuber 2015), pursuant to the terminology proposed by
Bengio (2009). While this statistical learning method had already been used
for handwritten digit recognition (LeCun et al. 1989), natu ral language pro-
cessing (Bengio et al. 2003), and traffic sign classification (Nagi et al. 2011),
this was its first time being used for “natu ral” object classification and
localization. And in view of its impressive results, a new momentum began
to flow through the image- processing community as deep learning started
to become more and more discussed in the academic lit er a ture, modular-
ized within high- level computer programming languages, and adapted for
industrial applications.

In the Lab, NK was the member most familiar with the then latest advances
in deep learning as suggested in the above excerpts. He was indeed conduct-
ing his PhD research on the application of deep learning for handwritten
recognition of fiction writers, and it was through his work— and through
communications during Lab meetings— that the topic progressively infil-
trated the Lab. As a sign of the growing popularity of these formulating
techniques, five doctoral students were moving toward deep learning when
I left the field in February 2016, compared with only one— NK— when I
arrived. Unfortunately, despite the growing interest in these techniques
within the Lab, I did not have the opportunity to explore in detail a deep
learning formulating episode. However, based on Krizhevsky’s paper, which
marked the rise of deep learning within digital image pro cessing, it may
be pos si ble to dig further into—or rather, speculate on— the difference
suggested by the Group between “real” and “less real” machine learning
(despite the dangers that such an approach, based on a “purified account,”
represents; On this topic, see this book’s introduction).

Let us start with the ground truth Krizhevsky, Sutskever, and Hinton
used to develop their algorithm. If, to a certain extent, we get the algorithms
of our ground truths (see chapter 2), then what was theirs? Krizhevsky,

272 Chapter 6

Sutskever, and Hinton used a ground truth called ImageNet to train and
evaluate their deep- learning algorithm. ImageNet was an ambitious proj ect,
initially conceived in 2006 by Fei- Fei Li, who was at that time a professor of
computer science at the University of Illinois Urbana- Champaign.12 Even
though the detailed history of ImageNet—an endeavor that would repre-
sent an impor tant step toward problem- oriented studies of algorithms (see
chapter 2)— has yet to be undertaken, several academic papers (Deng et al.
2009, 2014; Russakovsky et al. 2015), journalist reports (Gershgorn 2017;
Markoff 2012), and a section of Gray and Suri’s (2019, 6–8) book Ghost Work
nonetheless allow us to make informed assumptions about its genealogy.

It seems then that Fei- Fei Li, at least since 2006, was fully aware of some-
thing that we realized in chapter 2: better ground truths may lead to better
algorithms. Just like the Group, who was not satisfied with ground truths
for saliency detection, Li regarded the use of ground truths for the classifica-
tion of natu ral images as too simplistic.13 Through exchanges with Christine
Fellbaum, who, since the 1990s, has been building WordNet— a lexical data-
base of En glish adjectives, verbs, nouns, and adverbs, or ga nized according
to sets of synonyms called synsets (Fellbaum 1998)— the idea of associating
digital images with each word of this gigantic database for computational
linguistics progressively emerged. In 2007, when Fei- Fei Li joined the fac-
ulty of Prince ton University, she officially started the ImageNet proj ect by
recruiting a professor, Kai Li, and a PhD student, Jia Deng. After several
unsuccessful attempts,14 Fei- Fei Li, Kai Li, and Jia Deng turned to the new
possibilities offered by the crowdsourcing platform Amazon Mechanical
Turk (MTurk). Indeed, while images could be quickly scrapped via a keyword
search engine such as Google or, at that time, Yahoo, reliably annotating the
objects in these images required time- consuming human work. And Ama-
zon MTurk, as a provider of large- scale on- demand microlabor, effectively
provided such valuable operations at an unbeatable price. Using ingenious
quality control mechanisms, Li’s team managed to construct, in two and a
half years, a ground- truth database that gathered 3.2 million labeled images,
or ga nized into twelve subtrees (e.g., mammal, vehicle, reptile), with 5,247
synsets (e.g., carnivore, trimaran, snake).15 Despite difficult beginnings,16
ImageNet has made its way into computer vision research not only through
the publicization efforts of Fei- Fei Li, Jia Deng, Kai Li, and Alexander Berg
(Deng et al. 2010, 2011b; Deng, Berg, and Li 2011a) but also through its asso-
ciation with a well- respected Eu ro pean image- recognition competition called

A Third Case Study 273

PASCAL VOC that has now been followed by ILSVRC.17 And it was in the
context of the 2012 ILSVRC competition that Alex Krizhevsky, Ilya Sutskever,
and Geoffrey Hinton developed their deep- learning method that surpassed,
by far, all their competitors, initiating a wave of enthusiasm that we are still
experiencing today.18

But what about the machinery implemented by Krizhevsky, Sutskever,
and Hinton to develop their deep convolutional neural network algorithm?
How did they formulate the relationship between the input- data (here, raw
RGB pixel-values) and the output- targets (here, words referring to objects
pre sent in natu ral images) of the ImageNet ground truth? Let us start with
the term “neural networks.” We have already encountered it in chapter 3
when we were inquiring into the progressive invisibilization of computer
programming practices. As we saw, the term neural network came from
McCulloch and Pitts’s 1943 paper, which was itself made vis i ble by its
instrumental role in von Neumann’s First Draft of a Report on the EDVAC
(von Neumann 1945). McCulluch and Pitts’s main argument was that a sim-
plified conception of “all- or- non” neurons could act, depending on their
inputs, as logical operators OR, AND, and NOT and thus, when or ga nized
into interrelated networks, could be compared to a Turing machine. This
analogy between logic gates and the inner constituent of the human brain
was then used by von Neumann in his Draft, in which he was prompted to
use unusual terms such as “organs” instead of “modules” and “memory”
instead of “storage” (surprising analogies that must, crucially, be put into
the 1945 context when military proj ects such as the ENIAC and the EDVAC
 were still classified). Yet, as intriguing as they were, McCulloch and Pitts’s
neural networks, in their role as logic gates, could not learn; that is, they
could not adjust the weight of their “synaptic” interconnections according
to mea sur able errors. It is a merit of Frank Rosenblatt’s perceptron to have
integrated a potential for repetition and modification of logic gates based
on algorithmic comparisons between actual and desired outputs (Domingos
2015, 97; Rosenblatt 1958, 1962). But the perceptron algorithm that allows
neural networks to modify their synaptic weight according error signals
could only learn to draw linear bound aries among vectorized data, mak-
ing it vulnerable to much criticism.19 Nearly twenty years later, physicist
John Hopfield, as part of his work on spin glasses, proposed an information
storage algorithm that allowed neural networks to effectively perform pat-
tern recognition, an achievement that fi nally brought to light this so- called

274 Chapter 6

connectionist approach to learning (Domingos 2015, 102–104; Hopfield
1982). Shortly thereafter, David Ackley, Geoffrey Hinton, and Terrence Sej-
nokwski built on Hopfield’s insights and adapted his deterministic neurons
into probabilistic ones, by proposing a learning algorithm for Boltzmann’s
machines (Ackley, Hinton, and Sejnowski 1985; Hinton, Sejnowski, and
Ackley 1984).20 Then came the real tipping point of this neural network
revival, with the design of a stochastic gradient retropropagation algorithm
(called “backprop”) that could calculate the derivative of the network loss
function and back- propagate the error to correct the coefficients in the lower
layers, ultimately allowing it to learn nonlinear functions (Rumelhart, Hin-
ton, and Williams 1986).21 This was followed by a difficult period for this
inventive and cohesive research community, who was once again gradually
marginalized.22 But this did not include the increasing computerization of
the collective world from the 2000s and the development of web ser vices,
both of which led to an explosion of neural networkable data (yet often at
the expense of invisibilized on- demand microlabor). Krizhevsky, Sutskever,
and Hinton’s (2012) paper is one expression, among many others, of this
renewed interest in neural networks, which goes hand in hand with the
provision of large ground truths such as ImageNet. Yet besides big data-
based labeled data, Krizhevsky, Sutskever, and Hinton could also rely on a
stack of well- discussed algorithms (e.g., perceptron, learning for Boltzmann
machines, backprop) to build their model; they were able to delegate a
significant part of their formulating work to other neural network- related
algorithms considered standard by the connectionist community in 2012.

What about the term “convolutional”? In this specific context, it is
largely derived from a successful application of the backpropagation algo-
rithm for optimizing neural networks to address an industrial issue: the
recognition of handwritten postal codes. It was developed by LeCun et al.
(1989) and aimed to exploit the potential of data expressed as multiple
arrays— such as RGB digital images “composed of three colour 2D arrays
containing pixel intensities in the three colour channels” (LeCun, Bengio,
and Hinton 2015)—to minimize the number of neural network par ameters
as well as the time and cost of learning. In a nutshell, the operation consists
of reducing the matrix image into a matrix of lower dimension using a con-
volution product— a classical operator in functional analy sis dating back,
at least, to the work of Laplace, Fourier, and Poisson. These convolutional
layers are then followed by pooling layers, aimed to “merge semantically

A Third Case Study 275

similar features into one” (LeCun, Bengio, and Hinton 2015, 439)— a typi-
cal way of doing this operation being, at the time of Krizhevsky, Sutskever,
and Hinton’s study, to use an algorithm called “max- pooling” (Nagi et al.
2011). And when Krizhevsky, Sutskever, and Hinton used convolutional
neural networks, they effectively mobilized these convolution and pooling
methods— integral parts of the standard algorithm “library”—to be used at
their disposal.

Fi nally, what about the term “deep”? When convolutional layers, activa-
tion functions, and max- pooling layers are repeated several times to form
a network of networks, this qualifies as “deep.” In this case, AlexNet—as
the algorithm presented in Krizhevsky, Sutskever, and Hinton ended up
being called— was the very first neural network to integrate five convolu-
tional layers in conjunction with three fully connected layers (Krizhevsky,
Sutskever, and Hinton 2012, 2).

Though impor tant, the technical features of the algorithm developed by
Krizhevsky, Sutskever, and Hinton are not central to the proposition I wish
to make here. It is more impor tant to grasp the overall algorithmic machin-
ery that they mobilized to formulate the relationships between their input-
data and output- targets. Consider Boltzmann machines, backpropagation,
convolutional networks, and max- pooling: although these algorithms were
not mainstream in the image- processing and recognition community—as
they came from an often marginalized connectionist tradition— they none-
theless constituted a relatively stable infrastructure that could be mobilized
to find approximations of functions within large, yet reliable, training sets.
The work of Krizhevsky, Sutskever, and Hinton was undoubtedly impressive
in many re spects. Nonetheless, they were able to capitalize on a modular
algorithmic infrastructure capable of operating, at least theoretically, as a for-
mulating machine (see figure 6.9).

Yet one impor tant question remains: How did Krizhevsky, Sutskever, and
Hinton actually get their input- data pro cessed by their audacious yet stan-
dard algorithmic machinery? How did they effectively produce a function
approximation? This is where another crucial ingredient emerges (in addi-
tion to the ImageNet ground truth and the more or less ready- to- use pack-
age of connectionist algorithms): Graphics Processing Units (GPUs). Indeed,
the machinery of deep convolutional neural networks requires a lot of
computing power. However, as Krizhevsky, Sutskever, and Hinton were pro-
cessing images— that is, arrays containing pixel intensities— they were able

Fi
gu

re
 2

: A
n

ill
us

tr
at

io
n

of
 th

e
ar

ch
ite

ct
ur

e
of

 o
ur

 C
N

N
, e

xp
lic

itl
y

sh
ow

in
g

th
e

de
lin

ea
tio

n
of

 r
es

po
ns

ib
ili

tie
s

be
tw

ee
n

th
e

tw
o

G
PU

s.
 O

ne
 G

PU
 r

un
s

th
e

la
ye

r-
pa

rt
s

at
 th

e
to

p
of

 th
e

fig
ur

e
w

hi
le

 th
e

ot
he

r
ru

ns
 th

e
la

ye
r-

pa
rt

s
at

 th
e

bo
tt

om
.

Th
e

G
PU

s
co

m
m

un
ic

at
e

on
ly

 a
t c

er
ta

in
 la

ye
rs

. T
he

 n
et

w
or

k’
s

in
pu

t i
s

15
0,

52
8-

di
m

en
si

on
al

, a
nd

 th
e

nu
m

be
r

of

ne
ur

on
s

in
 th

e
ne

tw
or

k’
s

re
m

ai
ni

ng
 la

ye
rs

 is
 g

iv
en

 b
y

25
3,

44
0–

18
6,

62
4–

64
,8

96
–6

4,
89

6–
43

,2
64

–4
09

6–
40

96
–1

00
0.

3
48

12
8

33

3333
3

3 3 3

33

33
3

19
2

19
2

12
8

1313
13 13

1313

19
2

19
2

12
8

20
48

de
ns

e
de

ns
e

de
ns

e

20
48

20
48

20
48

10
00

22
41111

11 22
4

11
55

55

55

5548
27

27

12
8

St
rid

e
of

 4

M
ax

po
ol

in
g

M
ax

po
ol

in
g

M
ax

po
ol

in
g

Fi
gu

re
 6

.9
Sc

h
em

at
ic

s
of

 t
h

e
al

go
ri

th
m

ic
 m

ac
h

in
er

y
th

at
 a

ut
om

at
ic

al
ly

 f
or

m
ul

at
ed

 t
h

e
re

la
ti

on
sh

ip
 b

et
w

ee
n

 t
h

e
in

pu
t-

 da
ta

 a
n

d
th

e
ou

tp
ut

- t
ar

ge
ts

 o
f t

h
e

Im
ag

eN
et

 g
ro

un
d

tr
ut

h
. S

ou
rc

e:
 K

ri
zh

ev
sk

y,
 S

ut
sk

ev
er

, a
n

d
H

in
to

n
 (2

01
2,

 5
).

 C
ou

rt
es

y
of

 Il
ya

Su

ts
ke

ve
r.

A Third Case Study 277

to get some help from specially designed integrated cir cuits called GPUs
(in this case, two NVIDIA GTX 580 3GB GPUs). It was necessary, however,
to interact with these computing systems in such a way that allowed them
to adequately express convolutional neural networks (and their whole
algorithmic apparatus). This may be Krizhevsky, Sutskever, and Hinton’s
most impressive achievement, and it should not be underestimated. They
may have had a large and trustworthy ground truth made by others, and
they may also have had a rich and modulatory algorithmic infrastructure
progressively designed by a vivid and supportive community of connec-
tionists; all of these ele ments had yet to be rendered compatible with the
ascetic environment of computers. And, if we refer to Cardon, Cointet, and
Mazières’s interview of a well- respected researcher in computer vision:

[Alex Krizhevsky] ran huge machines, which had GPUs that at the time were
not great, but that he made communicate with each other to boost them. It was
a completely crazy machinery thing. Other wise, it would never have worked, a
geek’s skill, a programming skill that is amazing (Cardon, Cointet, and Mazières
2018; my translation).

Besides the ground- truthing efforts made by Fei- Fei Li’s team and the algo-
rithmic infrastructure implemented by previous connectionist researchers,
Krizhevsky, Sutskever, and Hinton also had to engage themselves in tre-
mendous programming efforts to propose their deep learning algorithm:
an “amazing” venture. Yet, after these efforts, and prob ably many retrofit-
ting operations, they did manage to formulate a monster function with
sixty million par ameters (Krizhevsky, Sutskever, and Hinton 2012, 5).

When we compare the not quite machine learning of the Group’s Gauss-
ian fit with the real machine learning of Krizhevsky, Sutskever, and Hinton’s
deep convolutional neural networks, what do we see? Beyond the obvious
differences, notably in terms of algorithmic complexity, an impor tant simi-
larity stands out: both lead to a roughly similar result; that is, an approxi-
mation of their respective assumed ground- truth functions. The function
produced by the machine learner invoked by the Group may only have
four small par ameters, but it ends up transforming inputs into operands
and outputs into results of an operation, just like Krizhevsky, Sutskever,
and Hinton’s sixty- million- parameter function does. Both machine learners
approximate the assumed function organ izing the data of their respective
ground truths, thus remaining subordinate to them.

278 Chapter 6

However, despite this impor tant similarity, the two machine learners dif-
fer in that they emanate from differentiated pro cesses; while the Gaussian
fit takes over for only a brief moment, following manual translations that
can be followed and accounted for, the machinery of Krizhevsky, Sutskever,
and Hinton takes over much of the formulation of the training set. Whereas
the Group must assume dependent variables, then translate/reduce its train-
ing sets according to these assumptions to progressively access a certified
mathematical statement— here, a 2D Gaussian— Krizhevsky, Sutskever, and
Hinton can delegate this formulating work to an algorithmic infrastructure.
Yet again, if there has been automation of a significant part of the formulating
activities, it is crucial to remember that this was at the cost of a symmetrical
heteromation of the ground- truthing and programming activities. More than
five years of ground- truthing ventures by Fei- Fei Li and her team as well
as countless hours of programming work undertaken by Alex Krizhevsky
(according to Cardon, Cointet, and Mazières 2018) have made it pos si ble
to automate the formulation of the relationship between input- data and
output- targets, thereby rendering the former operands and the latter the
results of an operation.

Speculating on these ele ments, we might be tempted to address machine
learning— despite its great diversity—as unfolding along a continuum (figure
6.10). Machine learners make approximations of functions, but perhaps, the
more their invocation relies on the stacking of other algorithms— operating
as an infrastructure that automates the formulating activities— the more
they constitute machine learning. According to this perspective, the term
“machine learning” no longer refers only to a class of statistical techniques
but now also includes a practice (and perhaps, sometimes, a habit) of del e ga-
tion, requiring an appropriate infrastructure that itself touches on ground-
truthing and programming issues.

This tentative requalification of machine learning, as a par tic u lar instance
of formulating activities, may allow us to appreciate the issue of inscruta-
bility in an innovative way. Instead of regarding the growing difficulty in
accounting for the pro cesses that have led to the formation of a machine-
learned approximation of a ground- truth function as a limit, this conception
of machine learning may see it as consubstantial with real machine learn-
ing: the more machine learning, the more del e ga tion, and the more difficult
it becomes to inspect what has led to the formation of the mathematical
operation allowing the transformation of inputs into outputs. Yet— and this

A Third Case Study 279

is the real promise of my speculative proposition— real machine learning’s
native inscrutability may have to be paid for by more ground- truthing and
programming efforts, both of which are scrutable activities (as we saw in
part I and part II).

I certainly do not here aspire to enunciate general facts; these tentative
propositions are mainly intended to suggest further inquiries. This is even
truer given that machine learning is both much discussed and very little
studied, at least historically and so cio log i cally. Yet as suggested by Jones
(2018) and Plasek (2018), given machine learning’s growing importance in
the formation of algorithms, it is more crucial than ever to investigate the
historical and con temporary drivers of this latest expression of formulating
activities.

* * *

 Here in part III, I tried to document the progressive shaping of a compu-
tational model in the light of the ele ments presented in part I and part II.
Given that what I ended up calling “formulating practices” dealt with the
manipulation of mathematical propositions, we first had to better under-
stand mathematical facts and their correlated objects. Where do they come
from? How are they assembled, and why do computer scientists need them?
To answer these preliminary questions, we had to temporarily distance our-
selves from many accounts of mathe matics: our tribulations in chapters 3
and 4 taught us indeed to be suspicious of terms such as “thoughts,” “mind,”
or “abstraction.” In chapter 5, inspired by several STS on mathe matics, we
privileged a down- to- earth starting point: at some point in their existence,
mathematical propositions can be regarded as written claims that try to
convince readers. This initial assumption allowed us to consider the striking

Group’s Gaussian fit Krizhevsky et al.’s deep ConvNets

Reality of machine learning

Inscrutability of the operative function

Required ground-truthing efforts

Required programming efforts

Automation of the formulating activities

Delegation to an algorithmic infrastructure– +

Figure 6.10
Schematic of machine learning considered a continuous phenomenon.

280 Chapter 6

similarity between mathe matics and the other sciences; the written claims
made by both mathematicians and scientists must overcome many trials to
become, eventually, accepted facts. Instead of existing as some fundamen-
tal ingredient of thought, mathematical knowledge progressively emerged
as a huge, honorable, and evolving body of certified propositions.

We then had to consider the objects that these certified mathematical
propositions deal with: Are they similar to scientific objects? By fictitiously
comparing the work carried out in a laboratory for biomedicine with the work
carried out in a laboratory for algebraic geometry, we realized that, yes, scien-
tific and mathematical objects can be considered quite similar. In both cases,
despite topological differences (the mathematical laboratory being often
“flatter” and “dryer” than the biomedical one), experiments, instruments,
and alignments of inscriptions—in short, laboratory practices— progressively
led to the shaping of scientific objects, the properties and contours of which
became, in turn, topics of papers aimed to convince skeptical readers.

The striking similitude between scientific and mathematical objects
prompted us, in turn, to consider why mathematical objects often partici-
pate in the shaping of nonmathematical scientific objects. Still supported
by STS works on mathe matics, we realized that the combinatorial strength
of mathe matics derives largely from mundane translation practices that
progressively reduce entities to make them fit with the flat and dry ecol ogy
of mathematical knowledge. By means of such reductions, scientists render
the entities they try to characterize as easier to handle, more sharable, more
comparable, more malleable, and more enrollable within written claims try-
ing to convince colleagues of their reified existence. These ele ments fi nally
allowed us to define formulating practices as the empirical pro cess of trans-
lating undefined entities to assign them the same form as already defined
mathematical objects.

We then tried to use these introductory ele ments to analyze a formulat-
ing episode that took place within the Lab. We started by considering how
ground- truthing practices— especially the initial collection of the dataset—
may sometimes function as a preparatory step for forthcoming formulat-
ing practices. This first ele ment made us appreciate the need for a close
articulation between the “problem- oriented perspective on algorithms” we
initiated in chapter 2 and the “axiomatic perspective on algorithms” we
expanded on in chapter 6.

A Third Case Study 281

We then inquired into the formation of one of the Group’s computa-
tional models. We first documented the many translations and reductions
of the Group’s training set; from a messy Matlab database, the training set
progressively evolved into a list of single values that the Group could trans-
late into a scatterplot whose shape expressed a singular phenomenon. The
Group’s strong intuition that this phenomenon looked like a Gaussian func-
tion supported the further translation of the scatterplot into a graph that
could, in turn, be expressed as a parametrized formula, thanks to centuries
of certified mathematical propositions, among many other things.

We then saw that, although mathematical inscriptions describing com-
putational models in academic papers cannot, of course, trigger electric
pulses capable of making computers compute actual data, these mathemati-
cal inscriptions can nonetheless institute transposable scenarios for computer
programming episodes. This ele ment was crucial as it completed the con-
nections among the three gerund- parts of this inquiry. Indeed, it seems that
formulating practices rely on, and sometimes influence, ground- truthing
practices that themselves are supported by programming practices that are
themselves, sometimes, irrigated by the results of formulating practices. A
 whole action- oriented conception of algorithms started to unfold; what we
like to call an algorithm may sometimes be the result of these three inter-
related activities I here call ground- truthing, programming, and formulating.

Speculating on this, we fi nally addressed the widely discussed yet socio-
logically little- investigated topic of machine learning. Based on some (few)
empirical clues regarding the varying real ity of machine learning, I made
the following, tentative, proposition: it may be that machine learning, once
considered a lived experience, consists of the audacious capacity to automate
formulating pro cesses. However, this recently acquired habit may rely on
increasing ground- truthing and programming efforts, the springs of which
would benefit from further so cio log i cal studies.

If you want to understand the big issues, you need to understand the everyday
practices that constitute them.

— Suchman, Gerst, and Krämer (2019, 32)

Constituent power thus requires understanding constitution not as a noun but a
verb, not an immutable structure but an open procedure that is never brought to
an end.

— Hardt (1999, xii)

 There was a follow-up of the work required to ground the veracity of a
computational model for digital image pro cessing whose academic article
was provisionally rejected (chapter 2), a description of the actions deployed
to write a short Matlab program (chapter 4), and an analy sis of the shaping
of a four- parameter formula abstracted from a small training dataset (chap-
ter 6). These empirical ele ments might seem quite tenuous when compared
with the ogre to whom this book is explic itly addressed: algorithms and
their growing contribution to the shaping of the collective world.

And yet, this book is nonetheless driven by a certain confidence. If I
did not believe in its con ve nience, I simply would not have written (or at
least published) it. What justifies such confidence? Which way of thinking
supports such a presumption of relevance? In this conclusion, it is time to
consider this inquiry’s half- hidden assumptions regarding the po liti cal sig-
nificance of its results, however provisional they may be.

Catching a Glimpse, Inflating the Unknown

In the introduction, I mentioned some of the many con temporary so cio log i-
cal works on the effects of algorithms, and I assumed these works progressively

Conclusion

284 Conclusion

contributed to making algorithms become matters of public concern. I then
suggested that the current controversies over algorithms call for composition
attempts. As algorithms are now central to our computerized socie ties while
engaging in moral and ethical issues, their very existence entails constructive
negotiations. I then suggested that the ground for these contentious com-
promises needs to be somewhat prepared or, at least, equipped. As it stands,
the negative invisibility (Star and Strauss 1999) of the practices under lying the
constitution of algorithms prevents from grasping these entities in a compre-
hensive way; it is difficult, indeed, to make changes on pro cesses that have
no material thickness. I then suggested that one way— among other pos si ble
ones—to propose refreshing theoretical equipment was to conduct so cio log i-
cal inquiries in collaboration with computer scientists and engineers in order
to document their work activities. This may lead to a better understanding
of their needs, attachments, issues, and values that could help disputing par-
ties to start negotiate, as Walter Lippmann (1982, 91) said, “ under their own
colors.”

This was an unpre ce dented effort. While I could build on several STS
authors dealing, among other things, with scientific and mathematical
practices, I have most often, to be fair, been left to my own devices. How-
ever, it was a formative exercise that forced me, beyond the general frame-
work proposed by the “laboratory study” genre, to propose methodologies
and concepts— especially in chapters 1, 3, and 5— that I believe are well
adapted to the analy sis of computer science work. The careful and fastidi-
ous unfolding of courses of action allowed me to document the progressive
formation of entities— ground truths, programs, and formulas— aggregating
choices, habits, objects, and desires. Moreover, it seemed that the congru-
ence of these entities and the practices involved in their shaping form, at
least sometimes and partially, other entities we tend to call algorithms.

Nevertheless, this analytical gesture suffers from a certain asymmetry: on
the one hand, a small ethnographic report resulting from a PhD thesis, and
on the other hand, a whole industry that is constantly growing and innovat-
ing. With such limited means, the pre sent investigation could only glimpse
the irrigation system of algorithms in their incredible diversity. Worse, by
shedding new light on a very limited part of the constituent relationships of
algorithms, this inquiry suggested a continent without saying much about it.
What about the courses of action involved in getting algorithms out of the
laboratories, incorporating them into commercial arrangements, integrating

Conclusion 285

them into software infrastructures, modifying their inner components, main-
taining them, improving them, or cursing or loving them? By the very fact
of showing that it was pos si ble to bring algorithms back to the ground and
consider them products of mundane amendable pro cesses, this investigation
prob ably promised more than it delivered. What value can be attributed to
an inquiry that suggests more than asserts?

An Insurgent Document

One can start by stressing the protesting subtext of this investigation. Even
if it did not wish to criticize con temporary social studies on algorithms—
because they help us to be concerned by our “algorithmic lives” (Mazzotti
2017)— the pre sent inquiry’s approach and results nonetheless take a stand
against a habit of thought these studies sometimes tend to instill.

This habit, briefly mentioned in the introduction, consists in consider-
ing algorithms from an external position and in the light of their effects.
I have said it over and over again, this posture is impor tant as it creates
po liti cal affections. However, by becoming generalized, it also comes up
against a limit that takes the form of a looping drama. The argument, ini-
tially developed by Ziewitz (2016), is the following: while salutary in many
ways, the recent proliferation of studies of the effects of algorithms insidi-
ously tends to make them appear autonomous. Increasingly considered
from afar and in terms of the differences they produce, algorithms slowly
start to become stand- alone influential entities. This is the first act of the
algorithmic drama, as Ziewitz calls it: algorithms progressively become, at
least within the social science lit er a ture, power ful floating entities.

Moreover, once the networks allowing them to deploy and persevere are
overlooked, algorithms also become more and more mysterious. Indeed,
according to this risky standpoint, what can these power ful entities be made
of? As the study of the effects of algorithms tends to be privileged to the
study of what supports and makes them happen, these entities appear to be
made of theoretical, immaterial, and abstract ingredients, loosely referred
to as mathe matics, code, or a combination of both. Having no grip on what
 these packages contain, complexity is easily called for help: What ever the
mathe matics or the code that form algorithms may refer to, algorithms
have to be highly complex entities since they are abstract and power ful.
How can something be distributed, evanescent, and influential at the same

286 Conclusion

time? This is the kind of question induced—in hollow—by the multiplica-
tion of studies on the effects of algorithms, surreptitiously introducing the
second act of the algorithmic drama: algorithms become inscrutable. The end
result is a disempowering loop, for as Ziewitz (2016, 8) wrote, “the opacity
of operations tends to be seen as a new sign of their influence and power.”
The algorithmic drama surreptitiously unfolding within the social science
landscape is thus circular: algorithms are power ful because they are inscru-
table, because they are power ful, because they are inscrutable …

The pre sent investigation goes against this trend (which yet remains
impor tant and valuable). Instead of considering algorithms from a distance
and in light of their effects, this book’s three case studies— with their theo-
retical and methodological complements— show that it is in fact pos si ble
to consider algorithms from within the places in which they are concretely
 shaped. It is therefore a fundamental, yet fragile, act of re sis tance and organ-
ization. It challenges the setup of an algorithmic drama while proposing
ways to renew and sustain this challenge. As it aims to depict algorithms
according to the collective pro cesses that make them happen, this inquiry
is also a constituent impetus that challenges a constituted setup. Again,
 there is no innocence.

All the credit, in my opinion, goes to phi los o pher Antonio Negri for
having detected the double aspect of insurgent acts. In his book Insurgen-
cies: Constituent Power and the Modern State, Negri (1999) nicely identifies
a fundamental characteristic of critical gestures: they are always, in fact,
the bearers of articulated visions. It is only from the point of view of the
constituted setup and by virtue of the constitutionalization pro cesses that
 were put it in place that insurgent impulses seem disjointed, incomplete,
and utopian. Historically, and philosophically, the opposite is true: beyond
the appearances, the constituted power is quite empty as it mainly falls
back on and recovers the steady innovations of the constituent forces that
are opposed to it. This argument allows Negri to affirm, in turn, that far
from representing marginal and disordered forces to which it is necessary,
at some point, to put an end—in the manner of a Thermidor— constituent
impetuses are topical and coherent and represent the permanent bedrock
of demo cratic po liti cal activities.

Though this book does not endorse all of Negri’s claims regarding the
concept of constituent power,1 it is well in line with Negri’s strong proposi-
tion that the po liti cal, in the sense of politicization pro cesses, cannot avoid

Conclusion 287

insurgent moves. By suggesting in ter est ing, and surprising, bridges with the
pragmatist tradition,2 Negri (1999, 335) indeed affirms that “the po liti cal
without constituent power is like an old property, not only languishing but
also ruinous, for the workers as well as for its owner.” And that is where the
po liti cal argument of this book lies; it offers an alternative insurgent view
on the formation of algorithms in order to feed arguments and suggest
renovative modes of organ ization.

But if this book can be seen as an act of re sis tance and organ ization that
intends to fuel and lubricate public issues related to algorithms by propos-
ing an alternative account of how they come into existence, why not call
it “the constituent of algorithms”? Why did I deliberately choose the term
“constitution,” seemingly antithetical to the insurgent acts that feed politi-
cization pro cesses? This is where we must also consider this investigation as
what it is materially: an inscription that circulates more or less. We find here
a notion that has accompanied us throughout the book. Thanks to their
often durable, mobile, and re- presentable characteristics, inscriptions con-
tribute greatly to the continuous shaping of the collective world. And like
any inscription, due to what I have called “Dorothy Smith’s law” (cf. intro-
duction), this inscribed volume seeks to establish one real ity at the expense
of others. Once again, as always, there is no innocence: by expressing realities
by means of texts, inscriptions also enact these realities. A text, however
faithful— and some texts are definitely more faithful than others—is also a
wishful accomplishment.

The fixative aspect of this investigation, which comes from its very
scriptural form, should not be underestimated. This is even a limit, in my
opinion, to Negri’s work on constituent power, however in ter est ing and
thorough it may be. Although insurrectional impetuses form the driving
force of po liti cal history—we can keep that— they are nonetheless, very
often, scriptural acts that contain a foundational character.3 The term “con-
stitution” thus appears the most appropriate; if this inquiry participates in
the questioning of a constituted setup, it remains constitutive, in its capac-
ity as an inscription, of an affirmation power.

An Impetus to Be Pursued

However, nothing prevents this insurgent document from also being com-
plemented and challenged by other insurgent documents. It is even one of

288 Conclusion

its main ambitions: to inspire a critical dynamic capable of making algo-
rithms ever more graspable. This was the starting point of this investiga-
tion, and it is also its end point: to learn more about algorithms by living
with them more intimately. And there are certainly many other ways to do
just that.

Such alternative paths have been suggested throughout the book in both
its theoretical and empirical chapters. Chapter 1, in introducing the meth-
odology of the inquiry, also indicated ways of organ izing other inquiries
that are grounded in other places and situations. For example, it would be
im mensely in ter est ing if an ethnographer integrated the team of a start-
up trying to design and sell algorithm- related products.4 With regard to
chapter 2, systematic investigations on the work required for the concep-
tion, compilation, and aggregation of academic and industrial ground
truths would certainly help to link algorithms with more general dynamics
related, for example, to the emergence of new forms of on- demand labor.
Such an investigative effort could also build analytical bridges between cur-
rent network technologies that support the commodification of personal
data and, for example, blockchain technology which is precisely based
on a harsh criticism of this very possibility.5 In chapter 3, when it came
to the progressive setting aside of programming practices from the 1950s
onward, more systematic sociohistorical investigations of early electronic
computing proj ects could ignite a fresh new look at “artificial intelligence,”
a term that, perhaps, has built on other similar invisibilizations of work
practices.6 With regard to chapter 4 and the situated practices of computer
programming, conducting further so cio log i cal investigations on the orga-
nizational and material devices mobilized by programmers in their daily
work could contribute to better appreciating this specialized activity that is
central to our contemporary societies. Programming prac ti tion ers may, in
turn, no longer be considered an esoteric community with its own codes
but also, and perhaps above all, differentiated groups constantly exploring
alternative ways to interact with computers by means of numbered lists of
instructions. In chapter 5, although it was about operationalizing a spe-
cific understanding of mathematical knowledge, the reader will certainly
have noticed the few sources on which my propositions were based. It
goes without saying that more so cio log i cal analyses of the theoretical work
under lying the formation of mathematical statements is, in our increas-
ingly computerized world, more impor tant than ever. Fi nally, concerning

Conclusion 289

formulating practices, as outlined at the end of chapter 6, analyzing the
recent dynamics related to machine learning in light of the practical pro-
cesses that make them exist could lead to considering the resurrected prom-
ises of artificial intelligence through a new lens: What are the costs of this
intelligence? How is it artificial? What are its inherent limits? These are
urgent topics to be considered at the ground level, not only to fuel contro-
versies but also, perhaps (and always temporarily), to close them.

For now, we are still far from such a generalized sociology of algorithms
this book hopes to suggest. We are only at the very beginning of a road that,
if we want to demo cratically integrate the ecol ogy of algorithms into the
collective world, is a very long one. With this book, beyond the presented
ele ments that, I hope, have some value in themselves, one can also see an
invitation to pursue the investigation of the mundane work under lying the
formation and circulation of algorithms—an open- ended and amendable
constitution, in short.

actant designates any par tic u lar human or nonhuman entity. The notion was devel-
oped by semiotician Algirdas Julien Greimas before being taken up by Bruno Latour
(2005) to expand agency to nonhuman actors and ground his so cio log i cal theory,
often labeled “actor- network theory.”

algorithm is what this book tries to define in an action- oriented way. In view of the
inquiry’s empirical results, algorithms may be considered, but certainly not reduced
to, uncertain products of ground- truthing, programming, and formulating activities.

algorithmic drama refers to the impasse threatening critical studies of algorithms.
By mainly considering algorithms from a distance and in terms of their effects, these
studies take the risk of being stuck in a dramatic loop: Algorithms are power ful because
they are inscrutable, because they are power ful, because they inscrutable, and so on.
The term “algorithmic drama” was initially proposed by Malte Ziewitz (2016).

association refers to a connection, or a link, made between at least two actants. An
association is an event from which emanates a difference that a text can, sometimes,
partially account for.

BRL is the acronym of Ballistic Research Laboratory, a now- dismantled center dedi-
cated to ballistics research for the US Army that was located at Aberdeen Proving
Ground, Mary land. The BRL played an impor tant role in the history of electronic
computing because the ENIAC proj ect was initially launched to accelerate the analy-
sis of ballistic trajectories carried out within the BRL’s premises—in collaboration
with the Moore School of Electrical Engineering at the University of Pennsylvania.

CCD and CMOS are acronyms for charge- coupled device and complementary metal- oxide
semiconductor, respectively. Through the translation of electromagnetic photons into
electron charges as well as their amplification and digitalization, these devices enable
the production of digital images constituted of discrete square ele ments called pixels.
Or ga nized according to a coordinate system allowing the identification of their loca-
tions within a grid, these discrete pixels—to which are typically assigned eight- bit
red, green, and blue values in the case of color images— allow computers equipped

Glossary

292 Glossary

with dedicated programs to pro cess them. Both CCD and CMOS are central parts of
digital cameras. Although they are still the subject of many research efforts, they are
now industrially produced and supported by many norms and standards.

chain of reference is a notion initially developed by Bruno Latour and Steve Wool-
gar (1986) to address the construction of scientific facts. Closely linked with the
notion of inscription, a chain of reference allows the maintenance of constants,
thus sometimes providing access to that which is distant. Making chains of refer-
ence vis i ble, for example, by describing scientific instrumentations in laboratories
allows appreciation of the materiality required to produce certified information
about remote entities.

cognition is an equivocal term, etymologically linked with the notion of knowledge
as it derives from the Latin verb cognōscere (get to know). To deflate this notion,
which has become hegemonic largely for po liti cal reasons, this inquiry—in the wake
of the work of Simon Penny (2017)— prefers to attribute to it the more general pro-
cess of making sense.

cognitivism is a specific way to consider cognition. For contingent historical rea-
sons, the general pro cess of making sense has progressively been affiliated with the
pro cess of gaining knowledge about remote entities without taking into account the
instrumentation enabling this gain. The metaphysical division between a knowing
subject and a known object is a direct consequence of this nonconsideration of the
material infrastructure involved in the production of knowledge. This, in turn, has
forced cognitivism to amalgamate knowledge and real ity, thus making the adaequa-
tio rei et intellectus the unique, though nonrealistic, yardstick of valid statements and
be hav iors.

collective world is the immanent pro cess of what is happening. It is close to Wittgen-
stein’s definition of the world as “every thing that is the case” (Wittgenstein 1922).
The adjective “collective” seeks to underlie the multiplicity of entities involved in
this generative pro cess.

Command Win dow is a space within the Matlab integrated development environment
(IDE) that allows programmers to see the results of their programming actions on
their computer terminal.

composition is the focus of this inquiry; that in which it is trying, at its own level,
to participate. Close to compromise, composition expresses a desire for commonal-
ity without ignoring the creative readjustments such a desire constantly requires.
Composition is an alternative to modernity in that its desire for universality is based
on comparative anthropology, thus avoiding—at least potentially— the traps of
ethnocentrism.

computationalism is a type of cognitivist metaphysics for which perceptual inputs
take the shape of ner vous pulses pro cessed by mental models that, in turn, output

Glossary 293

a dif fer ent numerical value to the ner vous system. According to computationalism,
agency is considered the output of both perception and cognition pro cesses and
takes the form of bodily movements instructed by ner vous pulses. This conception of
cognition is closely related to the computational meta phor of the mind that establishes
an identity relationship between the human mind and (programmed) computers.

constitution refers to both a pro cess and a document. The notion is here preferred to
the more traditional one of construction because it preserves a fundamental tension
of so cio log i cal ventures: to describe and contest. The term “constitution” reminds us
that a real ity comes into being to the detriment of another.

course of action is an accountable sequence of gestures, looks, speeches, move-
ments, and interactions between human and nonhuman actants whose articulations
sometimes end up producing something (a piece of steel, a plank, a court decision, an
algorithm, etc.). Following the seminal work of Jacques Theureau, courses of action
are the building blocks of this inquiry. The notion is closely linked to that of activity
that, in this book, is understood as a set of intertwining courses of actions shar-
ing common finalities. The three parts of this book are all adventurous attempts to
pre sent activities taking part in the formation of algorithms; hence their respective
gerund titles: ground- truthing, programming, formulating.

CSF is the acronym of Computer Science Faculty. It is the department to which the
Lab belongs. The CSF is part of what I call, for reasons of anonymity, the Eu ro pean
technical institute (ETI).

digital signal is, in its technical understanding, represented by n number of dimen-
sions depending on the in de pen dent variables used to describe the signal. A sampled
digital sound is, for example, typically described as a one- dimensional signal whose
dependent variables— amplitudes— vary according to time (t); a digital image is typi-
cally described as a two- dimensional signal whose dependent variables— intensities—
vary according to two axes (x, y) while audiovisual content will be described as a
three- dimensional signal with in de pen dent variables (x, y, t).

Editor is a space within the Matlab integrated development environment (IDE) allow-
ing a programmer to inscribe characters capable of triggering— with the help of an
interpreter— electric pulses to compute digital data in desired ways. It is part of the
large family of source- code editors that can be stand- alone applications or functional-
ities built into larger software environments.

EDVAC is the acronym of Electronic Discrete Variable Automatic Computer. This clas-
sified proj ect was launched in August 1944 as the direct continuation of the ENIAC
proj ect at the Moore School of Electrical Engineering. The EDVAC played an impor-
tant role in the history of electronic computing because it was the subject of an
influential report written by John von Neumann in 1945. This unfinished report,
entitled First Draft of a Report on the EDVAC, laid the foundations for what would
 later be called the von Neumann architecture.

294 Glossary

ENIAC is the acronym of Electronic Numerical Integrator and Computer. This classi-
fied proj ect was launched in April 1943 under the direction of John Mauchly and
John Presper Eckert at the Moore School of Electrical Engineering. It initially aimed
to accelerate the production of firing tables required for long- distance weapons by
solving large iterative equations at electronic speed. Although innovative in many
ways, the limitations of ENIAC prompted Mauchly, Eckert, and later von Neumann
to launch another electronic computing proj ect: the EDVAC.

flat laboratory is a figure of style aiming to address the physical locations in which
mathematicians work to produce certified statements. Compared with, for example,
laboratories of molecular biology or high- energy physics, the instrumentation of
mathematical laboratories tends to take up less space. It is impor tant here not to con-
fuse flatness with the mathematical concept of dimensionality often used to capture
and qualify the experience of flatness (or bulkiness). According to the point of view
 adopted in this book, dimensionality should be considered a product of the relative
flatness of mathematical laboratories’ equipment.

formula is a mathematical operation expressed in a generic scriptural form. The prac-
tical pro cess of enrolling a formula to establish antecedence and posteriority among
sets of data is here called formulating.

ground truth is an artifact that typically takes the shape of a digital database. Its
main function is to relate sets of input- data— images, text, audio—to sets of output-
targets— labeled images, labeled text, labeled audio. As ground truths institute prob-
lems that not- yet- designed algorithms will have to solve, they also establish their
veracity. As this book indicates, many ground truths do not preexist and thus need to
be constructed. The collective pro cesses leading to the design and shaping of ground
truths heavi ly impact the nature of the algorithms they help constitute, evaluate,
and compare.

image pro cessing is a subfield of computer science that aims to develop and pub-
lish computerized methods of calculation capable of pro cessing CDD- and CMOS-
derived pixels in meaningful ways. Because digital images can be described as
two- dimensional signals whose dependent variables— intensities— vary according
to two axes (x, y), image pro cessing is also sometimes called “two- dimensional sig-
nal pro cessing.” When it focuses on recognition tasks, it is generally called “image
recognition.”

inscription is a special category of actant that is durable (it lives on beyond the here and
now of its instantiation), mobile (it can move from one place to another without being
too much altered), and re- presentable (it can— together with suitable infrastructures—
carry, transport, and display properties that are not only its own). Due to these capaci-
ties, inscriptions greatly participate in shaping the collective world.

INT is the abbreviation for interpreter, a complex computer program that translates
inscriptions written in high- level programming language into an abstract syntax tree

Glossary 295

before establishing communication with the computer’s hardware. Whenever an
interpreter cannot complete its translation, the high- level program cannot perform
fully.

Lab stands for the computer science academic laboratory that is the field site of the
present ethnographic inquiry. The Lab specializes in digital image pro cessing, and
its members— PhD students, postdocs, invited researchers, professors— spend a sig-
nificant amount of their time trying to shape new algorithms and publish them in
peer- reviewed journals and conferences.

laboratory study is an STS- inspired genre of ethnographic work that consists in
accounting for the mundane work of scientists and technologists. Borrowing from
anthropology, it implies staying within an academic or industrial laboratory for a
relatively long period of time, collaborating with its members, becoming somewhat
competent, and taking a lot of notes on what is going on. At some point, eventu-
ally, it also implies leaving the laboratory—at least temporarily—to further compile
and analyze the data before submitting, fi nally, a research report on the scrutinized
activity.

machine learning is not only a class of statistical methods but also, and perhaps
above all, a lived experience consisting of automating parts of formulating activities.
However, this algorithmic del e ga tion for algorithmic design relies on increasing, and
often invisibilized, ground- truthing and programming efforts.

mathe matics is, in this book, considered integral part of scientific activity. It thus
typically consists of producing certified facts about objects shaped or discovered
with the help of instruments and devices within (flat) laboratories.

Matlab is a privately held mathematical software for numerical computing built
around its own interpreted high- level programming language. Because of its agil-
ity in designing prob lems of linear algebra, Matlab is widely used for research and
industrial purposes in computer science, electrical engineering, and economics. Yet
as Matlab works mainly with an interpreted programming language, its programs
have to be translated by an interpreter (INT) before interacting with the hardware.
This interpretative step makes it less efficient for pro cessing heavy matrices than, for
example, programs directly written in compiled languages such as C or C++.

model is a term that is close to an algorithm. In this book, the distinction between
an algorithm and a model can only be retrospective: If what is called a “model”
derives from, at least, ground- truthing, programming, and formulating activities, it
is considered an algorithm.

problematization is, in this book, the collective pro cess of establishing the terms of
a prob lem. Building on Science and Technology Studies, analyzing problematization
implies describing the way questions are framed, or ga nized, and progressively trans-
formed into issues for which solutions can be proposed.

296 Glossary

pro cess thought is an ontological position supported by a wide and heterogeneous
body of philosophical works that share similar sensibilities toward associations—
sometimes also called relations. For pro cess thinkers, what things are is what they
become in association to other entities, the association itself being part of the pro-
cess. The emphasis is put on the “how” rather than the “what”: instead of asking
what is something, pro cess thinkers would rather ask how something becomes. This
ontology is about continuous per for mances instead of binary states.

PROG specifically refers, in this book, to a Matlab computer program aiming to cre-
ate matrices whose pixel-values correspond to the number of rectangles drawn by
 human crowdworkers on pixels of digital images.

program is a document whose structure and content, when adequately articulated,
makes computers compute data. The practical pro cess of writing a computer program
is called programming.

re- presentation is the pre sen ta tion of something again. Inscriptions are common re-
presentations in that they display properties of other entities over. Re- presentations,
in this book, should not be confused with repre sen ta tions (without the hyphen), a
term that refers to the solution found by cognitivist authors to overcome the distinc-
tion between extended things (res extensa) and thinking things (res cogitans).

saliency detection is a subfield of image pro cessing that aims to detect what attracts
 people’s attention within digital images. Because the topic of these detection efforts
is extremely equivocal, saliency detection is a field of research that shows dynam-
ics that may go unnoticed in more traditional subfields such as facial or object
recognition.

scenario refers to a narrative operating a triple shifting out toward another place,
another time, and other actants while having a hold on its enunciator. As performa-
tive narrative resources, scenarios are of crucial importance for programming activities
 because they institute horizons on which programmers can hold— while being held
by them— and establish, in turn, the bound aries of computer programming episodes.

Science and Technology Studies (STS) are a subfield of social science and sociology
that aims to document the co- construction of science, technology, and the collec-
tive world. What loosely connects the prac ti tion ers of this heterogeneous research
community is the conviction that science is not just the expression of a logical
empiricism, that knowledge of the world does not preexist, and that scientific and
technological truths are dependent on collective arrangements, instrumentations,
and dynamics.

script commonly refers to a small computer program. Many interlinking scripts and
programs calling on each other typically form a software. The notion should not be
confused with Madeleine Akrich’s (1989) “scripts” that, in this book, are close to the
notion of scenario.

Glossary 297

sociology is, in this book, the activity of describing associations (socius) by means of
specialized texts (log os). It aims to help understand what is going on in the collective
world and better compose with the heterogeneous entities that populate/shape it. In
this book, sociology is differentiated from social science that is considered the scien-
tific study of an a priori postulated aggregate, generally called the social (or society).

technical detour is a furtive and difficult- to- record experience that takes the form
of a zigzag: Thanks to unpredictable detours, a priori distant entities become the
missing pieces in the realization of a proj ect. Technical detours—as conceptualized
by Bruno Latour (2013)— involve a form of del e ga tion to newly enrolled entities.
They also imply forgetting their brief passages once the new composition has been
established.

translation is a work by which actants modify, move, reduce, transform, and articu-
late other actants to align them with their concerns. This is a specific type of asso-
ciation that produces differences that can, with an appropriate methodology, be
reflected in a text. The notion was initially developed by Michel Serres (1974) before
being taken up by Madeleine Akrich, Michel Callon, and Bruno Latour to ground
their sociologie de la traduction, which I call sociology here.

trial is a testing event whose outcome has a strong impact on the becoming of an
actant. If the trial is overcome, the actant may manage to associate with other actants,
with this new association becoming, in turn, more resistant. If the trial is not over-
come, the actant will lose some of its properties, sometimes to point of disappearing.

visibility/invisibility are relative states of work practices. These variable states are
products of visibilization, or invisibilization, pro cesses. If complete invisibility of
work practices is not desirable, complete visibility is not either. In this book, I have
chosen public controversies as indicators of negative invisibilities, suggesting in
turn the launching of visibilization pro cesses by means of, for example, so cio log i cal
inquiries.

Introduction

1. Pro cess thought refers to a wide and heterogeneous body of philosophical works
that share similar sensibilities toward associations, sometimes also called relations
(Barad 2007; Butler 2006; Dewey [1927] 2016; James [1912] 2003; Latour 1993b, 2013;
Mol 2002; Pickering 1995; Serres 1983; Whitehead [1929] 1978). For pro cess thinkers,
as Introna put it (2016, 23), “relations do not connect (causally or other wise) pre-
existing entities (or actors), rather, relations enact entities in the flow of becoming.”
What things are is what they become in association to other entities, the association
itself being part of the pro cess. The emphasis is then put on the “how” rather than the
“what”: instead of asking what is something, pro cess thinkers would rather ask how
something becomes. This ontology is then about continuous per for mances instead of
binary states. The pre sent volume embraces this ontology of becoming.

2. At the end of the book, a glossary briefly defines technical terms used for this
investigation (e.g., actant, collective world, constitution, course of action).

3. This unconventional conception of the social has been initially developed and
pop u lar ized by Madeleine Akrich, Michel Callon, and Bruno Latour at the Centre
de Sociologie de l’Innovation (Akrich, Callon, and Latour 2006; Callon 1986). It is
impor tant to note that even though this theoretical standpoint has somewhat made
its way through academic research, it remains shared among a minority of scholars.

4. As pointed out by Latour (2005, 5–6), the Latin root socius that denotes a com-
panion—an associate— fits well with the conception of the social as what emanates
from the association among heterogeneous entities.

5. What connects the prac ti tion ers of the heterogeneous research community of
Science and Technology Studies is the conviction that science is not just the expres-
sion of a logical empiricism; that knowledge of the world does not preexist; and
that scientific and technological truths are dependent on collective arrangements,
instrumentations, and dynamics (Dear and Jasanoff 2010; Jasanoff 2012). For a com-
prehensive introduction to STS, see Felt et al. (2016).

Notes

300 Notes

6. It is impor tant to note that this lowering of capacity to act does not concern
the sociology of attachments that precisely tries to document the appearance of
delighted objects, as developed by Antoine Hennion (2015, 2017). At the end of
chapter 5, I will discuss the impor tant notion of attachment.

7. The notion of “composition”—at least as proposed by Latour (2010a)—is, in
my view, an elegant alternative to the widely used notion of “governance.” Both
nonetheless share some characteristics. First, both notions suppose heterogeneous
ele ments put together— collectives of humans, machines, objects, companies, and
institutions trying to collaborate and persevere on the same boat. Second, they
share the desire of a common world while accepting the irreducibility of its parts:
for both notions, the irreducible entities that constitute the world would rather live
in a quite informed community aware of dif fer ent and competitive interests than
in a distrustful and whimsical wasteland. Both composition and governance thus
share the same basic topic of inquiry: how to step- by- step transform heterogeneous
collectives into heterogeneous common worlds? Third, they both agree that traditional
centralized decisional powers can no longer achieve the constitution of common
worlds; to the verticality of orders and injunctions, composition and governance
prefer the horizontality of compromises and negotiations. Yet they nonetheless
differ on one crucial point: if governance still carries the hope of a smooth— yet
heterogeneous— cosmos, composition promotes the need of a laborious and con-
stantly readjusted kakosmos (Latour 2010a, 487). In other words, if control is still an
option for governance, composition is committed to the always surprising “made to
do” (Latour 1999b). It is this emphasis on the constant need for creative readjust-
ments that makes me prefer the notion of “composition” over “governance.”

8. The next two paragraphs derive from Jaton (2019, 319–320).

9. The single term “algorithm” became increasingly common in the Anglo- American
critical lit er a ture from the 2000s onward. It would be in ter est ing to learn more about
the ways by which the term “algorithm” has come to take over other alternative terms
(such as “software,” “code,” or “software- algorithm”) that were also synonymously
used in the past, especially in the 1990s.

10. In Jaton and Vinck (submitted), we closely consider the specific dynamic of the
recent politicization of algorithms.

11. This controversy has been thoroughly analyzed in Baya- Laffite, Beaude, and
Garrigues (2018).

12. As we will see in the empirical chapters of this book, it is not clear whether we
should talk about computer scientists or engineers. But as the academic field of com-
puter science is now well established, I choose to use the generic term “computer
scientist” to refer to those who work every day to design surprising new algorithms.

13. For thorough discussions on this topic, see Denis (2018, 83–95).

Notes 301

14. Does it mean that “objective knowledge” is impossible? As we will see in chap-
ters 4, 5, and 6, drawing such a conclusion is untenable: despite the irremediable
limits of the inscriptions on which scientific practices heavi ly rely, these practices
nonetheless manage to produce certified objective knowledge.

15. In their 2004 paper, Law and Urry build upon an argument initially developed
by Haraway (1992, 1997).

16. This partly explains some hostile reactions of scientists regarding STS works on
the “construction of scientific facts.” On this topic, see Latour (2013, 151–178).

17. For recent examples, see Cardon (2015) and Mackenzie (2017).

18. In chapter 5, I will discuss at greater length the crucial importance of scientific
lit er a ture for the formation of certified knowledge.

19. The term “infra- ordinary,” as opposed to “extra- ordinary,” was originally pro-
posed by Pérec (1989). The term was later taken up in Francophone sociology, nota-
bly by Lefebvre (2013).

20. See, for example, Bishop (2007), Cormen et al. (2009), Sedgewick and Wayne
(2011), Skiena (2008), and Wirth (1976). I will discuss some of these manuals in
chapter 1.

21. However, it is crucial to remain alert to the performative aspects of manuals
and classes. This topic is well studied in the sociology of finance; see, for example,
MacKenzie, Muniesa, and Siu (2007) and Muniesa (2015).

22. This also often concerns social scientists interviewing renowned computer scien-
tists (e.g., Seibel 2009; Biancuzzi and Warden 2009). As these investigations mainly
focus on well- respected figures of computer science whose proj ects have largely
succeeded, their results tend to be retrospective, summarized narratives occluding
uncertainties and fragilities. On some limitations of biographic interviews, see Bour-
dieu (1986). On the problematic habit of reducing ethnography to interviews, see
Ingold (2014).

23. For a pre sen ta tion of some of the reasons why scholars started to inquire within
scientific laboratory, see Doing (2008), Lynch (2014), and Pestre (2004).

24. On some of the problematic, yet fascinating, dynamics of this rapprochement
between computer science and the humanities (lit er a ture, history, linguistics, etc.)
that gave rise to digital humanities, see Gold (2012), Jaton and Vinck (2016), and
Vinck (2016).

25. Among the rare attempts to document computer science work are Bechmann
and Bowker (2019), Button and Sharrock (1995), Grosman and Reigeluth (2019),
Henriksen and Bechmann (2020), and Mackenzie and Monk (2004). I will come
back to some of these studies in the empirical chapters of the book.

302 Notes

26. After a thorough review of the con temporary critical studies of algorithms,
Ziewitz (2016) warned that they could be about to reach a problematic impasse.
Roughly put, the argument goes as follows: by mainly considering algorithms from
a distance and in terms of their effects, critical studies are taking the risk of being
stuck in a dramatic loop, constantly rehashing that algorithms are power ful because
they are inscrutable, because they are power ful, because they inscrutable, and so on.
The pre sent volume can be considered an attempt at somewhat preventing such a
drama from taking hold. In the conclusion, when I clarify the po liti cal aspect of this
inquiry, I come back to this notion of algorithmic drama.

27. Theureau’s work is unique in many ways. Building on the French ergonomics
tradition (Ombredane and Faverge 1955) and critical readings of Newell and Simon’s
(1972) cognitive behaviorism as well as Varela’s notion of “enactive cognition”
(discussed in chapter 3), he has gradually proposed a simple yet effective defini-
tion of a course of action as an “observable activity of an agent in a defined state,
actively engaged in a physically and socially defined environment and belonging to
a defined culture” (Theureau 2003, 59). His analyses of courses of action involved in
traffic management (Theureau and Filippi 2000), nuclear reactor control (Theureau
et al. 2001), and musical composition (Donin and Theureau 2007) has led him to
propose the notion of “courses- of- action centered design” for ergonomic studies.

28. At the beginning of chapter 4, I will briefly consider the prob lem of “representa-
tiveness.”

Chapter 1

1. The general issue subtending my research has not fundamentally changed since
the date at which I was awarded the research grant.

2. One of the particularities of the CSF was its international focus. During the official
events I attended, deans regularly put forward the CSF’s capacity to attract foreign
students and researchers. This was especially true in the case of the Lab where I was
the only “indigenous” scientific collaborator for nearly a year. The lingua franca was
in line with this international environment; even though the Lab was located in
a French- speaking region, most interactions, pre sen ta tions, and documents were in
En glish.

3. The history of the development of the charge- coupled device has been docu-
mented, though quite partially, in Seitz and Einspruch (1998, 212–228) and Gertner
(2013, 250–265).

4. For an accessible introduction to CCDs and image sensors, see Allen and Trian-
taphillidou (2011, 155–173).

5. CMOS is a more recent variant of CCD where each pixel contains a photodetector
and an amplifier. This feature currently allows significant size and power reduction

Notes 303

of image sensors. This is one of the reasons why CMOSs now equip most portable
devices such as smartphones and compact cameras.

6. It is commonly assumed that the term pixel, as a contraction of “picture ele-
ment,” first appeared in a 1969 paper from Caltech’s Jet Propulsion Lab (Leighton
et al. 1969). The story is more intricate than that as the term was regularly used in
emergent image- processing communities thoughout the 1960s. For a brief history of
the term pixel, see Lyon (2006).

7. A digital signal is represented by n number of dimensions depending on the
in de pen dent variables used to describe the signal. A sampled digital sound is, for
example, typically described as a one- dimensional signal whose dependent variables—
amplitudes— vary according to time (t); a digital image is typically described as a two-
dimensional signal whose dependent variables— intensities— vary according to two
axes (x, y), whereas audio- visual content will be described as a three- dimensional signal
with in de pen dent variables (x, y, t). For an accessible introduction to digital signal
pro cessing, see Vetterli, Kovacevic, and Goyal (2014).

8. It was not the only research focus of the Lab. Several researchers also worked on
CCD/CMOS architectures and sensors.

9. It is impor tant to note that for digital image pro cessing and recognition to become
a major subfield of computer science, digital images first had to become stable enti-
ties capable of being pro cessed by computer programs— a long- standing research
and development endeavor. Along with the development, standardization, and
industrial production of image sensors such as CCDs and, later, CMOSs, theoretical
works on data compression— such as those of O’Neal Jr. (1966) on differential pulse
code modulation; Ahmed, Natarajan, and Rao (1974) on cosine transform; or Gray
(1984) on vector quantization— have first been necessary. The later enrollment of
 these works for the definition of the now- widespread International Organ ization for
Standardization norm JPEG, approved in 1993, was another decisive step: from that
moment, telecommunication providers, software developers, and hardware manu-
facturers could rely on and coordinate around one single photographic coding tech-
nique for digitally compressed repre sen ta tions of still images (Hudson et al. 2017).
During the late 1990s, the growing distribution of microcomputers, their gradual
increase in terms of pro cessing power, and the development and maintenance of
web technologies and standards have also greatly contributed to establishing digital
image pro cessing as a mainstream field of study. The current popularity of image
pro cessing for research, industry, and defense is thus to be linked with the progres-
sive advent of multimedia communication devices and the blackboxing of their fun-
damental components operating now as standard technological infrastructure.

10. According to Japan- based industry association Camera & Imaging Products
Association (to which, among others, Canon, Nikon, Sony, and Olympus belong),
sales of digital cameras have dropped from 62.9 million in 2010 to fewer than

304 Notes

24.25 million in 2017 (Statista 2019). However, according to estimates generated by
InfoTrends and Bitkom, the number of pictures taken worldwide increased from 660
billion to 1,200 billion over the same period (Richter 2017). This discrepancy is due,
among other things, to the increasing sophistication of smartphone cameras as well
as the popularity and sharing functionalities of social- media sites such as Instagram
and Facebook (Cakebread 2017).

11. For example, Google, Amazon, Apple, Microsoft, and IBM all propose applica-
tion programming interface products for image recognition (respectively, Cloud
Vision, Amazon Rekognition, Apple Vision, Microsoft Computer Vision, and Watson
Visual Recognition).

12. According to 2011 documents obtained by Edward Snowden, the National
Security Agency intercepted millions of images per day throughout the year 2010 to
develop computerized tracking methods for suspected terrorists (Risen and Poitras
2014). Chinese authorities also heavi ly invest in facial recognition for security and
control purposes (Mozur 2018).

13. See, for example, International Journal of Computer Vision, IEEE Transactions on
Pattern Analy sis and Machine Intelligence, IEEE Transactions on Image Pro cessing, or Pat-
tern Recognition.

14. See, for example, IEEE Conference on Computer Vision and Pattern Recogni-
tion, Eu ro pean Conference on Computer Vision, IEEE International Conference on
Computer Vision, or IEEE International Conference on Image Pro cessing.

15. Giving an example of the close relationships between academic and industrial
worlds regarding image- processing algorithms, Jordan Fisher— chief executive officer
of Standard Cognition, a start-up that specializes in image recognition for autono-
mous checkout— says in a recent TechCrunch article (Constine 2019): “It’s the wild
west— applying cutting- edge, state- of- the- art machine learning research that’s hot
off the press. We read papers then implement it weeks after it’s published, putting
the ideas out into the wild and making them production- worthy.”

16. In 2016 and 2017, papers from Apple and Microsoft research teams won the
best- paper award of the IEEE Conference on Computer Vision and Pattern Recogni-
tion, the most prestigious conference in image pro cessing and recognition. More-
over, in 2018, Google launched Distill Research Journal, its own academic journal
aiming at promoting machine learning in the field of image and video recognition.

17. This is for example the case in Knuth (1997a) where the author starts by recall-
ing that “algorithm” is a late transformation of the term “algorism” that itself
derives from the name of famous Persian mathematician Abū ‘Abd Allāh Muham-
mad ibn Mūsa al- Khwārizmi— literally, “ Father of Abdullah, Mohammed, son of
Moses, native of Khwārizm,” Khwārizm referring in this case to a region south of
the Aral Sea (Zemanek 1981). Knuth then specifies that from its initial acceptation

Notes 305

as the pro cess of doing arithmetic with Arabic numerals, the term algorism gradually
became corrupted: “as explained by the Oxford En glish Dictionary, the word ‘passed
through many pseudo- etymological perversions, including a recent algorithm, in
which it is learnedly confused’ with the Greek root of the word arithmetic” (Knuth
1997a, 2).

18. See, for example, the (very) temporary definition of algorithms by Knuth (1997,
4): “The modern meaning for algorithm is quite similar to that of recipe, pro cess,
method, technique, procedure, routine, rigmarole.”

19. See, for example, Sedgewick and Wade’s (2011, 3) definition of algorithms as
“methods for solving prob lems that are suited for computer implementation.”

20. See also Cormen et al.’s (2009, 5) definition: “A well- defined computational pro-
cedure that takes some value, or set of values, as input and produces some value, or
set of values, as output [being] thus a sequence of computational steps that transform
the input into the output.”

21. See also Dasgupta, Papadimitriou, and Vazirani’s (2006, 12) phrasing: “When-
ever we have an algorithm, there are three questions we always ask about it: 1. Is it
correct? 2. How much time does it take, as a function of n? 3. And can we do better?”
And also Skiena (2008, 4): “ There are three desirable properties for a good algorithm.
We seek algorithms that are correct and efficient, while being easy to implement.”

Chapter 2

1. This chapter expands Jaton (2017). I thank Geoffrey Bowker, Roderic Crooks, and
John Seberger for fruitful discussions about some of its topics.

2. Excerpts in quotes are literal transcriptions from audio recordings, slightly reworked
for reading comfort. Excerpts not in quotes are retranscriptions from written notes
taken on the fly.

3. In chapter 3, I critically discuss the computational meta phor of the mind on
which many cognitive studies rely.

4. Studies on attention had already been engaged before the 1970s, notably through
the seminal work of Neisser (1967) who suggested the existence of a pre- attentive
stage in the human visual pro cessing system.

5. Another impor tant neurobiological model of selective attention method was pro-
posed by Wolfe, Cave, and Franzel (1989). This model of selective attention method
 later inspired competing low- level feature computational models (e.g., Tsotsos 1989;
Tsotsos et al. 1995).

6. The class of algorithms that calculates on low- level features quickly became
in ter est ing for the development of autonomous vehicles for which real- time image

306 Notes

pro cessing was sought (Baluja and Pomerleau 1997; Grimson 1986; Mackworth and
Freuder 1985).

7. Dif fer ent high- level detection algorithms can nonetheless be assembled as mod-
ules in one same program that could, for example, detect faces and cars and dogs,
and so on.

8. At that time, only two saliency- detection algorithms were published, in Itti, Koch,
and Niebur (1998) and Ma and Zhang (2003). But the ground truths used for the
design and evaluation of these algorithms were similar to those used in laboratory
cognitive science. The images of these ground truths were, for example, sets of dots
disrupted by a vertical dash. As a consequence, if these first two saliency- detection
algorithms could, of course, pro cess natu ral images, no evaluations of their per for-
mances on such images could be conducted.

9. Ground truths assembled by computer science laboratories are generally made
available online in the name of reproducible research (Vandewalle, Kovacevic, and
Vetterli 2009). The counterpart to this free access is the proper citation of the papers
in which these ground truths were first presented.

10. An API, in its broadest sense, is a set of communication protocols that act as an
interface among several computer programs. If APIs can take many dif fer ent forms
(e.g., hardware devices, web applications, operating systems), their main function
is to stabilize and blackbox ele ments so that other ele ments can be built on top of
them.

11. For a condensed history of contingent work, see Gray and Suri (2019, 48–63).
On what crowdsourcing does to con temporary capitalism, see also Casilli (2019).

12. As Gray and Suri (2019, 55–56) put it: “Following a largely untested manage-
ment theory, a wave of corporations in the 1980s cut anything that could be defined
as ‘non- essential business operations’— from cleaning offices to debugging software
programs—in order to impress stockholders with their true value, defined in terms
of ‘return on investment’ (in industry lingo, ROI) and ‘core competencies.’ … Stock-
holders rewarded those corporations that were willing to use outsourcing to slash
costs and reduce full- time- employee ranks.”

13. It is impor tant to note, however, that on- demand work is not necessarily alien-
ating. As Gray and Suri (2019, 117) noted: “[on- demand work] can be transformed
into something more substantive and fulfilling, when the right mixture of work-
ers’ needs and market demands are properly aligned and matched. It can rapidly
transmogrify into ghost work when left unchecked or hidden behind software
rather than recognized as a rapidly growing world of global employment.” Concrete
ways to make crowdsourcing more sustainable have been proposed by the National
Domestic Workers Alliance and their “Good Work Code” quality label. On this
topic, see Scheiber (2016).

Notes 307

14. However, this shared unawareness toward the under lying pro cesses of crowd-
sourcing may be valued and maintained for identity reasons, for as Irani (2015, 58)
noted: “The transformation of workers into a computational ser vice … serves not
only employers’ labor needs and financial interests but also their desire to maintain
preferred identities; that is, rather than understanding themselves as man ag ers of
information factories, employers can continue to see themselves as much- celebrated
programmers, entrepreneurs, and innovators.”

15. Matlab is a privately held mathematical software for numerical computing built
around its own interpreted high- level programming language. Because of its agility
to design prob lems of linear algebra— all integers being considered scalars— Matlab
is widely used for research and industrial purposes in computer science, electri-
cal engineering, and economics. Yet, as Matlab works mainly with an interpreted
programming language— just like the language Python that is now Matlab’s main
competitor for applied research purposes— its programs have to be translated into
machine- readable binary code by an interpreter in order to make the hardware effec-
tively compute data. This complex interpretative step makes it less efficient for pro-
cessing heavy matrices than, for example, programs directly written in compiled
languages such as C or C++. For a brief history of Matlab, see Haigh (2008).

16. In chapter 6, we will more thoroughly consider the relationship between ground-
truthing and formulating activities.

17. The ser vices of the crowdsourcing com pany costed the Lab around US$950.

18. The numerical features extracted from the training set were related, among
 others, to “2D Gaussian function,” “spatial compactness,” “contrast- based filtering,”
“high- dimensional Gaussian filters,” and “ele ment uniqueness.” In chapter 6, using
the case of the “2D Gaussian function,” I will deal with these formulating practices.

19. This can be read as a mild critique of the recent, growing, and impor tant lit er-
a ture on algorithm biases. Authors such as Obermeyer et al. (2019), Srivastava and
Rossi (2018), and Yapo and Weiss (2018), among others, show that the results of
many algorithms are indeed biased by the preconceptions of those who built them.
Though this statement is, I believe, completely correct— algorithms derive from
problematization practices influenced by habits of thought and action—it also runs
the risk of confusing premises with consequences: biases are not the consequences
of algorithms but, perhaps, are one of the things that make them come into exis-
tence. Certain biases expressed and materialized by ground truths can and, in my
opinion, should be considered harmful, unjust, and wrong; racial and gender biases
have, for example, to be challenged and disputed. However, the outcome of these
disputes may well be other biases expressed in other potentially less harmful, unjust,
and incorrect ground truths. As far as algorithms are concerned, one bias calls for
another; hence the importance of asserting their existence and making them vis i ble
in order to, eventually, align them with values one wishes algorithms to promote.

308 Notes

20. Edwards (2013) uses the term “data image” instead of “ground truth.” But I
assume that both are somewhat equivalent and refer to digital repositories or ga nized
around data whose values vary according to in de pen dent variables (that yet need to
be defined).

21. At the end of chapter 6, I will come back to the topic of machine learning and
its con temporary labeling as “artificial intelligence.”

22. This discussion has been reconstructed from notes in Logbook 3, May– October 2014.

23. However, it is in ter est ing to note that BJ blames the reviewers of impor tant
conferences in image pro cessing. According to him, the reviewers tend to privilege
papers that make “classical improvement” over those that solve— and thus define—
new prob lems. At any rate, there was obviously a prob lem in the framing of the
Group’s paper as the reviewers were not convinced by its line of argument. As a con-
sequence, the algorithm could not circulate within academic and industrial com-
munities and its existence remained, for a while, circumscribed to the Lab’s servers.

II

1. In computer science and engineering, it is indeed well admitted that computer
programming practices are difficult to conduct and their results very uncertain. On
this well- documented topic, see Knuth (2002), Rosenberg (2008), and in a more lit-
erary way, Ullman (2012a, 2012b).

Chapter 3

1. My point of departure is arbitrary in the sense that I could have started some-
where else, at a dif fer ent time. Indeed, as Lévy (1995) showed, the premises of what
 will be called “von Neumann architecture of electronic computers” can be found
not only in Alan Turing’s 1937 paper but also in the development of the office-
machine industry during the 1920s, but also in the mechanic- mathematical works
of Charles Babbage during the second half of the nineteenth century, but also in
eigh teenth century’s looms programmed with punched cards, and so on, at least
 until Leibniz’s work on binary arithmetic and Pascal’s calculating machine. The
history of the computer is fuzzy. As it only appears “ after a cascade of diversions
and reinterpretations of heterogeneous materials and devices” (Lévy 1995, 636), it
is extremely difficult—in fact, almost impossible—to propose any unentangled filia-
tion. Fortunately, this section does not aim to provide any history of the computer:
It “just” tries to provide ele ments that, in my view, participated in the formation of
one specific and influential document: von Neumann’s report on the EDVAC.

2. For a more precise account of the design of firing tables in the United States during
World War II, see Haigh, Priestley, and Rope (2016, 20–23) and Polachek (1997).

Notes 309

3. More than their effective computing capabilities— they required up to several
days to be set up (Haigh, Priestley, and Rope 2016, 26) and their results were often
less accurate than those provided by hand calculations (Polachek 1997, 25–27)—an
important characteristic of differential analyzers was their capacities to attract com-
puting experts around them. For example, by 1940, MIT, the University of Penn-
sylvania, and the University of Manchester, England— three impor tant institutions
for the future development of electronic computing— all possessed a differential
analyzer (Campbell- Kelly et al. 2013, 45–50; Owens 1986). On the role of differential
analyzers in early US- based computing research, see also Akera (2008, 38–45).

4. The assembling of the numerous factors affecting the projectiles started at the test
range in Aberdeen where the velocities of the newly designed shells were mea sured
(Haigh, Priestley, and Rope 2016, 20).

5. Although the differential equations defining the calculation of shells’ trajectories
are mathematically quite simple, solving them can be very complicated as one needs
to model air re sis tance varying in a nonlinear manner. As Haigh, Priestley, and
Rope (2016, 23) put it: “Unlike a calculus teacher, who selects only equations that
respond to elegant methods, the mathematicians at the BRL couldn’t ignore wind
re sis tance or assign a dif fer ent prob lem. Like most differential equations formulated
by scientists and engineers, ballistic equations require messier techniques of numeri-
cal approximation.”

6. In ter est ing to note that delay- line storage is originally linked to radar technology.
More precisely, one prob lem of the radar technology in 1942 was that cathode- ray
tube displays showed moving and stationary objects. Consequently, radar screens
translated the positions of planes, buildings, or forests in one same messy picture
extremely difficult to read. MIT’s radiation laboratory subcontracted the develop-
ment of a moving target indicator (MTI) to the Moore School in order to develop
a system that could filter radar signals according to their changing positions. This
was the beginning of delay- line storage technology at the Moore School, that at
first had nothing to do with computing (Akera 2008, 84–86; Campbell- Kelly et al.
2013, 69–74). Radar technology also significantly helped the design of British highly
confidential Colossus computer in 1943–1944 (Lévy 1995, 646).

7. By 1942, in order to speed up the resolution of ballistic differential equations,
only a limited range of factors tended to be considered by human computers at the
BRL. By simplifying the equations, more firing tables could be produced and distrib-
uted, but the drawback was that their precision tended to decrease (Polachek 1997).
Of course, on the war front, once soldiers realized that the first volley was not ade-
quately defined, they could still slightly modify the par ameters of the long- distance
weapon to increase its precision. Yet— and this is the crucial point— in between the
first volley and the subsequent ones, the opposite side had enough time to take
cover, hence making the overall long- distance shooting enterprise less effective. The

310 Notes

nerve of war was precisely the first long- distance volleys that, when accurate, could
lead to many casualties. By extension, then, the nerve of war was also, to a certain
extent, the ability to include more factors in the differential equations whose solu-
tions were printed out in firing table booklets (Haigh, Priestley, and Rope 2016, 25).

8. Created in 1940, the National Defense Research Committee (NDRC) united the
research laboratories of the US Navy and the Department of War with hundreds of
US universities’ laboratory. The NDRC initially had an impor tant bud get to fund
applied research projects that could provide significant advantages on future battle-
fields. It also operated as an advisory organ ization as in the case of the ENIAC that
was considered nearly infeasible due to the important amount of unreliable vacuum
tubes it would require. On this topic, see Campbell- Kelly et al. (2013, 70–72).

9. The history of this contract could be the topic of a whole book. For a nice pre sen-
ta tion of its most impor tant moments, see Haigh, Priestley, and Rope (2016, 17–33).

10. Based on a proposal by Howard Aiken, the Harvard Mark 1 was developed by
IBM for Harvard University between 1937 and late 1943. Though computationally
slow, even for the standards of the time, it was an impor tant computing system as
it expressed an early convergence of scientific calculation and office- machine tech-
nologies. For a more in- depth history of the Harvard Mark 1, see Cohen (1999).

11. Though its shape varied significantly throughout its existence, the ENIAC was
fundamentally a network of dif fer ent units (accumulators, multipliers, and function
 tables). Each unit had built-in dials and switches. If adequately configured, these dials
and switches could define one single operation; for example, “clear the values of the
accumulator,” “transmit a number to multiplier number 3,” “receive a number,” and
so on. To start pro cessing an operation, each configuration of dials and switches had to
be triggered by a “program line” wired directly to the specific unit. All these “program
lines” formed a network of wires connecting all the units for one specific series of oper-
ations. But as soon as another series of operations was required, the network of wires
had to be rearranged in order to fit the new configurations of dials and switches. For
more ele ments about the setup of ENIAC, see Haigh, Priestley, and Rope 2016 (35–57).

12. Von Neumann tried to hire Alan Turing as a postdoctoral assistant at Prince ton.
Turing refused as he wanted to return to England (MacRae 1999, 187–202).

13. The Manhattan Proj ect was, of course, highly confidential and this prevented
von Neumann from specifying his computational needs with the ENIAC team.

14. As suggested by Akera (2008, 119–120) and Swade (2011), and further demon-
strated by Haigh, Priestley, and Rope (2014; 2016, 231–257), the notion of “stored
program” is a historical artifact: “the ‘stored program concept’ was never proposed
as a specific feature in the agreed source, the First Draft, and was only retroactively
 adopted to pick out certain features of the EDVAC design” (Haigh, Priestley, and
Rope 2016, 256).

Notes 311

15. Shortly after the distribution of von Neumann’s First Draft, Eckert and Mauchly
distributed a much longer— and far less famous— counter- report entitled Automatic
High- Speed Computing: A Pro gress Report on the EDVAC (Eckert and Mauchly 1945)
in which they put the emphasis on the idealized aspect the First Draft. The stakes
 were indeed high for Eckert and Mauchly: if the idealized depiction of the EDVAC
by von Neumann was considered a realistic description of the engineering proj ect,
no patent could ever be extracted from it. And this is exactly what happened. In
1947, the Ordnance Department’s lawyers de cided that the First Draft was the first
publication on the proj ect EDVAC, hence canceling the patents submitted by Eckert
and Mauchly in early 1946 (Haigh, Priestley, and Rope 2016, 136–152).

16. This consideration of programming as an applicative and routine activity can
also be found in the more comprehensive reports von Neumann coauthored in 1946
and 1947 with Arthur W. Burks and Herman H. Goldstine at Prince ton Institute
for Advanced Study (Burks, Goldstine, and von Neumann 1946; Goldstine and von
Neumann 1947). In these reports, and especially in the 1947 report entitled Planning
and Coding of Prob lems for an Electronic Computing Instrument, the implementation of
instruction sequences for scientific electronic calculations is carefully considered.
But while the logico- mathematical planning of prob lems to be solved is presented
as complex and “dynamic,” the further translation of this planning is mainly con-
sidered trivial and “static” (Goldstine and von Neumann 1947, 20). Programming
is presented, in great detail, as a linear pro cess that is problematic during its initial
planning phase but casual during its implementation phase. What the report does
not specify— but this was not its purpose—is that errors in the modeling and plan-
ning phases become manifest in the implementation phase (as it was often the case
when the ENIAC was put in action), making empirical programming pro cesses more
whirlwind than linear.

17. In 1955, to alleviate the operating costs of the IBM 701 and the soon- to- be-
released IBM 704, several of IBM’s customers— among them Paul Armer of the RAND
Corporation, Lee Amaya of Lockheed Aircraft, and Frank Wagner of North American
Aviation— launched a cooperative association they named “Share.” This customer
association, and the many others that followed, greatly participated in the early cir-
culation of basic suites of programs. On this topic, see Akera (2001; 2008, 249–274).

18. For a fine- grained historical account of this real- time computing proj ect named
“Whirlwind” that was initially designed as a universal aircraft simulator, see Akera
(2008, 184–220).

19. For more thorough accounts of the SAGE proj ect, see Redmond and Smith
(1980, 2000), Jacobs (1986), Edwards (1996, 75–112), and Campbell- Kelly et al.
(2013, 143–166).

20. According to Pugh (1995), this contract gave IBM a significant advantage on the
early computer market.

312 Notes

21. In a nutshell, Thurstone Primary Mental Abilities (PMA) test was proposed
in 1936 by Louis Leon Thurstone, by then the first president of the Psychometric
Society. Originally intended for children, the test sought to mea sure intelligence
differentials using seven factors: word fluency, verbal comprehension, spatial visual-
ization, number fa cil i ty, associative memory, reasoning, and perceptual speed. For a
brief history of the PMA test and psychometrics, see Jones and Thissen (2007).

22. One impor tant insight of the EDSAC proj ect was to use the new concept of
 program to initialize the system and make it translate further programs from non-
binary instructions into binary strings of zeros and ones. David Wheeler, one of
Maurice Wilkes’ PhD students, wrote in 1949 such very first program he called
“Initial Orders” (Richards 2005). This type of program whose function was to
transform other programs into binary (the only code cathode- ray tubes, magnetic
core, or micropro cessors can interact with) were soon called “assemblers” and
cast to linguistic terms such as “translation” and “language” (Nofre, Priestley, and
Alberts 2014). During the 1950s, as multiple manufacturers invested in the elec-
tronic computer market, many dif fer ent assemblers were designed, thereby creating
impor tant prob lems of compatibility: as (almost) every new computer or ga nized the
accumulator and multiplier registers slightly differently, a new assembler was gener-
ally required. The prob lem lay in the one- to- one relationship between an assembler
and its hardware. Since an assembler had one instruction for one hardware opera-
tion, every modification in the operational organ ization of the hardware required
a new assembler. Yet— and this was the crucial insight of Grace Hopper and then
John Backus from IBM (Campbell- Kelly et al. 2014, 167–188)—if, instead of a pro-
gram with a one- to- one relationship with the hardware, one could provide a more
complex program that would transform lines of code into another program with
somehow equivalent machine- instructions, one may be able to stabilize computer
programming languages since any substantial modification of the hardware could
be integrated within the “transformer” program that lay in between the program-
mer’s code and the hardware. This is the fundamental idea of compilers, programs
that take as input a program written in so- called high- level computer language
and outputs another program— often called “executable”— whose content can
interact with specific hardware. In the late 1950s, besides their greater readability,
a tremendous advantage of the first high- level computer programming languages
such as FORTRAN or COBOL over assembly language lay in their compilers whose
constant maintenance could compensate and “absorb” the frequent modifications
of the hardware. For example, if two dif fer ent computers both had a FORTRAN
compiler— a crucial and costly condition— the same FORTRAN program could be
run on both computers despite their dif fer ent internal organ izations.

23. Between 1964 and 1967, IBM invested heavi ly in the development of an operating
system for its computer System 360. The impressive backlogs, bugs, and overheads
of this colossal software proj ect made Frederick Brooks— its former man ag er— call it
“a multi- million- dollar mistake” (Brooks 1975).

Notes 313

24. In 1968, an article by cofounder of Informatics General Corporation Werner
Frank pop u lar ized the idea that the cost of software production will outpace the cost
of computer hardware in the near future (Frank 1968). Though speculative in many
re spects, this claim was fairly reused and embellished by commentators until the
1980s. Though Frank himself later acknowledged that he unintentionally generated
a myth (Frank 1983), this story “reinforced a popu lar perception that programmer
productivity was lagging, especially compared to the phenomenal advances in com-
puter hardware” (Abbate 2012, 93).

25. The topic of “logical statement per for mances” is recurrent in behavioral studies
of computer programming, especially during the 1970s. This has to do with a con-
troversy initiated by Edsger Dijkstra over the GOTO statement as allowed by high-
level computer programming languages such as BASIC or early versions of FORTRAN
(Dijkstra 1968). According to Dijkstra, these branch statements that create “jumps”
inside a program make the localization of errors extremely tedious and should thus
be avoided. He then proposed “structured programming,” a methodology that con-
sists in subdividing programs in shorter “modules” for more efficient maintenance
(Dijkstra 1972). Behavioral studies of computer programming in the 1970s typically
tried to evaluate the asserted benefits of this methodology.

26. To prove his second incompleteness theorem, Gödel first had to show that any
syntaxic proposition could be expressed as a number. Turing’s 1937 demonstration
highly relied on this seminal insight. On the links between Gödel’s incompleteness
theorem and Turing’s propositions regarding the Entscheidungsproblem, see Dupuy
(1994, 22–30).

27. Neural networks, particularly those defined as “deep” and “convolutional,”
have recently been the focus of much attention. However, it is impor tant to note
that the notion of neural networks as initially proposed by McCulloch and Pitts
(who preferred to use the notion of “networks of neurons”) in their 1943 paper, and
 later taken up by von Neumann in his 1945 report, is very dif fer ent from its current
ac cep tance. As Cardon, Cointet, and Mazières (2018) have shown, McCulloch and
Pitts’s neural networks that were initially logical activation functions were worked
on by Donald O. Hebb (1949) who associated them with the idea of learning, which
was itself reworked by, among others, Frank Rosenblatt (1958, 1962) and his notion
of Perceptron. The progressive probabilization of the inference rules suggested by
Marvin Minsky (Minsky and Papert 1970), the works on the back- propagation algo-
rithm (Werbos 1974; LeCun 1985; Rumelhart, Hinton, and Williams 1986) and on
Boltzmann machines (Hinton, Sejnowski, and Ackley 1984) then actively partici-
pated in the association of the notions of “convolution” (LeCun et al. 1989) and,
more recently, “depth” (Krizhevsky, Sutskever, and Hinton 2012). The term “neural
network” may have survived this translation pro cess but it now refers to very dif-
fer ent world- enacting procedures. At the end of chapter 6, I will consider this topic
related to machine learning and artificial intelligence.

314 Notes

28. The division between “extended things” and “thinking things” derives, to a
large extent, from Cartesian dualism. For thorough discussions of Descartes’s aporia,
see the work of Damasio (2005).

29. As we saw in chapter 2, saliency detection in image pro cessing is directly con-
fronted with this issue. Hence the need to carefully frame and constrict the saliency
prob lem with appropriate ground truths.

30. One may trace these critics back to the Greek Sophists (Cassin 2014). James
(1909) and Merleau- Ponty (2013) are also impor tant opposition figures. In develop-
mental psy chol ogy, the “social development theory” proposed by Vygotsky (1978)
is also a fierce critic of cognitivism.

Chapter 4

1. To conduct this proj ect, I had to become competent in Python, PHP, JavaScript,
and Matlab programming languages.

2. It is impor tant to note that this line- by- line translation is what is experienced by
the programmer. In the trajectory of INT and most other interpreters, the numbered
list of written symbols is translated into an abstract syntax tree that does not always
conserve the line- by- line repre sen ta tion of the Editor.

3. It is difficult to know exactly how INT managed to deal with these three values
at T1. It may by default consider that only the first two values of image- size— width
and height— generally matter.

4. In the Matlab programming language, every statement that is not conditional
and that does not end with an semicolon is, by default, printed by the interpreter in
the Command Win dow. This is dif fer ent from many other high- level programming
languages for which printing operations should be specified by an instruction (typi-
cally, the instruction “print”).

5. In chapter 5, where I will consider the formation of mathematical knowledge,
I will more thoroughly examine the shaping of scientific facts as proposed by STS.

6. This may be a limitation of Software Studies, as for example presented in Fuller
(2008) and in the journal Computational Culture. By considering completed code,
 these studies tend to overlook the practical operations that led to the completion
of the code. Of course, this glance remains impor tant as it allows us to consider
the performative effects of software- related cultural products, something my action-
oriented method is not quite able to do.

7. The successive operations required to assem ble chains of reference in the case of
program- testing are well documented, though in a literary way, by Ullman (2012b).

8. It is in ter est ing to note that DF’s alignment practices would have been greatly
facilitated by the next version of Matlab. Indeed, the 2017 version of Matlab’s

Notes 315

interpreter automatically recognizes this type of dimension error during matrix
incrementation pro cesses and directly indicates the related breakpoint, the line at
which the prob lem occurred (in our case, at line 9).

9. Donald Knuth, one of the most prominent programming theorists, stressed the
importance of program intelligibility by proposing the notion of literate programming:
a computer programming method that primarily focuses on the task of explaining
programs to fellow programmers rather than “just” instructing computers.

10. To my knowledge, there are only three exceptions: Vinck (1991), Latour (2006),
and Latour (2010b).

11. This discussion has been reconstructed from notes in Logbook 8, November 2015–
March 2016.

12. Some STS authors use the term “script” to define these par tic u lar narratives that
engage those who enunciate them (Akrich 1989; Latour 2013). If I use the term “sce-
nario,” it is mainly for sake of clarity as “script” is often used by computer scientists
and programmers— and myself in this book—to describe small programs such as
PROG.

Chapter 5

1. Here, my style of pre sen ta tion and use of scenes are greatly inspired by Latour
(1987).

2. I am following here Rosental’s (2003) book.

3. I am following here the work of MacKenzie (1999).

4. This is taken from Logbook 1, October 2013– February 2014.

5. With their distinction between apodeixis (rigorous demonstration) and epideixis
(rhetorical maneuvering), Platonists phi los o phers may have initiated such grand
narratives (Cassin 2014; Latour 1999). According to Leo Corry (1997), this way of
presenting mathe matics culminated with Bourbaki’s structuralist conception of
mathematical truth. On this topic, see also Lefebvre (2001, 56–68). For a philosophi-
cal exploration of grand narratives, see the classic book by Lyotard (1984).

6. Yet “likes” and “retweets” that support claims published on Facebook or Twitter
may, sometimes, work as significant external allies. On this topic, see Ringelhan,
Wollersheim, and Welpe (2015).

7. Before the 1878 foundation of the American Journal of Mathe matics (AJM), there
was no stable academic fa cil i ty for the publication of mathematical research in the
United States (Kent 2008). The situation in England was a bit dif fer ent: built on the
ashes of the Cambridge and Dublin Mathematical Journal, the Quarterly Journal of Pure
and Applied Mathe matics (QJPAM) published its first issue in 1855 (Crilly 2004). Yet
for both Kempe’s and Heawood’s papers, the editorial boards of their journals—as

316 Notes

indicated on their front matters— were rather small compared with today’s stan-
dards: five members for AJM in 1879 (J. J. Sylvester, W. E. Story, S. Newcomb, H. A.
Newton, H. A. Rowland) and four members for QJPAM in 1890 (N. M. Ferrers, A.
Cayley, J. W. L. Glaisher, A. R. Forsyth).

8. According to the document in American Association for Artificial Intelligence
(1993).

9. See, for example, the Journal of Informetrics.

10. In a nutshell, Kempe circumscribed the prob lem to maps drawn on a plane that
contain at least one region called “country” with fewer than six neighbors. He could
then limit himself to five cases, countries from one to up to five neighbors. Proving
that “four colorability” is preserved for countries with three neighbors was, obviously,
not a prob lem. Yet in order to prove it for countries with four neighbors, Kempe used
an argument known as the “Kempe chains” (MacKenzie 1999, 19–20). This argument
stipulates that for a country X with four neighbor countries A, B, C, D, two opposite
neighbor countries, say A and C, are either joined by a continuous chain of, say, red
and green countries, or they are not. If they are joined by such a red- green chain, A can
be colored red and C can be colored green. But as we are dealing with a map drawn on
a plane, the two other opposite neighbor countries of X— B and C— cannot be joined
by a continuous chain of blue and yellow countries (one way or another, this chain is
indeed interrupted by a green or red country). As a consequence, these two opposite
neighbor countries can be colored blue and X can be colored yellow. Four colorability
is thus preserved for countries with four neighbors. Kempe thought that this method
also worked for countries with five neighbors. But Heawood’s figure shows a case of
failure of this method where E’s red- green region (vertically cross- hatched in figure 5.1)
intersects B’s yellow- red region (horizontally cross- hatched), thus forcing both coun-
tries to be colored red. Consequently, X has to be colored differently than red, blue,
yellow, and green. In such a case, four colorability is not preserved.

11. On this topic, see the work of Lefebvre (2001).

12. For rhetorical habits in the life sciences, see Latour and Woolgar (1986, 119–
148) and Knorr- Cetina (1981, 94–130). For a thorough comparison among scientific
disciplines— excluding mathe matics— see Penrose and Katz (2010).

13. Despite the efforts made by Serres (1995, 2002).

14. There was, of course, no scientific institution at that time; experimental proto-
cols, peer witnessing, and, later, academic papers are products of the seventeenth
 century (Shapin and Shaffer 1989). Yet, as Netz (2003, 271–312) showed, theorems
written on wax tablets and parchments did circulate among a restricted audience of
(very!) skeptical readers.

15. This is at least Netz’s (2003, 271–304) hypothesis, supported by the work of
Lloyd (1990, 2005). As Latour summarized it: “It is precisely because the public life in

Notes 317

Greece was so invasive, so polemical, so inconclusive, that the invention, by ‘highly
specialized networks of autodidacts’, of another way to bring an endless discussion to
a close took such a tantalizing aspect” (Latour 2008, 449).

16. So surprising that this careful and highly specialized method of conviction
mastered by a peripheral community of autodidacts who took great care to stick to
forms was soon “borrowed” by Plato and extended to content in order to, among
other things, silence the Sophists. This is at least the argument made by Cassin
(2014), Latour (1999b, 216–235), and Netz (2004, 275–282).

17. Aristotle seems to be one of the first to compile geometrical texts and systematize
their logical arguments (Bobzien 2002). During late antiquity, commentators such
as Eutocius annotated many geometrical works and compiled their main results to
facilitate their systematic comparisons (Netz 1998). According to Netz (2004), these
collections of standardized geometrical compilations further helped Islamic math-
ematicians such as al- Kwarizmi and Khayyam to constitute the algebraic language.

18. During the late nineteenth century’s so- called crisis of foundations in mathe-
matics, the formalist school— headed by David Hibert— tried to establish the
foundations of mathe matics on logical princi ples (Corry 1997). This led to famous
failures such as Russell and Whitehead’s three volumes of Principia Mathematica
(Whitehead and Russell 1910, 1911, 1913). Thanks to the philological work of Netz,
we now better understand why such an endeavor has failed: it was the very practice
of mathe matics— lettered diagrams carefully indexed to small Greek sentences— that
led to the formulation of the rules of logic and not the other way round.

19. Except, to a certain extent, Lefebvre (2001) and Mialet (2012). It seems then
that Latour’s remark remains true: few scholars have had the courage to do a careful
anthropological study of mathe matics (Latour 1987, 246).

20. This is taken from Latour (1987, chapter 2) and Wade (1981, chapter 13).

21. This is taken from Pickering and Stephanides (1992) and Hankins (1980, 280–312).

22. Very schematically, peptides are chemical ele ments made of chains of amino
acids. They are known for interacting intimately with hormones. As there are many
dif fer ent amino acids (twenty for the case of humans), there exists— potentially—
billions of dif fer ent peptides made of combinations of two to fifty amino- acids. It
is impor tant to note that in 1972, at the time of Guillemin’s experiment, peptides
could already be assembled— and probed— within well- equipped laboratories.

23. At the time of Hamilton, the standard algebraic notation for a complex number—
so- called absurd quantities such as square roots of negative numbers— was x + iy, where
i2 = –1 and x and y are real numbers. These advances in early complex algebra were
problematic to geometers: if positive real numbers could be considered mea sur able
quantities, negative real numbers and their square roots were difficult to represent
as shapes on a plane. A way to overcome this impasse was to consider x and y as

318 Notes

coordinates of the end point of a segment terminating at the origin. Therefore, “the
x- axis of the plane mea sured the real component of a given complex number repre-
sented as such a line segment, and the y axis the imaginary part, the part multiplied
by i in the algebraic expression” (Pickering and Stephanides 1992, 145). With this
visualization of complex numbers, algebraic geometers such as Hamilton could relate
complex geometrical operations on segments and complex algebraic operations on
equations. A bridge between geometry and complex algebra was thus built. Yet geom-
etry is not confined to planes: if a two- dimensional segment [0, x + iy] can represent
a complex number, there is a priori no reason why a three- dimensional segment
[0, x + iy + jz] could not represent another complex number. Characterizing the be hav-
ior of such a segment was the stated goal of Hamilton’s experiment.

24. Hamilton’s inquiry into the relationships between complex number theory
and geometry was not a purely exploratory endeavor. As Pickering and Stephanides
noted, “the hope was to construct an algebraic replica of transformations of line
segments in three- dimensional space and this to develop a new and possibly useful
algebraic system appropriate to calculations in three- dimensional geometry” (Picker-
ing and Stephanides 1992, 146).

25. Contrary to Hamilton, ancient Greek geometers could only refer to their let-
tered diagrams with short but still cumbersome Greek sentences (Netz 2003, 127–
167). Along with Greek geometers’ emphasis on differentiation, the absence of a
condensed language such as algebra— that precisely required compiled collections
of geometrical works in order to be constituted (Netz 1998)— may have participated
in limiting the scope of ancient Greek geometrical propositions (Netz 2004, 11–54).

26. Regarding these instruments, it is worth mentioning that here we retrieve what
we were discussing about in the last section: all of them— except, perhaps, noncom-
mutative algebra— are blackboxed polished facts that were, initially, written claims.
Rat pituitary cell cultures, algebraic notations, radioimmunoassays, coordinate
spaces and even Pythagoras’s theorem all had to overcome trials in order to gain
conviction strength and become established, certified facts.

27. This topological characteristic of mathematical laboratories may be a reason
why they have rarely been sites for ethnographic inquiries (Latour 2008, 444).

28. Of course, as we saw in chapter 4, such inscriptions are meaningless without
the whole series of inscriptions previously required to produce them. It is only by
aligning the “final” inscriptions to former ones, thus creating a chain of reference,
that Guillemin can produce information about his peptide (Latour 2013, chapter 3).

29. Here we retrieve something we already encountered in chapters 3 and 4: the “cog-
nitive” practice of aligning inscriptions. Just as DF in front of his computer terminal,
Brazeau, Guillemin, and Hamilton never stop grasping inscriptions they acquire from
experiments. These inscriptions can, in turn, be considered takes suggesting further
actions.

Notes 319

30. Again, this is taken from Latour (1987, chapter 2) and Wade (1981, chapter 13).

31. Again, this is taken from Pickering and Stephanides (1992) and Hankins (1980,
280–312).

32. Brazeau and Guillemin published their results in Science (Brazeau et al. 1973).
 After having presented his results at the Royal Irish Acad emy in November 1843,
Hamilton published a paper on quaternions in The London, Edinburg and Dublin
Philosophical Magazine and Journal of Science (Hamilton 1844). An impor tant thing
to note about quaternions is that after Hamilton named them that way, he still had
to define the complex quantities k2, ik, kj, and i2 in order to complete his system.
According to a letter Hamilton wrote in 1865, the solution to this prob lem— the
well- known i2 = j2 = k2 = ijk = −1— appeared to him as he was walking along the Royal
Canal in Dublin. If this moment was indubitably impor tant, it would be erroneous
to call it “the discovery of quaternions” (Buchman 2009). As shown by Pickering
and Stephanides (1992), quaternions were already defined as objects before the attri-
bution of values to the imaginary quantities’ products. In fact, when compared with
the experimental work required to define the prob lem of these products’ values,
what happened on Dublin’s Royal Canal appears relatively minor.

33. This is the recurrent prob lem of biographies of impor tant mathematicians; as
they tend to use nature to explain great achievements, they often ignore the many
instruments and inscriptions that were needed to shape the “discovered” objects.
Biographies of great mathematicians are thus often— yet not always (see the amazing
comic strip Logicomix [Doxiàdis et al. 2010])— unrealistic stories of solitary geniuses
chosen by nature.

34. Accepting the dual aspect of nature— the consequence of settled controversies as
well as the retrospective cause of noncontroversial facts— provides a fresh new look at
the classical opposition between Platonism and Intuitionism in the philosophy of
mathe matics. It seems indeed that the oddity of both Platonism— for which math-
ematical objects come from the outer world of ideas— and Intuitionism— for which
mathematical objects come from the inner world of human consciousness— comes
from their shared starting point: they both consider certified noncontroversial
mathematical facts. Yet as soon as one accounts for controversies in mathe matics—
that is, mathe matics in the making— nature from above (the outer- world of ideas) or
nature from below (the inner- world of human consciousness) cannot be considered
resources anymore as both are precisely what is at stake during the controversies.
It is in ter est ing to note, however, that both antagonist unempirical conceptions of
the origin of mathe matics led to impor tant performative disagreements about the
practice of mathe matics, notably through the ac cep tance, or refusal, of the law of
excluded middle. On this fascinating topic, see Rotman (2006) and Corry (1997).

35. According to Netz (2004, 181–186), the constant search for differentiation and
originality in ancient mathematical texts had the effect of multiplying individual

320 Notes

proofs of similar prob lems stated differently. In short, Greek geometers were not
interested in systems; they were interested in au then tic proofs with a specific “aura”
(Netz 2004, 58–63).

36. Netz suggests that the polemical dynamics of ancient mathematical texts pre-
vented Greek mathematicians from normalizing their works, demonstrations, and
prob lems. As he noted: “The strategy we have seen so far—of the Greek mathemati-
cian trying to isolate his work from its context—is seen now as both prudent and
effective. It is prudent because it is a way of protecting the work, in advance, from
being dragged into inter- textual polemics over which you do not have control. And
it is effective because it makes your work shine, as if beyond polemic. When Greek
mathematicians set out the ground for their text, by an explicit introduction or,
implicitly, by the mathematical statement of the prob lem, what they aim to do is to
wipe the slate clean: to make the new proposition appear, as far as pos si ble, as a sui
generis event— the first genuine solution of the prob lem at hand” (Netz 2004, 62–63).

37. To a certain extent, as we will shall see in chapter 6, mathematical software such
as Wolfram Mathematica and Matlab can be considered repositories of polished,
compiled, and standardized mathematical certified knowledge.

38. Very schematically, a neuron cell is made of three parts. There is first the “den-
drite”: the structure that allows a neuron to receive an electro-chemical signal. There
is then the “cell body”: the spherical part of the neuron that contains the nucleus
of the cell and reacts to the signal. There is fi nally the “axon”: the extended cell
membrane that sends information to other dendrites.

39. It is impor tant to note that the inevitable losses that go along with reduction
pro cesses can be used to criticize the products of these reductions. This is exactly
what I did in chapter 3 when I was dealing with the computational meta phor of the
mind. I used what some reductions did not take into account in order to criticize the
product of these reductions.

Chapter 6

1. BJ’s face- detection algorithm computes the size of a face as the ratio of the area of
the face- detection rectangle to the size of the image; hence the very small size- values
of faces in figure 6.3.

2. Remember that this comparison exercise was the main reason why the Group’s
paper on the algorithm was initially rejected by the committee of the image-
processing conference (see chapter 2).

3. It is impor tant to note that this spreadsheet form required not so trivial Matlab
parsing scripts written by the Group. The construction of a ground- truth database thus
also sometimes requires computer programming practices as described in chapter 4.

Notes 321

4. Napier initiated the theory of logarithms mainly to facilitate manual numerical
calculations, notably in astronomy. On this topic, see the old but enjoyable work by
Cajori (1913).

5. This discussion was reconstructed from notes in Logbook 2, February 2014–
May 2014.

6. With lower- level programming languages such as C or C++, it might be trickier to
transform this scenario into a completed program.

7. If it is not time consuming to approximate square roots of positive real numbers,
it is more complicated to get precise results. Nowadays, computers start by express-
ing the positive real number in floating point notation m * 2e where m is a number
between 1 and 2 and e is its exponent (MacKenzie 1993). Thanks to this initial trans-
lation, computer languages can then use the Newton- Raphson iteration method to
calculate the reciprocal of square root before fi nally multiplying this result with the
initial real number to get the final answer. Calculating k-means of five clusters is also
not that trivial. It can be summarized by a list of six operations: (1) place five arbitrary
random centroids within the given dataset; (2) compute the distances of every point
of the dataset from all centroids; (3) assign every point of the dataset to its nearest
centroid; (4) compute the center of gravity of every centroid- assigned group of points;
(5) assign each centroid to the position of the center of gravity of its group; and
(6) reiterate the operation until no centroid changes its assignment anymore.

8. Remember that INT stands for the Matlab interpreter that translates instructions
written in the Editor into machine code, the only language that can make pro cessors
trigger electric pulses.

9. Information retrieved from Matlab Central Community Forum (MATLAB Answers
2017)

10. This discussion has been reconstructed from notes in Logbook 3, February–
May 2014.

11. This discussion has been reconstructed from notes in Logbook 3, February–
May 2014.

12. Fei- Fei Li is now a professor at Stanford University. Between 2017 and 2018, she
was chief scientist at Google Cloud.

13. Image classification in digital image pro cessing consists of categorizing the
content of images into predefined labels. For an accessible introduction to image
classification, see Kamavisdar, Saluja, and Agrawal (2013).

14. The beginnings of the ImageNet ground truth proj ect were difficult. As Gersh-
gorn noted it: “Li’s first idea was to hire undergraduate students for $10 an hour to
manually find images and add them to the dataset. But back- of- the- napkin math

322 Notes

quickly made Li realize that at the undergrads’ rate of collecting images it would take
90 years to complete. After the undergrad task force was disbanded, Li and the team
went back to the drawing board. What if computer- vision algorithms could pick the
photos from the internet, and humans would then just curate the images? But after
a few months of tinkering with algorithms, the team came to the conclusion that
this technique wasn’t sustainable either— future algorithms would be constricted to
only judging what algorithms were capable of recognizing at the time the dataset
was compiled. Undergrads were time- consuming, algorithms were flawed, and the
team didn’t have money— Li said the proj ect failed to win any of the federal grants
she applied for, receiving comments on proposals that it was shameful Prince ton
would research this topic, and that the only strength of proposal was that Li was a
 woman” (Gershgorn 2017).

15. To minimize crowdworkers’ labeling errors, Fei- Fei Li and her team asked dif fer-
ent workers to label the same image— one label being considered a vote, the majority
of votes “winning” the labeling task. However, depending on the complexity of the
labeling task— categories such as “Burmese cat” being difficult to accurately identify—
Fei- Fei Li and her team have varied the levels of consensus required. To determine
 these content- related required levels of consensus, they have developed an algorithm
whose functioning is, however, not detailed in the paper (Deng et al. 2009, 252).

16. Once assembled, the ImageNet dataset and ground truth did not generate
immediate interest among the image recognition community. Far from it: the first
publication of the proj ect in the 2009 Computer Vision and Pattern Recognition
(Deng et al. 2009) was taken from a poster stuck in a corner of the Fontainebleau
Resort at Miami Beach (Gershgorn 2017).

17. In a nutshell, ILSVRC challenges, in the wake of PASCAL VOC challenges,
consist of two related components: (1) a publicly available ground truth and (2)
an annual competition whose results are discussed during dedicated workshops. As
Russakovsky et al. summarized it: “The publically released dataset contains a set of
manually annotated training images. A set of test images is also released, with the
manual annotations withheld. Participants train their algorithms using the training
images and then automatically annotate the test images. These predicted annota-
tions are submitted to the evaluation server. Results of the evaluation are revealed
at the end of the competition period and authors are invited to share insights at
the workshop held at the International Conference on Computer Vision (ICCV) or
Eu ro pean Conference on Computer Vision (ECCV) in alternate years” (Russakovsky
et al. 2015, 211).

18. AlexNet, as the algorithm presented in Krizhevsky, Sutskever, and Hinton
(2012) ended up being called, has brought back to the forefront of image pro cessing
the convolutional neural network learning techniques developed by Joshua Bengio,
Geoffrey Hinton, and Yann LeCun since the 1980s. Today, convolutional neural
networks for text, image, and video pro cessing are ubiquitous, empowering products

Notes 323

distributed by large tech companies such as Google, Facebook, or Microsoft. More-
over, Bengio, Hinton, and LeCun received the Turing Prize Award in 2018, generally
considered the highest distinction in computer science.

19. These criticisms were summarized by Marvin Minsky, the head of the MIT Arti-
ficial Intelligence Research Group, and Seymour Papert in their book Perceptrons: An
Introduction to Computational Geometry (1969).

20. Boltzmann machines are expansions of spin glass- inspired neural networks. By
including a stochastic decision rule, Ackley, Hinton, and Sejnokwski (1985) could
make a neural network reach an appreciable learning equilibrium. As Domingos
explained, “the probability of finding the network in a par tic u lar state was given by
the well- known Boltzmann distribution from thermodynamics, so they called their
network a Boltzmann machine” (Domingos 2015, 103).

21. As noted in Cardon, Cointet, and Mazières (2018), there is a debate regarding
the anteriority of backprop algorithm: “This method has been formulated and used
many times before the publication of [Rumelhart Hinton, and Williams 1986]’s arti-
cle, notably by Linnainmaa in 1970, Werbos in 1974 and LeCun in 1985” (Cardon,
Cointet, and Mazières 2018, 198; my translation).

22. This second marginalization of connectionists during the 1990s can be related
to the spread of Support Vector Machines (SVMs), audacious learning techniques
that are very effective on small ground truths. Moreover, while SVMs manage to
find, during the learning of the loss function, the global error minimum, convo-
lutional neural networks can only find local minimums (a limit that will prove to
be less problematic with the advent of large ground truths, such as ImageNet, and
the increase in the computing power of computers). On this specialized topic, see
Domingos (2015, 107–111) and Cardon, Cointet, and Mazières (2018, 200–202).

Conclusion

1. Though, like Negri, this book is drawn to the idea of contributing to founding a
philosophy capable of going beyond modernity understood as “the definition and
development of a totalizing thought that assumes human and collective creativity
in order to insert them into the instrumental rationality of the capitalist mode of
production” (Negri 1999, 323).

2. Curiously, even though Negri explic itly positions himself as an opponent of
the Anglo- American liberal tradition, his conclusions regarding the dual aspect of
insurrectional acts are quite aligned with propositions made by American pragmatist
writers such as Walter Lipp mann and John Dewey. Indeed, whereas for these two
authors, the po liti cal can only be expressed by means of issues that redefine our
 whole living together (Dewey [1927] 2016; Lipp mann [1925] 1993; Marres 2005), for
Negri, the po liti cal, as Michael Hardt notes, “is defined by the forces that challenge

324 Notes

the stability of the constituted order … and the constituent pro cesses that invent
alternative forms of social organ ization. … The po liti cal exists only where innova-
tion and constituent pro cesses are at play” (Hardt 1999, ix).

3. This, I believe, is a potential way of somewhat reconciling Negri—at least, his
writings— with the great German legal tradition that he is also explic itly opposed
to. If Negri is certainly right to refuse the exteriority of constituent power vis- à- vis
constituted power, thus emptying legal constitutions of any power of po liti cal inno-
vation, he is prob ably wrong to dismiss Georg Jellinek’s and Hans Kelsen’s proposi-
tions as to the scriptural, and therefore ontological, weight of constituent texts. On
this tension between Sollen (what ought to be) and Sein (what is) within constitutive
pro cesses, see Negri (1999, 5–35) as well as Jellinek ([1914] 2016) and Kelsen (1991).

4. This is the topic of Anne Henriksen’s and Cornelius Heimstädt’s PhD theses (cur-
rently being conducted at Aarhus University and Mines ParisTech, respectively), as
well as Nick Seaver’s forthcoming book (Seaver forthcoming).

5. The moral economy of blockchain technology is the topic of Clément Gasull’s
PhD thesis, currently being conducted at Mines ParisTech.

6. This is part of Vassileios Gallanos’s PhD thesis, currently being conducted at the
University of Edinburgh.

Abbate, Janet. 2012. Recoding Gender: Women’s Changing Participation in Computing.
Cambridge, MA: MIT Press.

Achanta, Radhakrishna, Sheila Hemami, Francisco Estrada, and Sabine Susstrunk.
2009. “Frequency- Tuned Salient Region Detection.” In IEEE Conference on Computer
Vision and Pattern Recognition, Miami, FL, June, 1597–1604. New York: IEEE.

Ackley, David H., Geoffrey E. Hinton, and Terrence J. Sejnowski. 1985. “A Learning
Algorithm for Boltzmann Machines.” Cognitive Science 9, no. 1: 147–169.

Adelson, Beth. 1981. “Prob lem Solving and the Development of Abstract Categories
in Programming Languages.” Memory & Cognition 9, no. 4: 422–433.

Ahmed, Faheem, Luiz F. Capretz, Salah Bouktif, and Piers Campbell. 2012. “Soft
Skills Requirements in Software Development Jobs: A Cross- Cultural Empirical Study.”
Journal of Systems and Information Technology 14: 58–81.

Ahmed, Faheem, Luiz F. Capretz, and Piers Campbell. 2012. “Evaluating the Demand
for Soft Skills in Software Development.” IT Professional 14, no. 1: 44–49.

Ahmed, Nassir U., T. Natarajan, and K.R. Rao. 1974. “Discrete Cosine Transform.”
IEEE Transactions on Computers 23, no. 1: 90–93.

Akera, Atsushi. 2001. “Voluntarism and the Fruits of Collaboration: The IBM User
Group, Share.” Technology and Culture 42, no. 4: 710–736.

Akera, Atsushi. 2008. Calculating a Natu ral World: Scientists, Engineers, and Computers
during the Rise of U.S. Cold War Research. Cambridge, MA: MIT Press.

Akrich, Madeleine. 1989. “La construction d’un système socio- technique: Esquisse
pour une anthropologie des techniques.” Anthropologie et Sociétés 13, no. 2:
31–54.

Akrich, Madeleine, Michel Callon, and Bruno Latour. 2006. Sociologie de la traduc-
tion: Textes fondateurs. Paris: Presses de l’École des Mines.

References

326 References

Albrecht, Sandra L. 1982. “Industrial Home Work in the United States: Historical
Dimensions and Con temporary Perspective.” Economic and Industrial Democracy 3,
no. 4: 413–430.

Allen, Elizabeth, and Sophie Triantaphillidou, eds. 2011. The Manual of Photography.
10th ed. Burlington, MA: Focal Press.

Alpaydin, Ethem. 2010. Introduction to Machine Learning. 2nd ed. Cambridge, MA:
MIT Press.

Alpaydin, Ethem. 2016. Machine Learning: The New AI. Cambridge, MA: MIT Press.

Alpert, Sharon, Meirav Galun, Achi Brandt, and Ronen Basri R. 2007. “Image Seg-
mentation by Probabilistic Bottom- Up Aggregation and Cue Integration.” In 2007
IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE.2007.
DOI: https// :10 . 1109 / CVPR . 2007 . 383017.

American Association for Artificial Intelligence. 1993. “Organ ization of the Ameri-
can Association for Artificial Intelligence.” The Eleventh National Conference on
Artificial Intelligence (AAAI-93), July 11–15, Washington, DC. http:// www . aaai . org
/ Conferences / AAAI / 1993 / aaai93committee . pdf (last accessed March 2017).

Ananny, Mike, and Kate Crawford. 2018. “Seeing without Knowing: Limitations
of the Transparency Ideal and Its Application to Algorithmic Accountability.” New
Media & Society 20, no.3: 973–989.

Anderson, Christopher W. 2011. “Deliberative, Agonistic, and Algorithmic Audi-
ences: Journalism’s Vision of Its Public in an Age of Audience Transparency.” Inter-
national Journal of Communication 5: 550–566.

Anderson, Drew. 2017. “GLAAD and HRC Call on Stanford University & Responsible
Media to Debunk Dangerous & Flawed Report Claiming to Identify LGBTQ People
through Facial Recognition Technology.” GLAAD . org, September 8. https:// www
. glaad . org / blog / glaad - and - hrc - call - stanford - university - responsible - media - debunk
- dangerous - flawed - report (last accessed February 2018).

Anderson, John R. 1983. The Architecture of Cognition. Cambridge, MA: Harvard Uni-
versity Press.

Angwin, Julia, Jeff Larson, Surya Mattu, and Lauren Kirchner. 2016. “Machine Bias:
 There’s Software Used across the Counter to Predict Future Criminals. And It’s Biased
against Blacks.” ProPublica, May 23. https:// www . propublica . org / article / machine - bias
- risk - assessments - in - criminal - sentencing.

Antognazza, Maria R. 2011. Leibniz: An Intellectual Biography. Reprint. Cambridge:
Cambridge University Press.

Ashby, Ross W. 1952. Design for a Brain. New York: Wiley.

Aspray, William. 1990. John von Neumann and the Origins of Modern Computing. Cam-
bridge, MA: MIT Press.

References 327

Aspray, William, and Philip Kitcher, eds. 1988. History and Philosophy of Modern
Mathe matics. Minneapolis: University of Minnesota Press.

Austin, John L. 1975. How to Do Things with Words. 2nd ed. Cambridge, MA: Harvard
University Press.

Badinter, Elisabeth. 1981. Mother Love: Myth and Real ity. New York: Macmillan.

Baluja, Shumeet, and Dean A. Pomerleau. 1997. “Expectation- Based Selective Atten-
tion for Visual Monitoring and Control of a Robot Vehicle.” Robotics and Autono-
mous Systems 22: 329–344.

Barad, Karen. 2007. Meeting the Universe Halfway: Quantum Physics and the Entangle-
ment of Matter and Meaning. Durham, NC: Duke University Press.

Bardi, Jason S. 2007. The Calculus Wars: Newton, Leibniz, and the Greatest Mathemati-
cal Clash of All Time. New York: Basic Books.

Barfield, Woodrow. 1986. “Expert- Novice Differences for Software: Implications for
Problem- Solving and Knowledge Acquisition.” Behaviour & Information Technology 5,
no. 1: 15–29.

Barocas, Solon, and Andrew D. Selbst. 2016. “Big Data’s Disparate Impact.” Califor-
nia Law Review 104: 671–732.

Barrett, Justin L. 2007. “Cognitive Science of Religion: What Is It and Why Is It?”
Religion Compass 1, no. 6: 768–786.

Baya- Laffite, Nicolas, Boris Beaude, and Jérémie Garrigues. 2018. “Le Deep Learning
au ser vice de la prédication de l’orientation sexuelle dans l’espace public: Décon-
struction d’une alerte ambigüe.” Réseaux 211, no. 211: 137–172.

Bechmann, Anja, and Geoffrey C. Bowker. 2019. “Unsupervised by Any Other
Name: Hidden Layers of Knowledge Production in Artificial Intelligence on Social
Media.” Big Data & Society 6, no. 1. https:// doi . org / 10 . 1177 / 2053951718819569.

Beer, David. 2009. “Power through the Algorithm? Participatory Web Cultures and
the Technological Unconscious.” New Media & Society 11, no. 6: 985–1002.

Bengio, Yoshua. 2009. “Learning Deep Architectures for AI.” Foundations and Trends
in Machine Learning 2, no. 1: 1–127.

Bengio, Yoshua, Réjean Ducharme, Pascal Vincent, and Christian Jauvin. 2003 “A Neural
Probabilistic Language Model.” Journal of Machine Learning Research 3: 1137–1155.

Bensaude- Vincent, Bernadette. 1995. “Mendeleyev: The Story of a Discovery.” In A
History of Scientific Thought: Ele ments of a History of Science, edited by Michel Serres,
556–582. Oxford: Blackwell.

Berg, Nate. 2014. “Predicting Crime, LAPD- Style.” Guardian, June 25. https:// www
. theguardian . com / cities / 2014 / jun / 25 / predicting - crime - lapd - los - angeles - police - data
- analysis - algorithm - minority - report.

328 References

Berggren, John L. 1986. Episodes in the Mathe matics of Medieval Islam. Berlin: Springer.

Bhattacharyya, Siddhartha, Hrishikesh Bhaumik, Anirban Mukherjee, and Sourav
De. 2018. Machine Learning for Big Data Analy sis. Berlin: Walter de Gruyter.

Biancuzzi, Federico, and Shane Warden. 2009. Masterminds of Programming:
Conversations with the Creators of Major Programming Languages. Sebastopol, CA:
O’Reilly.

Birch, Kean, and Fabian Muniesa, eds. 2020. Assetization: Turning Things into Assets in
Technoscientific Capitalism. Cambridge, MA: MIT Press.

Bishop, Chistopher M. 2007. Pattern Recognition and Machine Learning. New York:
Springer.

Blaiwes, Arthur S. 1974. “Formats for Presenting Procedural Instructions.” Journal of
Applied Psy chol ogy 59, no. 6: 683–686.

Bloom, Alan M. 1980. “Advances in the Use of Programmer Aptitude Tests.” In
Advances in Computer Programming Management, edited by Thomas A. Rullo, Vol. 1:
31–60. Philadelphia: Hayden, 1980.

Bloor, David. 1981. “The Strengths of the Strong Programme.” Philosophy of the
Social Sciences 11, no. 2: 199–213.

Bobzien, Susanne. 2002. “The Development of Modus Ponens in Antiquity: From
Aristotle to the 2nd Century AD.” Phronesis 47, no. 4: 359–394.

Boltanski, Luc, and Laurent Thévenot. 2006. On Justification: Economies of Worth.
Prince ton, NJ: Prince ton University Press.

Bonaccorsi, Andrea, and Cristina Rossi. 2006. “Comparing Motivations of Individual
Programmers and Firms to Take Part in the Open Source Movement: From Com-
munity to Business.” Knowledge, Technology & Policy 18, no. 4: 40–64.

Borji, Ali. 2012. “Boosting Bottom-up and Top- down Visual Features for Saliency
Estimation.” In 2012 IEEE Conference on Computer Vision and Pattern Recognition,
Providence, RI, June, 438–445. New York: IEEE.

Bostrom, Nick. 2017. “Strategic Implications of Openness in AI Development.”
Global Policy 8, no. 2: 135–48.

Bottazzini, Umberto. 1986. The Higher Calculus: A History of Real and Complex Analy-
sis from Euler to Weierstrass. Berlin: Springer.

Bourdieu, Pierre. 1986. “L’illusion biographique.” Actes de la recherche en sciences
sociales 62, no. 1: 69–72.

Bowker, Geoffrey C. 1993. “How to Be Universal: Some Cybernetic Strategies,
1943- –70.” Social Studies of Science 23, no. 1: 107–127.

References 329

Boyer, Carl B. 1959. The History of the Calculus and Its Conceptual Development. New
York: Dover Publications.

Bozdag, Engin. 2013. “Bias in Algorithmic Filtering and Personalization.” Ethics and
Information Technology 15, no. 3: 209–227.

Brazeau, Paul, Wylie Vale, Roger Burgus, Nicholas Ling, Madalyn Butcher, Jean
Rivier, and Roger Guillemin. 1973. “Hypothalamic Polypeptide That Inhibits the
Secretion of Immunoreactive Pituitary Growth Hormone.” Science 179, no. 4068:
77–79.

Brockell, Gillian. 2018. “Dear Tech Companies, I Don’t Want to See Pregnancy Ads
 after My Child Was Stillborn.” Washington Post, December 12.

Brooke, J. B., and K. D. Duncan. 1980a. “An Experimental Study of Flowcharts as an
Aid to Identification of Procedural Faults.” Ergonomics 23, no. 4: 387–399.

Brooke, J. B., and K. D. Duncan. 1980b. “Experimental Studies of Flowchart Use at
Dif fer ent Stages of Program Debugging.” Ergonomics 23, no. 11: 1057–1091.

Brooks, Frederick. 1975. The Mythical Man- Month: Essays on Software Engineering.
Reading, MA: Addison- Wesley Professional.

Brooks, John. 1976. Telephone: The First Hundred Years. New York: Harper & Row.

Brooks, Ruven. 1977. “ Towards a Theory of the Cognitive Pro cesses in Computer
Programming.” International Journal of Man- Machine Studies 9, no. 6: 737–751.

Brooks, Ruven. 1980. “Studying Programmer Be hav ior Experimentally: The Prob-
lems of Proper Methodology.” Communications of the ACM 23, no. 4: 207–213.

Bucher, Taina. 2012. “Want to Be on the Top? Algorithmic Power and the Threat of
Invisibility on Facebook.” New Media & Society 14, no. 7: 1164–1180.

Buchman, Amy. 2009 “A Brief History of Quaternions and the Theory of Holo-
morphic Functions of Quaternionic Variables.” Paper, November. https:// ui . adsabs
. harvard . edu / abs / 2011arXiv1111 . 6088B.

Burks, Alice R., and Arthur W. Burks. 1989. The First Electronic Computer: The Atanasoff
Story. Ann Arbor, MI: University of Michigan Press.

Burks, Arthur W., Herman H. Goldstine, and John von Neumann. 1946. Preliminary
Discussion of the Logical Design of an Electronic Computer Instrument. Prince ton, NJ:
Institute for Advanced Study.

Burrell, Jenna. 2016. “How the Machine ‘Thinks’: Understanding Opacity in Machine
Learning Algorithms.” Big Data & Society 3, no. 1: 1–12.

Butler, Judith. 2006. Gender Trou ble: Feminism and the Subversion of Identity. New York
and London: Routledge.

330 References

Button, Graham, and Wes Sharrock. 1995. “The Mundane Work of Writing and Read-
ing Computer Programs.” In Situated Order: Studies in the Social Organ ization of Talk and
Embodied Activities, edited by Paul T. Have and George Psathas, 231–258. Washington,
DC: University Press of Amer i ca.

Cajori, Florian. 1913. “History of the Exponential and Logarithmic Concepts.” The
American Mathematical Monthly 20, no. 1: 5–14.

Cakebread, Caroline. 2017. “ People Will Take 1.2 Trillion Digital Photos This Year—
Thanks to Smartphones.” Business Insider, August 31. https:// www . businessinsider
. fr / us / 12 - trillion - photos - to - be - taken - in - 2017 - thanks - to - smartphones - chart - 2017 - 8 / .

Callon, Michel. 1986. “Some Ele ments of a Sociology of Translation: Domestication
of the Scallops and the Fishermen of St Brieuc Bay.” In Power, Action and Belief: A
New Sociology of Knowledge? edited by John Law, 196–223. London: Routledge &
Kegan Paul.

Callon, Michel. 1999. “Le Réseau Comme Forme Émergente et Comme Modalité de
Coordination.” In Réseau et Coodination, edited by Michel Callon, Patrick Cohendet,
Nicolas Curlen, Jean- Michel Dalle, François Eymard- Duvernay, Dominique Foray
and Eric Schenk, 13–63. Paris: Economica.

Callon, Michel. 2017. L’emprise des marchés: Comprendre leur fonctionnement pour pou-
voir les changer. Paris: La Découverte.

Campbell- Kelly, Martin. 2003. From Airline Reservations to Sonic the Hedgehog: A His-
tory of the Software Industry. Cambridge, MA: MIT Press.

Campbell- Kelly, Martin, William Aspray, Nathan Ensmenger, and Jeffrey R. Yost. 2013.
Computer: A History of the Information Machine. 3rd ed. Boulder, CO: Westview Press.

Capretz, Fernando L. 2014. “Bringing the Human Factor to Software Engineering.”
IEEE Software 31, no. 2: 104–104.

Card, Stuart K., Thomas P. Moran, and Allen Newell. 1986. The Psy chol ogy of Human-
Computer Interaction. Hillsdale, NJ: Lawrence Erlbaum.

Cardon, Dominique. 2015. À quoi rêvent les algorithmes. Nos vies à l’heure du Big Data.
Paris: Le Seuil.

Cardon, Dominique, Jean- Philippe Cointet, and Antoine Mazières. 2018. “La
revanche des neurones. L’invention des machines inductives et la controverse de
l’intelligence artificielle.” Réseaux 211, no. 5: 173–220.

Carnap, Rudolf. 1937. The Logical Syntax of Language. Chicago: Open Court Publishing.

Carroll, John M., John C. Thomas, and Ashok Malhotra. 1980. “Pre sen ta tion and
Repre sen ta tion in Design Problem- Solving.” British Journal of Psy chol ogy 71, no. 1:
143–153.

References 331

Casilli, Antonio. 2019. En attendant les robots: Enquête sur le travail du clic. Paris: Le
Seuil.

Cassin, Barbara. 2014. Sophistical Practice: Toward a Consistent Relativism. New York:
Fordham University Press.

Cerf, Moran, Paxon E. Frady, and Christof Koch. 2009. “ Faces and Text Attract Gaze
In de pen dent of the Task: Experimental Data and Computer Model.” Journal of Vision
9, no. 12: 101–115.

Chang, Kai- Yueh, Tyng- Luh Liu, Hwann- Tzong Chen, and Shang- Hong Lai. 2011.
“Fusing Generic Objectness and Visual Saliency for Salient Object Detection.” In 2011
IEEE International Conference on Computer Vision, Barcelona, November. New York:
IEEE, pp. 914–921.

Chen, Li- Qun, Xing Xie, Xin Fan, Wei- Ying Ma, Hong- Jiang Zhang, and He- Qin Zhou.
2003. “A Visual Attention Model for Adapting Images on Small Displays.” Multimedia
Systems 9, no. 4: 353–364.

Cheng, Ming- Ming, Guo- Xin Zhang, N. J. Mitra, Xiaolei Huang, and Shi- Min Hu.
2011. “Global Contrast Based Salient Region Detection.” In CVPR 2011: The 24th IEEE
Conference on Computer Vision and Pattern Recognition, 409–416. Washington, DC:
IEEE Computer Society.

Clark, Andy. 1998. Being There: Putting Brain, Body, and World Together Again. Cam-
bridge, MA: MIT Press.

Clark, Andy, and Chal mers David. 1998. “The Extended Mind.” Analy sis 58, no. 1:
7–19.

Cobb, John B. 2006. Dieu et le monde. Paris: Van Dieren.

Cohen, Bernard I. 1999. Howard Aiken: Portrait of a Computer Pioneer. Cambridge,
MA: MIT Press.

Collins, Charlotte A., Irwin Olsen, Peter S. Zammit, Louise Heslop, Aviva Petrie, Ter-
ence A. Partridge, and Jennifer E. Morgan. 2005. “Stem Cell Function, Self- Renewal,
and Behavioral Heterogeneity of Cells from the Adult Muscle Satellite Cell Niche.”
Cell 122, no. 2: 289–301.

Collins, Harry M. 1975. “The Seven Sexes: A Study in the Sociology of a Phenom-
enon, or the Replication of Experiments in Physics.” Sociology 9, no. 2: 205–224.

Collins, Harry M. 1992. Changing Order: Replication and Induction in Scientific Practice.
Chicago: University of Chicago Press.

Constine, Josh. 2019. “To Automate Bigger Stores than Amazon, Standard Cognition
Buys Explorer.Ai.” TechCrunch (blog), January 7. https:// techcrunch . com / 2019 / 01
/ 07 / autonomous - checkout / .

332 References

Coombs, M. J., R. Gibson, and J. L. Alty. 1982. “Learning a First Computer Language:
Strategies for Making Sense.” International Journal of Man- Machine Studies 16, no. 4:
449–486.

Corfield, David. 2006. Towards a Philosophy of Real Mathe matics. Rev. ed. Cambridge:
Cambridge University Press.

Cormen, Thomas H, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. 2009.
Introduction to Algorithms. 3rd ed. Cambridge, MA: MIT Press.

Corry, Leo. 1997. “The Origins of Eternal Truth in Modern Mathe matics: Hilbert to
Bourbaki and Beyond.” Science in Context 10, no. 2: 253–296.

Crawford, Kate, and Ryan Calo. 2016. “ There Is a Blind Spot in AI Research.” Nature
538, no. 7625: 311–313.

Crevier, Daniel. 1993. AI: The Tumultuous History of the Search for Artificial Intelligence.
New York: Basic Books.

Crilly, Tony. 2004. “The Cambridge Mathematical Journal and Its Descendants: The
Linchpin of a Research Community in the Early and Mid- Victorian Age.” Historia
Mathematica 31, no. 4: 455–497.

Crooks, Roderic N. 2019. “Times Thirty: Access, Maintenance, and Justice.” Science,
Technology, & Human Values 44, no. 1: 118–142.

Cruz, Shirley, Fabio da Silva, and Luiz Capretz. 2015. “Forty Years of Research on
Personality in Software Engineering: A Mapping Study.” Computers in Human Be hav-
ior 46: 94–113.

Curtis, Bill. 1981. “Substantiating Programmer Variability.” Proceedings of the IEEE
69, no. 7: 846.

Curtis, Bill. 1988. “Five Paradigms in the Psy chol ogy of Programming.” In Handbook
of Human- Computer Interaction, edited by Martin Helander, 87–105. Amsterdam: Else-
vier North- Holland.

Curtis, Bill, Sylvia B. Sheppard, Elizabeth Kruesi- Bailey, John Bailey, and Deborah A.
Boehm- Davis. 1989. “Experimental Evaluation of Software Documentation For-
mats.” Journal of Systems and Software 9, no. 2: 167–207.

Daganzo, Carlos F. 1995. “The Cell Transmission Model, Part II: Network Traffic.”
Transportation Research Part B: Methodological 29, no. 2: 79–93.

Daganzo, Carlos F. 2002. “A Behavioral Theory of Multi- Lane Traffic Flow. Part I:
Long Homogeneous Freeway Sections.” Transportation Research Part B: Methodological
36, no. 2: 131–158.

Damasio, Anthony. 2005. Descartes’ Error: Emotion, Reason, and the Human Brain.
Reprint. London: Penguin Books.

References 333

Dasgupta, Sanjoy, Christos Papadimitriou, and Umesh Vazirani. 2006. Algorithms.
1st ed. Boston: McGraw- Hill Education.

Dauben, Joseph W. 1990. Georg Cantor: His Mathe matics and Philosophy of the Infinite.
Reprint ed. Prince ton, NJ: Prince ton University Press.

Dear, Peter. 1987. “Jesuit Mathematical Science and the Reconstitution of Experi-
ence in the Early Seventeenth Century.” Studies in History and Philosophy of Science
Part A 18, no. 2: 133–175.

Dear, Peter, and Sheila Jasanoff. 2010. “Dismantling Bound aries in Science and
Technology Studies.” Isis 101, no. 4: 759–774.

Dekowska, Monika, Michał Kuniecki, and Piotr Jaśkowski. 2008. “Facing Facts: Neu-
ronal Mechanisms of Face Perception.” Acta Neurobiologiae Experimentalis 68, no. 2:
229–252.

de la Bellacasa, Maria P. 2011 “ Matters of Care in Technoscience: Assembling
Neglected Things.” Social Studies of Science 41, no. 1: 85–106.

Deleuze, Gilles. 1989. “Qu’est-ce qu’un dispositif?” In Michel Foucault philosophe:
rencontre international Paris 9, 10, 11, janvier 1988. Paris: Seuil.

Deleuze, Gilles. 1992. Fold: Leibniz and the Baroque. Minneapolis: University of Min-
nesota Press.

Deleuze, Gilles. 1995. Difference and Repetition. New York: Columbia University Press.

Demazière, Didier, François Horn, and Marc Zune. 2007. “The Functioning of a Free
Software Community: Entanglement of Three Regulation Modes— Control, Autono-
mous and Ditributed.” Science Studies 20, no. 2: 34–54.

Denelesky, Garland Y., and Michael G. McKee. 1974. “Prediction of Computer Pro-
grammer Training and Job Per for mance Using the Aabp Test1.” Personnel Psy chol ogy
27, no. 1: 129–137.

Deng, Jia, Alexander C. Berg, Kai Li, and Li Fei- Fei. 2010. “What Does Classifying More
Than 10,000 Image Categories Tell Us?” In Computer Vision— ECCV 2010, edited by
Kostas Daniilidis, Petros Maragos, and Nikos Paragios, 71–84. Berlin: Springer.

Deng, Jia, Alexander C. Berg, and Li Fei- Fei. 2011a. “Hierarchical Semantic Indexing
for Large Scale Image Retrieval.” In CVPR 2011: The 24th IEEE Conference on Computer
Vision and Pattern Recognitio, 785–792. Washington, DC: IEEE Computer Society.

Deng, Jia, Wei Dong, Richard Socher, Li- Jia Li, Kai Li, and Li Fei Fei. 2009. “Ima-
geNet: A Large- Scale Hierarchical Image Database.” In 2009 IEEE Conference on Com-
puter Vision and Pattern Recognition, Miami, FL, June, 248–255. New York: IEEE.

Deng, Jia, Sanjeev Satheesh, Alexander C. Berg, and Li Fei- Fei. 2011b. “Fast and Bal-
anced: Efficient Label Tree Learning for Large Scale Object Recognition.” In Advances

334 References

in Neural Information Pro cessing Systems 24, edited by J. Shawe- Taylor, R. S. Zemel,
P. L. Bartlett, F. Pereira, and K. Q. Weinberger, 567–575. Red Hook, NY: Curran
Associates.

Deng, Jia, Olga Russakovsky, Jonathan Krause, Michael S. Bern stein, Alex Berg, and
Li Fei- Fei. 2014. “Scalable Multi- Label Annotation.” In Proceedings of the SIGCHI Con-
ference on Human Factors in Computing Systems, 3099–3102. New York: ACM.

Denis, Jérôme. 2018. Le travail invisible des données: Éléments pour une sociologie des
infrastructures scripturales. Paris: Presses de l’École des Mines.

Denis, Jérôme, and David Pontille. 2015. “Material Ordering and the Care of
 Things.” Science, Technology, & Human Values 40, no. 3: 338–367.

Dennett, Daniel C. 1984. “Cognitive Wheels: The Frame Prob lem of AI.” In Minds,
Machines and Evolution, edited by Christopher Hookway, 129–150. Cambridge: Cam-
bridge University Press.

Dennis, Michael A. 1989. “Graphic Understanding: Instruments and Interpretation
in Robert Hooke’s Micrographia.” Science in Context 3, no. 2: 309–364.

Desrosières, Alain. 2010. The Politics of Large Numbers: A History of Statistical Reason-
ing. Translated by Camille Naish. New ed. Cambridge, MA: Harvard University Press.

Dewey, John. (1927) 2016. The Public and Its Prob lems. Athens, OH: Ohio University
Press.

Diakopoulos, Nicholas. 2014. “Algorithmic Accountability.” Digital Journalism 3,
no. 3: 398–415.

Dijkstra, Edsger W. 1968. “Letters to the Editor: Go to Statement Considered Harm-
ful.” Communications of the ACM 11, no. 3: 147–148.

Dijkstra, Edsger W. 1972. “Notes on Structured Programming.” In Structured Program-
ming, edited by Ole- Johan Dahl, Edsger W. Dijkstra, and Charles A. R. Hoare, 1–82.
London: Academic Press.

Di Paolo, Ezequiel A. 2005. “Autopoiesis, Adaptivity, Teleology, Agency.” Phenom-
enology and the Cognitive Sciences 4, no. 4: 429–452.

Doganova, Liliana. 2012 Valoriser la science. Les partenariats des start-up technologiques.
Paris: Presses de l’École des mines.

 Doing, Park. 2008. “Give Me a Laboratory and I Will Raise a Discipline: The Past,
Pre sent, and Future Politics of Laboratory Studies.” In The Handbook of Science and
Technology Studies. 3rd ed, edited by Edward J. Hackett, Olga Amsterdamska, Michael
Lynch, and Judy Wajcman, 279–295. Cambridge, MA: MIT Press.

Domingos, Pedro. 2015. The Master Algorithm: How the Quest for the Ultimate Learning
Machine Will Remake Our World. New York: Basic Books.

References 335

Domínguez Rubio, Fernando. 2014. “Preserving the Unpreservable: Docile and
Unruly Objects at MoMA.” Theory and Society 43, no. 6: 617–645.

Domínguez Rubio, Fernando. 2016. “On the Discrepancy between Objects and
 Things: An Ecological Approach.” Journal of Material Culture 21, no. 1: 59–86.

Donin, Nicolas, and Jacques Theureau. 2007. “Theoretical and Methodological
Issues Related to Long Term Creative Cognition: The Case of Musical Composition.”
Cognition, Technology & Work 9: 233–251.

Doxiàdis, Apóstolos K., Christos Papadimitriou, Alecos Papadatos, and Annie Di
Donna. 2010. Logicomix. Paris: Vuibert.

Draper, Stephen W. 1992. “Critical Notice. Activity Theory: The New Direction for
HCI?” International Journal of Man- Machine Studies 37, no. 6: 812–821.

Dreyfus, Hubert L. 1992. What Computers Still Can’t Do: A Critique of Artificial Reason.
Rev. ed. Cambridge, MA: MIT Press.

Dreyfus, Hubert L. 1998. “The Current Relevance of Merleau- Ponty’s Phenomenol-
ogy of Embodiment.” Electronic Journal of Analytic Philosophy 4: 15–34.

Dunsmore, H. E., and J. D. Gannon. 1979. “Data Referencing: An Empirical Investi-
gation.” Computer 12, no. 12: 50–59.

Dupuy, Jean- Pierre. 1994. Aux origines des sciences cognitives. Paris: La Découverte.

Eason, Robert G., Russell M. Harter, and C. T. White. 1969. “Effects of Attention and
Arousal on Visually Evoked Cortical Potentials and Reaction Time in Man.” Physiol-
ogy & Be hav ior 4, no. 3: 283–289.

Eckert, John P., and John W. Mauchly. 1945. Automatic High Speed Computing: A Pro-
gress Report on the EDVAC. Philadelphia: University of Pennsylvania, September 30.

Edge, David O. 1976 “Quantitative Mea sures of Communication in Sciences.” In
International Symposium on Quantitative Mea sures in the History of Science, Berkeley,
CA, September.

Edwards, Paul N. 1996. The Closed World: Computers and the Politics of Discourse in
Cold War Amer i ca. Cambridge, MA: MIT Press.

Edwards, Paul N. 2013. A Vast Machine: Computer Models, Climate Data, and the Poli-
tics of Global Warming. Cambridge, MA: MIT Press.

Elazary, Lior, and Laurent Itti. 2008. “In ter est ing Objects Are Visually Salient.” Jour-
nal of Vision 8, no. 3: 1–15.

Elkan, Charles. 1993. “The Paradoxical Success of Fuzzy Logic.” In Proceedings of the
Eleventh National Conference on Artificial Intelligence, 698–703. Palo Alto, CA: Associa-
tion for the Advancement of Artificial Intelligence.

336 References

Elkan, Charles, H. R. Berenji, B. Chandrasekaran, C. J. S. de Silva, Y. Attikiouzel, D.
Dubois, H. Prade, P. Smets, C. Freksa, O. N. Garcia, G. J. Klir, Bo Yuan, E. H. Mam-
dani, F. J. Pelletier, E. H. Ruspini, B. Turksen, N. Vadlee, M. M. Jamshidi, Pel- Zhuang
Wang, Sie- Keng Tan, S. Tan, R. R. Yager, and L. A. Zadeh. 1994. “The Paradoxical
Success of Fuzzy Logic.” IEEE Expert 9, no. 4: 3–49.

Elliott, Margaret S., and Walt Scacchi. 2008. “Mobilization of Software Developers:
The Free Software Movement.” Information Technology & People 21, no. 1: 4–33.

Ensmenger, Nathan L. 2010. The Computer Boys Take Over: Computers, Programmers,
and the Politics of Technical Expertise. Cambridge, MA: MIT Press.

Espeland, Wendy Nelson, and Michael Sauder. 2016. Engines of Anxiety: Academic
Rankings, Reputation, and Accountability. New York: Russell Sage Foundation.

Estellés- Arolas, Enrique, and Fernando González- Ladrón- de- Guevara. 2012. “ Towards
an Integrated Crowdsourcing Definition.” Journal of Information Science 38, no. 2:
189–200.

Everest, Mary B. 2007. Philosophy and Fun of Algebra. New York: Read Books.

Ewald, William. 2007. From Kant to Hilbert. Volume 1: A Source Book in the Founda-
tions of Mathe matics. Reprint ed. Oxford: Oxford University Press.

Fellbaum, Christiane, ed. 1998. WordNet: An Electronic Lexical Database. Cambridge,
MA: A Bradford Book.

Felt, Ulrike, Raymond Fouché, Clark A. Miller, and Laurel Smith- Doerr. 2016. The
Handbook of Science and Technology Studies. 4th ed. Cambridge, MA: MIT Press.

Ferreirós, José. 2007. Labyrinth of Thought— A History of Set Theory and Its Role. Berlin:
Springer.

Ferreirós, José. 2008. “The Crisis in the Foundations of Mathe matics.” In Prince ton
Companion to Mathematical Proof, edited by Timothy Gowers, 142–156. Prince ton,
NJ: Prince ton University Press.

Finlay, Steven. 2017. Artificial Intelligence and Machine Learning for Business: A No-
Nonsense Guide to Data Driven Technologies. 2nd ed. London: Relativistic.

Fisher, Jennifer. 2007. On the Philosophy of Logic. Belmont, CA: Wadsworth.

Flor, Nick V., and Edwin L. Hutchins. 1991. “Analyzing Ditributed Cognition in
Software Teams: A Case Study of Team Programming During Perfective Software
Maintenance.” In Empirical Studies of Programmers: Fourth Workshop, edited by Jurgen
Koenemann- Belliveau, Thomas Moher, and Scott P. Robertson, 36–62. Norwood, NJ:
Ablex Publishing.

Fodor, Jerry A. 1975. The Language of Thought. Cambridge, MA: Harvard University
Press.

References 337

Fodor, Jerry A. 1987. Psychosemantics: The Prob lem of Meaning in the Philosophy of
Mind. Cambridge, MA: MIT Press.

Forsythe, Diana E. 2002. Studying Those Who Study Us: An Anthropologist in the World
of Artificial Intelligence. Stanford, CA: Stanford University Press.

Frank, Werner L. 1968. “Software for Terminal Oriented Systems.” Datamation 1968
(June): 30–36.

Frank, Werner L. 1983. “The History of Myth No. 1.” Datamation, May 1983: 252–263.

Fujimura, Joan H. 1987. “Constructing ‘Do- Able’ Prob lems in Cancer Research:
Articulating Alignment.” Social Studies of Science 17, no. 2: 257–293.

Fuller, Matthew, ed. 2008. Software Studies: A Lexicon. Cambridge, MA: MIT Press.

Gallagher, Shaun. 2005. How the Body Shapes the Mind. Oxford: Clarendon Press.

Gandy, Oscar H. 2002. “Data Mining and Surveillance in the Post-9.11 Environ-
ment.” In The Intensification of Surveillance Crime, Terrorism and Warfare in the Infor-
mation Age, edited by Kristie Ball and Frank Webster, 113–137. London: Pluto Press.

Gannon, John D. 1976. “An Experiment for the Evaluation of Language Features.”
International Journal of Man- Machine Studies 8: 61–73.

Garfinkel, Harold. 1981. “The Work of a Discovering Science Constructed with
Materials from the Optically Discovered Pulsar.” Philosophy of the Social Sciences 11,
no. 2: 131.

Gershgorn, Dave. 2017. “The Data That Transformed AI Research— and Possibly the
World.” Quartz, July 26. https:// qz . com / 1034972 / the - data - that - changed - the - direction
- of - ai - research - and - possibly - the - world / .

Gertner, Jon. 2013. The Idea Factory: Bell Labs and the Great Age of American Innova-
tion. New York: Penguin.

Gibson, James J. 1986. The Ecological Approach to Visual Perception. London: Lawrence
Erlbaum Associates.

Gibson, James. 2014. The Ecological Approach to Visual Perception. Classic ed. London:
Psy chol ogy Press.

Gillepsie. Tarleton. 2014. “The Relevance of Algorithms.” In Media Technologies:
Essays on Communication, Materiality, and Society, edited by Tarleton Gillepsie, Pablo
Boczkowski, and Kirsten Foot, 167–194. Cambridge, MA: MIT Press.

Gitelman, Lisa. 2014. Paper Knowledge: Toward a Media History of Documents. Durham,
NC: Duke University Press Books.

Gödel, Kurt. 1931. “Über Formal Unentscheidbare Sätze der Principia Mathematica
und Verwandter Systeme I.” Monatshefte für Mathematik und Physik 38, no. 1: 173–198.

338 References

Goferman, Stas, Lihi Zelnik- Manor, and Ayellet Tal. 2012. “Context- Aware Saliency
Detection.” IEEE Transactions on Pattern Analy sis and Machine Intelligence 34, no. 10:
1915–1926.

Gold, Matthew K., ed. 2012. Debates in the Digital Humanities. Minneapolis: Univer-
sity of Minnesota Press.

Goldstine, Herman H. (1972) 1980. The Computer from Pascal to von Neumann.
Prince ton, NJ: Prince ton University Press.

Goldstine, Herman H., and John von Neumann. 1947. Planning and Coding of Prob lems
for an Electronic Computing Instrument: Report on the Mathematical and Logical Aspects of
an Electronic Computing Instrument. Prince ton NJ: Institute for Advanced Study.

Good, Andrew. 2017. “An Algorithm Helps Protect Mars Curiosity’s Wheels.”
National Aeronautic and Space Administration, June 29. https:// www . nasa . gov / feature
/ jpl / an - algorithm - helps - protect - mars - curiositys - wheels (last accessed October 2017).

Gooday, Graeme. 1990. “Precision Mea sure ment and the Genesis of Physics Teach-
ing Laboratories in Victorian Britain.” The British Journal for the History of Science 23,
no. 1: 25–51.

Gooding, David, Trevor Pinch, and Simon Schaffer, eds. 1989. The Uses of Experi-
ment: Studies in the Natu ral Sciences. Cambridge: Cambridge University Press.

Goody, Jack. 1977. The Domestication of the Savage Mind. Cambridge: Cambridge
University Press.

Gray, Mary L., and Siddharth Suri. 2019. Ghost Work: How to Stop Silicon Valley from
Building a New Global Underclass. Boston: Houghton Mifflin Harcourt.

Gray, Robert. 1984. “Vector Quantization.” IEEE ASSP Magazine 1, no. 2: 4–29.

Green, Thomas R. G. 1977. “Conditional Program Statements and Their Compre-
hensibility to Professional Programmers.” Journal of Occupational Psy chol ogy 50,
no. 2: 93–109.

Green, Thomas R. G. 1980. “Programming as a Cognitive Activity.” In Human Inter-
action with Computers, edited by Harold T. Smith and Thomas R. G. Green, 277–320.
London: Academic Press.

Greimas, Algirdas J. 1983. Structural Semantics: An Attempt at a Method. Lincoln: Uni-
versity of Nebraska Press.

Grier, David A. 2005. When Computers Were Human. Prince ton, NJ: Prince ton Uni-
versity Press.

Grimson, W. L. Eric. 1986. “The Combinatorics of Local Constraints in Model- Based
Recognition and Localization from Sparse Data.” Journal of the ACM 33, no. 4:
658–686.

References 339

Grimson, Eric, and Tomas Lozano- Perez. 1983. “Model- Based Recognition and
Localization from Sparse Range or Tactile Data.” The International Journal of Robotics
Research 3, no. 3: 3–35.

Grosman, Jérémy, and Tyler Reigeluth. 2019. “Perspectives on Algorithmic Normativ-
ities: Engineers, Objects, Activities.” Big Data & Society 6, no. 2: 2053951719858742.

Guo, Hongwei. 2011. “A Simple Algorithm for Fitting a Gaussian Function.” IEEE
Signal Pro cessing Magazine 28, no. 5: 134–137.

Gurvitz, Yossi. 2017. “When Kafka Met Orwell: Arrest by Algorithm.” Mondoweiss,
July 3. https:// mondoweiss . net / 2017 / 07 / orwell - arrest - algorithm / .

Hacking, Ian. 1983. Representing and Intervening: Introductory Topics in the Philosophy
of Natu ral Science. Cambridge: Cambridge University Press.

Hacking, Ian. 2014. Why Is There Philosophy of Mathe matics at All? Cambridge: Cam-
bridge University Press.

Hagen, Nathan, and Eustace L. Dereniak. 2008. “Gaussian Profile Estimation in Two
Dimensions.” Applied Optics 47, no. 36: 6842–6851.

Haigh, Thomas. 2008. “Cleve Moler: Mathematical Software Pioneer and Creator of
Matlab.” IEEE Annals of the History of Computing 30, no. 1: 87–91.

Haigh, Thomas. 2011. “Charles W. Bachman: Database Software Pioneer.” IEEE Annals
of the History of Computing 33, no. 4: 70–80.

Haigh, Thomas, Mark Priestley, and Crispin Rope. 2014. “Los Alamos Bets on ENIAC:
Nuclear Monte Carlo Simulations, 1947–1948.” IEEE Annals of the History of Comput-
ing 36, no. 3: 42–63.

Haigh, Thomas, Mark Priestley, and Crispin Rope. 2016. ENIAC in Action: Making and
Remaking the Modern Computer. Cambridge, MA: MIT Press.

Hallinan, Blake, and Ted Striphas. 2014. “Recommended for You: The Netflix Prize
and the Production of Algorithmic Culture.” New Media & Society 18, no. 1: 117–137.

Hamilton, William R. 1844. “On Quaternions; Or on a New System of Imaginaries in
Algebra.” The London, Edinburg and Dublin Philosophical Magazine and Journal of Science
25: 1–13.

Hankins, Thomas L. 1980. Sir William Rowan Hamilton. Baltimore: Johns Hopkins
University Press.

Haraway, Donna. 1992. “The Promises of Monsters: A Regenerative Politics for
Inappropriate/d Others.” In Cultural Studies, edited by Lawrence Grossberg, Carry
Nelson, and Paula A. Treichler, 295–337. New York: Routledge.

Haraway, Donna. 1997. Modest_Witness@Second_Millenium: Female_Man©_Meets_
OncomouseTM: Feminism and Technoscience. New York: Routledge.

340 References

Hardt, Michael. 1999. “Foreword: Three Keys to Understanding Constituent Power.”
In Antonio Negri, Insurgencies. Constituent Power and the Modern State, vii– xiii. Min-
neapolis: University of Minnesota Press.

Hars, Alexander, and Shaosong Ou. 2001. “Working for Free? Motivations of Partici-
pating in Open Source Proj ects.” International Journal of Electric Commerce 6, no. 3:
25–39.

Haugeland, John. 1989. Artificial Intelligence: The Very Idea. Reprint ed. Cambridge,
MA: Bradford Book.

Haugeland John. 2000. Having Thought: Essays in the Metaphysics of Mind. New ed.
Cambridge, MA: Harvard University Press.

Hayles, Katherine N. 1999. How We Became Posthuman: Virtual Bodies in Cybernetics,
Lit er a ture, and Informatics. Chicago: University of Chicago Press.

He, Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. “Deep Residual
Learning for Image Recognition.” In 2016 IEEE Conference on Computer Vision and
Pattern Recognition, Las Vegas, NV, June– July, 770–778. New York: IEEE.

Heath, Thomas. 1981a. A History of Greek Mathe matics, Volume I: From Thales to
Euclid. Revised ed. New York: Dover Publications.

Heath, Thomas. 1981b. A History of Greek Mathe matics, Volume II: From Aristarchus to
Diophantus. Revised ed. New York: Dover Publications.

Heawood, Percy J. 1890. “Map- Colour Theorem.” Quarterly Journal of Mathe matics
24: 332–339.

Hebb, Donald O. 1949. The Organ ization of Behaviour: A Neuropsychological Theory.
New York: Wiley.

Heinke, Dietmar, and Glyn W. Humphreys. 2004. “Computational Models of Visual
Selective Attention: A Review.” In Connectionist Models in Cognitive Psy chol ogy, edited
by George Houghton, 273–312. London: Psy chol ogy Press.

Hennion, Antoine. 2015. The Passion for Music: A Sociology of Mediation. Farnham:
Ashgate Publishing.

Hennion, Antoine. 2017. “Attachments, You Say? How a Concept Collectively
Emerges in One Research Group.” Journal of Cultural Economy 10, no. 1: 112–121.

Henriksen, Anne, and Anja Bechmann. 2020. “Building Truths in AI: Making Pre-
dictive Algorithms Doable in Healthcare.” Information, Communication & Society 23,
no. 6: 802–816.

Hesseling, Dennis E. 2004. Gnomes in the Fog: The Reception of Brouwer’s Intuitionism
in the 1920s. Basel: Birkhäuser.

References 341

Hine, Christine. 2008. Systematics as Cyberscience: Computers, Change, and Continuity
in Science. Cambridge, MA: MIT Press.

Hinton, Geoffrey E., Terrence J. Sejnowski, and David H. Ackley. 1984. Boltzmann
Machines: Constraints Satisfaction Networks That Learn. Technical Report No. CMU-
CS-84-119. Pittsburgh, PA: Carnegie- Mellon University.

Hjelmås, Erik, and Boon K. Low. 2001. “Face Detection: A Survey.” Computer Vision
and Image Understanding 83, no. 3: 236–274.

Hoffman, Donna L., and Thomas P. Novak. 1998. “Bridging the Racial Divide on the
Internet.” Science 280, no. 5362: 390–391.

Hollan, James, Edwin Hutchins, and David Kirsh. 2000. “Distributed Cognition:
 Toward a New Foundation for Human- Computer Interaction Research.” ACM Trans-
actions on Computer- Human Interaction 7, no. 2: 174–196.

Hopfield, John J. 1982. “Neural Networks and Physical Systems with Emergent Col-
lective Computational Abilities.” Proceedings of the National Acad emy of Sciences 79,
no. 8: 2554–2558.

Howe, Jeff. 2006. “The Rise of Crowdsourcing.” Wired, June 1. https:// www . wired
. com / 2006 / 06 / crowds / .

Hudson, Graham, Alain Léger, Birger Niss, and István Sebestyén. 2017. “JPEG at 25:
Still Going Strong.” IEEE MultiMedia 24, no. 2: 96–103.

Hughes, Thomas Parke. 1983. Networks of Power: Electrification in Western Society,
1880–1930. Baltimore: Johns Hopkins University Press.

Hurley, Susan L. 2002. Consciousness in Action. Cambridge, MA: Harvard University
Press.

Husserl, Edmund. 2012. Philosophy of Arithmetic: Psychological and Logical Investigations
with Supplementary Texts from 1887–1901. Berlin: Springer Science & Business Media.

Hutchins, Edwin. 1995. Cognition in the Wild. Cambridge, MA: MIT Press.

Iacoboni, Marco. 2001. “Playing Tennis with the Cerebellum.” Nature Neuroscience
4, no. 6: 555–556.

Ingold, Tim. 2014. “That’s Enough about Ethnography!” HAU: Journal of Ethno-
graphic Theory 4, no. 1: 383–395.

Introna, Lucas D. 2016. “Algorithms, Governance, and Governmentality: On Gov-
erning Academic Writing.” Science Technology Human Values 41, no. 1: 17–49.

Introna, Lucas D., and Helen Nissenbaum. 2000. “Shaping the Web: Why the Poli-
tics of Search Engines Matters.” The Information Society 16, no. 3: 169–185.

342 References

Introna, Lucas D., and David Wood. 2002. “Picturing Algorithmic Surveillance: The
Politics of Facial Recognition Systems.” Surveillance & Society 2, no. 2–3: 177–198.

Irani, Lilly. 2015. “Difference and Dependence among Digital Workers: The Case of
Amazon Mechanical Turk.” South Atlantic Quaterly 114, no. 1: 225–234.

Isaac, Mike. 2016. “Facebook, in Cross Hairs after Election, Is Said to Question Its
Influence.” New York Times, November 12. https:// www . nytimes . com / 2016 / 11 / 14
/ technology / facebook - is - said - to - question - its - influence - in - election . html.

Isaac, Mike, and Sydney Ember. 2016. “Shocker! Facebook Changes Its Algorithm to
Avoid ‘Clickbait.’ ” New York Times, August 4. https:// www . nytimes . com / 2016 / 08 / 05
/ technology / facebook - moves - to - push - clickbait - lower - in - the - news - feed . html.

Itti, Laurent. 2000. “Models of Bottom- Up and Top- Down Visual Attention.” PhD
diss., California Institute of Technology.

Itti, Laurent, and Christof Koch. 2001. “Computational Modelling of Visual Atten-
tion.” Nature Reviews Neuroscience 2, no. 3: 194–203.

Itti, Laurent, Christof Koch, and Jochen Braun. 2000. “Revisiting Spatial Vision:
 Toward a Unifying Model.” Journal of the Optical Society of Amer i ca: A, Optics, Image
Science, and Vision 17, no. 11: 1899–1917.

Itti, Laurent, Christof Koch, and Ernst Niebur. 1998. “A Model of Saliency- Based
Visual Attention for Rapid Scene Analy sis.” IEEE Transactions on Pattern Analy sis and
Machine Intelligence 20, no. 11: 1254–1259. https:// doi . org / 10 . 1109 / 34 . 730558.

Jacobs, John F. 1986. The SAGE Air Defense Systems: A Personal History. Bedford, MA:
MITRE Corporation.

James, William. 1909. A Pluralistic Universe: Hibbert Lectures to Manchester College on
the Pre sent Situation in Philosophy. London: Longmans, Green.

James, William. (1912) 2003. Essays in Radical Empiricism. Mineola, NY: Dover
Publications.

Jasanoff, Sheila. 2012. “Genealogies of STS.” Social Studies of Science 42, no. 3:
435–441.

Jaton, Florian. 2017. “We Get the Algorithms of Our Ground Truths: Designing
Referential Databases in Digital Image Pro cessing.” Social Studies of Science 47, no. 6:
811–840.

Jaton, Florian. 2019. “Pardonnez cette platitude: de l’intérêt des ethnographies de
laboratoire pour l’étude des pro cessus algorithmiques.” Zilsel 5: 315–339.

Jaton, Florian, and Dominique Vinck. 2016. “Unfolding Frictions in Database Proj-
ects.” Revue d’anthropologie des connaissances 10, no. 4: a– m.

References 343

Jaton, Florian, and Dominique Vinck. Forthcoming. “Politicizing Algorithms by
Other Means: Toward Inquiries for Affective Dissension.” Perspectives on Science.

Jeffries, Robin, Althea A. Turner, Peter G. Polson, and Michael E. Atwood. 1981.
“The Pro cesses Involved in Designing Software.” In Cognitive Skills and Their Acquisi-
tion, edited by John R. Anderson, 255–283. Hillsdale, NJ: Lawrence Erlbaum.

Jellinek, Georg. (1914) 2016. Allgemeine Staatslehre Und Politik: Vorlesungsmitschrift
Von Max Ernst Mayer Aus Dem Sommersemester, edited by Andreas Funke and Sascha
Ziemann. Tübingen: Mohr Siebrek Ek.

Jennions, Michael D., and Anders Pape Møller. 2003. “A Survey of the Statistical
Power of Research in Behavioral Ecol ogy and Animal Be hav ior.” Behavioral Ecol ogy
14, no. 3: 438–445.

Jet Propulsion Laboratory (JPL). 2015. “NASA Facts: Mars Exploration Rover.”
NASA Facts, JPL 400-1537. https:// www . jpl . nasa . gov / news / fact _ sheets / mars - science
- laboratory . pdf (last accessed October 2017).

Jiang, Bowen, Lihe Zhang, Huchuan Lu, Chuan Yang, and Ming- Hsuan Yang. 2013.
“Saliency Detection via Absorbing Markov Chain.” In 2013 IEEE International Confer-
ence on Computer Vision, Sydney, Australia, December, 1665–1672. New York: IEEE.

Jones, Lyle V., and David Thissen. 2006. “A History and Overview of Psychometrics.” In
Handbook of Statistics, edited by C. R. Rao and S. Sinharay, 1–27. Amsterdam: Elsevier.

Jones, Matthew L. 2018. “How We Became Instrumentalists (Again): Data Positivism
since World War II.” Historical Studies in the Natu ral Sciences 48, no. 5: 673–684.

Jordan, Michael I., and Tom M. Mitchell. 2015. “Machine Learning: Trends, Perspec-
tives, and Prospects.” Science 349, no. 6245 (July 17): 255–260. https:// doi . org / 10
. 1126 / science . aaa8415.

Judd, Tilke, Frédo Durand, and Antonio Torralba. A Benchmark of Computational
Models of Saliency to Predict Human Fixations. Report No. MIT- CSAIL- TR-2012-001.
Cambridge, MA: MIT. http:// dspace . mit . edu / handle / 1721 . 1 / 68590 (last accessed Janu-
ary 2017).

Kamavisdar, Pooja, Sonam Saluja, and Sonu Agrawal. 2013. “A Survey on Image Clas-
sification Approaches and Techniques.” International Journal of Advanced Research in
Computer and Communication Engineering 2, no. 1: 1005–1009.

Kammann, Richard. 1975. “The Comprehensibility of Printed Instructions and the
Flowchart Alternative.” Human Factors: The Journal of the Human Factors and Ergonom-
ics Society 17, no. 2: 183–191.

Karthikeyan, Shanmugavadivel, Vignesh Jagadeesh, and B. S. Manjunath. 2013.
“Learning Top Down Scene Context for Visual Attention Modelling in Natu ral

344 References

Images.” In 2013 IEEEE International Conference on Image Pro cessing, Melbourne, Vic-
toria, Australia, September, 211–215. New York: IEEE.

Kelsen, Hans. 1991. General Theory of Norms. Oxford: Clarendon Press.

Kempe, Alfred B. 1879. “On the Geo graph i cal Prob lem of the Four Colours.” Ameri-
can Journal of Mathe matics 2, no. 3: 193–200.

Kent, Deborah. 2008. “The Mathematical Miscellany and The Cambridge Miscellany
of Mathe matics: Closely Connected Attempts to Introduce Research- Level Mathe-
matics in Amer i ca, 1836–1843.” Historia Mathematica 35, no. 2: 102–122.

Klein, Philip N. 2013. Coding the Matrix: Linear Algebra through Applications to Com-
puter Science. 1st ed. London: Newtonian Press.

Kline, Morris. 1990a. Mathematical Thought from Ancient to Modern Times, Volume 1.
New ed. New York: Oxford University Press.

Kline, Morris. 1990b. Mathematical Thought from Ancient to Modern Times. Volume 2.
New ed. New York: Oxford University Press.

Kline, Morris. 1990c. Mathematical Thought from Ancient to Modern Times, Volume. 3.
New ed. New York: Oxford University Press.

Kling, Rob, ed. 1996. Computerization and Controversy: Value Conflicts and Social
Choices. 2nd ed. San Diego, CA: Morgan Kaufmann.

Knorr- Cetina, Karin D. 1981. The Manufacture of Knowledge: An Essay on the Construc-
tivist and Contextual Nature of Science. New York: Pergamon Press.

Knorr- Cetina, Karin D. 1999. Epistemic Cultures: How the Sciences Make Knowledge.
Cambridge, MA: Harvard University Press.

Knorr- Cetina, Karin D., and Michael J. Mulkay. 1983. Science Observed: Perspectives on
the Social Study of Science. London: Sage Publications.

Knuth, Donald E. 1992. Literate Programming. Stanford, CA: Center for the Study of
Language and Information.

Knuth, Donald E. 1997a. The Art of Computer Programming. Volume 1: Fundamental
Algorithms. 3rd ed. Reading, MA: Addison- Wesley Professional.

Knuth, Donald E. 1997b. The Art of Computer Programming. Volume 2: Seminumerical
Algorithms. 3rd ed. Reading, MA: Addison- Wesley Professional.

Knuth, Donald E. 1998. The Art of Computer Programming. Volume 3: Sorting and
Searching. 2nd ed. Reading, MA: Addison- Wesley Professional.

Knuth, Donald E. 2002. “All Questions Answered.” Notices of the AMS 49, no. 3: 318–324.

Knuth, Donald E. 2011. The Art of Computer Programming. Volume 4A: Combinatorial
Algorithms, Part 1. 1st ed. Upper Saddle River, NJ: Addison- Wesley Professional.

References 345

Koblitz, Neal. 2012. A Course in Number Theory and Cryptography. Berlin: Springer Sci-
ence & Business Media.

Koch, Christof, and Shimon Ullman. 1985. “Shifts in Selective Visual Attention:
 Towards the Under lying Neural Circuitry.” Human Neurobiology 4, no. 4: 219–227.

Kraemer, Felicitas, Kees van Overveld, and Martin Peterson. 2010. “Is There an Ethics
of Algorithms?” Ethics and Information Technology 13, no. 3: 251–260.

Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. 2012. “ImageNet Classifi-
cation with Deep Convolutional Neural Networks.” In Proceedings of the 25th Interna-
tional Conference on Neural Information Pro cessing Systems, Stateline, NV, September,
1097–1105. Red Hook, NY: Curran Associates.

Kushner, Scott. 2013. “The Freelance Translation Machine: Algorithmic Culture and
the Invisible Industry.” New Media & Society 15, no. 8: 1241–1258.

Lakatos, Imre. 1976. Proofs and Refutations: The Logic of Mathematical Discovery. Cam-
bridge: Cambridge University Press.

Landini, Francesca, and Giancarlo Navach. 2017. “Nutella Maker Fights Back on
Palm Oil after Cancer Risk Study.” Reuters, January 11. https:// www . reuters . com / article
/ us - italy - ferrero - nutella - insight - idUSKBN14V0MK.

Lapowsky, Issie. 2016. “ Here’s How Facebook Actually Won Trump the Presidency.”
Wired. November 15. https:// www . wired . com / 2016 / 11 / facebook - won - trump - election
- not - just - fake - news / .

Lappin, Joseph S., and William R. Uttal. 1976. “Does Prior Knowledge Facilitate the
Detection of Visual Targets in Random Noise?” Perception & Psychophysics 20, no. 5:
367–374.

Latour, Bruno. 1987. Science in Action: How to Follow Scientists and Engineers through
Society. Cambridge, MA: Harvard University Press.

Latour, Bruno. 1992 “Where Are the Missing Masses? The Sociology of a Few Mun-
dane Artifacts.” In Shaping Technology/Building Society: Studies in Sociotechnical Change,
edited by Wiebe E. Bijker and John Law, 225–258. Cambridge, MA: MIT Press.

Latour, Bruno. 1993a. The Pasteurization of France. Cambridge, MA: Harvard University
Press.

Latour, Bruno. 1993b. We Have Never Been Modern. Cambridge, MA: Harvard Univer-
sity Press.

Latour, Bruno. 1996. “Sur les pratiques des théoriciens.” In Savoirs théoriques et
savoirs pratiques, edited by Jean- Marie Barbier, 131–146. Paris: PUF.

Latour, Bruno. 1999a. Pandora’s Hope: Essays on the Real ity of Science Studies. Cam-
bridge, MA: Harvard University Press.

346 References

Latour, Bruno. 1999b. “Factures/Fractures: From the Concept of Network to the
Concept of Attachment.” RES: Anthropology and Aesthetics 36: 20–31.

Latour, Bruno. 2005. Reassembling the Social: An Introduction to Actor- Network- Theory.
Oxford: Oxford University Press.

Latour, Bruno. 2006. Pe tites leçons de sociologie des sciences. Paris: La Découverte.

Latour, Bruno. 2008. “Review Essay: The Netz- Works of Greek Deductions.” Social
Studies of Science 38, no. 3: 441–459.

Latour, Bruno. 2010a. “An Attempt at a ‘Compositionist Manifesto.’ ” New Literary
History 41, no. 3: 471–490.

Latour, Bruno. 2010b. Cogitamus: Six lettres sur les humanités scientifiques. Paris: La
Découverte.

Latour, Bruno. 2013. An Inquiry into Modes of Existence: An Anthropology of the Mod-
erns. Translated by C. Porter. Cambridge, MA: Harvard University Press.

Latour, Bruno, Philippe Mauguin, and Geneviève Teil. 1992. “A Note on Socio-
Technical Graphs.” Social Studies of Science 22, no. 1: 33–57.

Latour, Bruno, and Steve Woolgar. 1986. Laboratory Life: The Construction of Scientific
Facts. 2nd ed. Prince ton, NJ: Prince ton University Press.

Law, John, and John Urry. 2004. “Enacting the social.” Economy and Society 33,
no. 3: 390–410.

Lawrence, Steve, and C. Lee Giles. 1999. “Accessibility of Information on the Web.”
Nature 400, no. 6740: 107.

Lea, Tess, and Paul Pholeros. 2010. “This Is Not a Pipe: The Treacheries of Indig-
enous Housing.” Public Culture 22, no. 1: 187–209.

Leadem, Rose. 2017. “Nutella’s New Jars Are Designed by an Algorithm.” Entrepre-
neur, June 5. https:// www . entrepreneur . com / article / 295350.

LeCun, Yann, Yoshua Bengio, and Geoffrey Hinton. 2015. “Deep Learning.” Nature
521: 436–444.

LeCun, Yves. 1985. “A Learning Scheme for Asymmetric Threshold Networks.” In
Proceedings of Cognitiva 85, 599–604. Paris, France.

LeCun, Yves, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and
L. D. Jackel. 1989. “Backpropagation Applied to Handwritten Zip Code Recogni-
tion.” Neural Computation 1, no. 4: 541–551.

Lécuyer, Christophe, David C. Brock, and Jay Last. 2010. Makers of the Microchip:
A Documentary History of Fairchild Semiconductor. Cambridge, MA: MIT Press.

References 347

Leese, Matthias. 2014 “The New Profiling: Algorithms, Black Boxes, and the Railure
of Anti- Discriminatory Safeguards in the Eu ro pean Union.” Security Dialogue 45,
no. 5: 494–511.

Lefebvre, Muriel. 2001. “Écritures et Espace de Médiation: Étude Anthropologique
Des Pratiques Graphiques Dans Une Communauté de Mathématiciens.” PhD diss.,
Université de Strasbourg, Strasbourg, France.

Lefebvre, Muriel. 2013. “L’infra- ordinaire de la recherche: Écritures scientifiques per-
sonnelles, archives et mémoire de la recherche.” Sciences de la société, no. 89: 3–17.

Lehr, David, and Paul Ohm. 2017. “Playing with the Data: What Legal Scholars
Should Learn about Machine Learning.” U.C. Davis Law Review 51: 653–717.

Leighton, Robert B., Norman H. Horo witz, Bruce C. Murray, Robert P. Sharp, Alan G.
Herriman, Andrew T. Young, Bradford A. Smith, Merton E. Davies, and Conway B.
Leovy. 1969. “Mari ner 6 Tele vi sion Pictures: First Report.” Science 165, no. 3894:
685–690.

Lenglet, Marc. 2011. “Conflicting Codes and Codings: How Algorithmic Trading Is
Reshaping Financial Regulation.” Theory, Culture & Society 28, no. 6: 44–66.

Lépinay, Vincent A. 2011. Codes of Finance: Engineering Derivatives in a Global Bank.
Prince ton, NJ: Prince ton University Press.

Lerner, Gerda. 1986. The Creation of Patriarchy. Oxford: Oxford University Press.

Lerner, Josh, and Jean Tirole. 2002. “Some Simple Economics of Open Source.” Jour-
nal of Industrial Economics 50, no. 2: 197–234.

Lettvin, Jerome L. 1989. “Introduction.” In Collected Works of Warren McCulloch,
edited by Rook McCulloch, 7–20. Salinas, CA: Intersystems.

Levin, Sam. 2017. “New AI can guess whether you’re gay or straight from a photo-
graph.” Guardian, September 8. https:// www . theguardian . com / technology / 2017 / sep / 07
/ new - artificial - intelligence - can - tell - whether - youre - gay - or - straight - from - a - photograph.

Lévy, Pierre. 1995. “The Invention of the Computer.” In A History of Scientific
Thought. Ele ments of a History of Science, edited by Michel Serres, 636–663. Oxford:
Blackwell.

Lewis, Seth C, and Oscar Westlund. 2014. “Big Data and Journalism: Epistemology,
Expertise, Economics, and Ethics.” Digital Journalism 3, no. 3: 447–466.

Light, Jennifer S. 1999. “When Computers Were Women.” Technology and Culture
40, no. 3: 455–483.

Lipp mann, Walter. (1925) 1993. The Phantom Public. Reprint ed. New Brunswick, NJ:
Transaction Publishers.

348 References

Lipp mann, Walter. 1982. The Essential Lipp mann: A Po liti cal Philosophy for Liberal
Democracy. Cambridge, MA: Harvard University Press.

Liptak, Adam. 2017. “Sent to Prison by a Software Program’s Secret Algorithms.” New
York Times, May 1. https:// www . nytimes . com / 2017 / 05 / 01 / us / politics / sent - to - prison
- by - a - software - programs - secret - algorithms . html.

 Little, Anthony C., Benedict C. Jones, and Lisa M. DeBruine. 2011. “The Many Faces
of Research on Face Perception.” Philosophical Transactions of the Royal Society B: Bio-
logical Sciences 366, no. 1571: 1634–1637.

Liu, Tie, Jian Sun, Nan- Ning Zheng, Xiaoou Tang, and Heung- Yeung Shum. 2007.
“Learning to Detect a Salient Object.” In Proceedings of the 2007 IEEE Conference on
Computer Vision and Pattern Recognition, Minneapolis, MN, June, 1–8. New York:
IEEE.

Lloyd, Geoffrey E. R. 1990. Demystifying Mentalities. Cambridge: Cambridge Univer-
sity Press.

Lloyd, Geoffrey E. R. 2005. The Delusions of Invulnerability: Wisdom and Morality in
Ancient Greece, China and Today. London: Duckworth.

Lorber, Judith, and Susan A. Farrell, eds. 1991. The Social Construction of Gender. New-
bury Park, CA: Sage Publications.

Lowe, David G. 1987. “Three- Dimensional Object Recognition from Single Two-
Dimensional Images.” Artificial Intelligence. 31, no. 3: 355–395.

Lowe, David G. 1999. “Object Recognition from Local Scale- Invariant Features.” In
Proceedings of the International Conference on Computer Vision, Kerkyra, Corfu, Greece,
September 20–25, 1999, 1150–1157. Washington, DC: IEEE Computer Society.

Lucas, H. C., and R. B. Kaplan. 1976. “A Structured Programming Experiment.” The
Computer Journal 19, no. 2: 136–138.

Lynch, Michael. 1985. Art and Artifact in Laboratory Science: A Study of Shop Work and
Shop Talk in a Research Laboratory. London: Routledge Kegan & Paul.

Lynch, Michael. 2014. “From Normative to Descriptive and Back: Science and Tech-
nology Studies and the Practice Turn.” In Science after the Practice Turn in the Philoso-
phy, History, and Social Studies of Science, edited by Léna Soler, Sjoerd Zwart, Michael
Lynch, and Vincent Israel- Jost, 93–113. London: Routledge.

Lyon, Richard F. 2006. “A Brief History of ‘Pixel.’ ” In Proceedings of SPIE Digital Pho-
tography II, edited by Nitin Sampat, Jeffrey M. Dicarlo and Russel A. Martin, 1–15.
Bellingham, WA: SPIE Press.

Lyotard, Jean- François. 1984. The Postmodern Condition: A Report on Knowledge. Min-
neapolis: University of Minnesota Press.

References 349

Ma, Yu- Fei, and Hong- Jiang Zhang. 2003. “Contrast- Based Image Attention Analy sis
by Using Fuzzy Growing.” In Proceedings of the Eleventh ACM International Conference
on Multimedia, Berkeley, CA, November, 374–381. New York: ACM.

Mackenzie, Adrian. 2017. Machine Learners: Archaeology of a Data Practice. Cambridge,
MA: MIT Press.

Mackenzie, Adrian, and Simon Monk. 2004. “From Cards to Code: How Extreme
Programming Re- Embodies Programming as a Collective Practice.” Computer Sup-
ported Cooperative Work 13, no. 1: 91–117.

MacKenzie, Donald. 1993. “Negotiating Arithmetic, Constructing Proof: The Sociol-
ogy of Mathe matics and Information Technology.” Social Studies of Science 23, no. 1:
37–65.

MacKenzie, Donald. 1999. “Slaying the Kraken: The Sociohistory of a Mathematical
Proof.” Social Studies of Science 29, no. 1: 7–60.

MacKenzie, Donald. 2000. “A Worm in the Bud? Computers, Systems, and the
Safety- Case Prob lem.” In Systems, Experts, and Computers: The Systems Approach in
Management and Engineering, World War II and After, edited by Agatha C. Hughes and
Thomas P. Hughes, 161–190. Cambridge, MA: MIT Press.

MacKenzie, Donald. 2004. Mechanizing Proof: Computing, Risk, and Trust. Cambridge,
MA: MIT Press.

MacKenzie, Donald. 2006. “Computers and the Sociology of Mathematical Proof.”
In 18 Unconventional Essays on the Nature of Mathe matics, edited by Reuben Hersh,
128–146. New York: Springer Science & Business Media.

MacKenzie, Donald. 2014. “A Sociology of Algorithms: High- Frequency Trading
and the Shaping of Markets.” Working paper, University of Edinburgh. http:// www
. sps . ed . ac . uk / _ _ data / assets / pdf _ file / 0004 / 156298 / Algorithms25 . pdf (last accessed
March 2017).

MacKenzie, Donald, Fabian Muniesa, and Lucia Siu, eds. 2007. Do Economists Make
Markets? On the Performativity of Economics. Prince ton, NJ: Prince ton University Press.

Mackworth, Alan K., and Eugene C. Freuder. 1985. “The Complexity of Some Poly-
nomial Network Consistency Algorithms for Constraint Satisfaction Prob lems.”
Artificial Intelligence. 25, no. 1: 65–74.

MacRae, Norman. 1999. John Von Neumann: The Scientific Genius Who Pioneered the
Modern Computer, Game Theory, Nuclear Deterrence, and Much More. 2nd ed. Provi-
dence, RI: American Mathematical Society.

Mahdawi, Arwa. 2018. “To a man with an algorithm all things look like an
advertising opportunity.” Guardian, December 15. https:// www . theguardian . com
/ commentisfree / 2018 / dec / 15 / week - in - patriarchy - facebook - parenting - advertising.

350 References

Malafouris, Lambros. 2004. “The Cognitive Basis of Material Engagement: Where
Brain, Body and Culture Conflate.” In Rethinking Materiality: The Engagement of Mind
with the Material World, edited by Elizabeth DeMarrais, Chris Gosden, and Colin
Renfrew, 53–62. Cambridge: McDonald Institute for Archeological Research.

Mancosu, Paolo, ed. 1997. From Brouwer to Hilbert: The Debate on the Foundations of
Mathe matics in the 1920s. Oxford: Oxford University Press.

Markoff, John. 2012. “For Web Images, Creating New Technology to Seek and Find.”
New York Times, November 19. https:// www . nytimes . com / 2012 / 11 / 20 / science / for
- web - images - creating - new - technology - to - seek - and - find . html.

Marres, Noortje. 2005. “Issues Spark a Public into Being: A Key but Often Forgotten
Point of the Lippmann- Dewey Debate.” In Making Things Public, edited by Bruno
Latour and Peter Weibel, 208–217. Cambridge, MA: MIT Press.

MATLAB Answers. 2017. “How Does Matlab’s Gaussian Fit Function Select Peak Cen-
ters?” MathWorks . com. https:// www . mathworks . com / matlabcentral / answers / 342610
- how - does - matlab - s - gaussian - fit - function - select - peak - centers (last accessed March
2018).

Mauchly, John W. (1942) 1982. “The Use of High Speed Vacuum Tube Devices for
Calculating.” In The Origins of Digital Computers, edited by Brian Randell, 355–358.
Berlin: Springer.

Mayer, Richard E. 1976. “Comprehension as Affected by Structure of Prob lem Repre-
sen ta tion.” Memory & Cognition 4, no. 3: 249–255.

Mazzotti, Massimo. 2017. “Algorithmic Life.” Los Angeles Review of Books, January 20.
https:// lareviewofbooks . org / article / algorithmic - life / .

McCulloch, Warren S., and Walter Pitts. (1943) 1990. “A Logical Calculus of the
Ideas Immanent in Ner vous Activity.” The Bulletin of Mathematical Biophysics 5,
no. 4: 115–133.

McGee, Kyle. 2015. Latour and the Passage of Law. Edinburgh: Edinburgh University
Press.

McKeithen, Katherine B., Judith S. Reitman, Henry H. Rueter, and Stephen C. Hirtle.
1981. “Knowledge Organ ization and Skill Differences in Computer Programmers.”
Cognitive Psy chol ogy 13, no. 3: 307–325.

Merleau- Ponty, Maurice. 2013. Phenomenology of Perception. Abingdon: Routledge, 2013.

Mialet, Hélène. 2012. Hawking Incorporated: Stephen Hawking and the Anthropology of
the Knowing Subject. Chicago: University of Chicago Press.

Michalski, Ryszard S., Jaime G. Carbonell, and Tom M. Mitchell. 2014. Machine
Learning: An Artificial Intelligence Approach. Amsterdam: Elsevier.

References 351

Minsky, Marvin, and Seymour A. Papert. 1969. Perceptrons: An Introduction to Compu-
tational Geometry. Cambridge, MA: MIT Press.

Minsky, Marvin, and Seymour A. Papert. 1970. “Proposal to ARPA for Research on
Artificial Intelligence at MIT, 1970–1971.” Artificial Intelligence Lab Publication,
memo no. 185, MIT.

Mirowski, Philip. 2002. Machine Dreams: Economics Becomes a Cyborg Science. Cam-
bridge: Cambridge University Press.

Mody, Cyrus C. 2017. The Long Arm of Moore’s Law: Microelectronics and American
Science. Cambridge, MA: MIT Press.

Moher, Thomas, and Michael G. Schneider. 1981. “Methods for Improving Controlled
Experimentation in Software Engineering.” In Proceedings of the 5th International Con-
ference on Software Engineering, San Diego, CA, March, 224–233. New York: IEEE.

Mol, Annemarie. 2002. The Body Multiple: Ontology in Medical Practice. Durham, NC:
Duke University Press.

Montfort, Nick, Patsy Baudoin, John Bell, Ian Bogost, Jeremy Douglass, Mark C.
Marino, Michael Mateas, Casey Reas, Mark Sample, and Noah Vawter. 2013. 10
PRINT CHR$(205.5+RND(1));: GOTO 10. Bellingham, WA: MIT Press.

Mosseri, Adam. 2017. “Showing More Informative Links in News Feed.” Facebook’s
Newsroom, June 30. https:// about . fb . com / news / 2017 / 06 / news - feed - fyi - showing - more
- informative - links - in - news - feed/ (last accessed October 2017).

Movahedi, Vida, and James H. Elder. 2010. “Design and Perceptual Validation of
Per for mance Mea sures for Salient Object Segmentation.” In 2010 IEEE Computer Soci-
ety Conference on Computer Vision and Pattern Recognition Workshops, San Francisco,
CA, June, 49–56. New York: IEEE.

Mozur, Paul. 2018. “Inside China’s Dystopian Dreams: A.I., Shame and Lots of Cam-
eras.” New York Times, July 8. https:// www . nytimes . com / 2018 / 07 / 08 / business / china
- surveillance - technology . html.

Müller, Vincent C, ed. 2015. Risks of Artificial Intelligence. Boca Raton, FL: Chapman
and Hall.

Muniesa, Fabian. 2011a. “Is a Stock Exchange a Computer Solution? Explicitness,
Algorithms and the Arizona Stock Exchange.” International Journal of Actor- Network
Theory and Technological Innovation 3, no. 1: 1–15.

Muniesa, Fabian. 2011b. “A Flank Movement in the Understanding of Valuation.”
So cio log i cal Review 59, no. 2: 24–38.

Muniesa, Fabian. 2015. The Provoked Economy: Economic Real ity and the Performative
Turn. London: Routledge.

352 References

Muniesa, Fabian, Yvan Millo, and Michel Callon. 2007. “An Introduction to Market
Devices.” In Market Devices, edited by Michel Callon, Yuval Millo, and Fabian Muni-
esa, 1–12. London: Blackwell.

Myers, Glenford J., Corey Sandler, and Tom Badgett. 2011. The Art of Software Test-
ing. 3rd ed. Hoboken, NJ: Wiley.

Nagi, J., F. Ducatelle, G. A. Di Caro, D. Cireşan, U. Meier, A. Giusti, F. Nagi, J.
Schmidhuber, and L. M. Gambardella. 2011. “Max- Pooling Convolutional Neural
Networks for Vision- Based Hand Gesture Recognition.” In 2011 IEEE International
Conference on Signal and Image Pro cessing Applications, Kuala Lumpur, November,
342–347. New York: IEEE.

Nathan, Tobie, and Nathalie Zajde. 2012. Psychothérapie démocratique. Paris: Odile
Jacob.

Naur, Peter, and Brian Randell. 1969. Software Engineering: Report on a Conference
Sponsored by the NATO Science Committee, Garmisch, Germany, 7th to 11th October
1968. Brussels: NATO Scientific Affairs Division.

Negri, Antonio. 1999. Insurgencies: Constituent Power and the Modern State. Minneapo-
lis: University of Minnesota Press.

Neisser, Ulric. 1967. Cognitive Psy chol ogy. Upper Saddle River, NJ: Prentice Hall.

Netz, Reviel. 1998. “Deuteronomic Texts: Late Antiquity and the History of Mathe-
matics.” Revue D’Histoire Des Mathématiques 4, no. 2: 261–288.

Netz, Reviel. 2003. The Shaping of Deduction in Greek Mathe matics: A Study in Cognitive
History. Cambridge: Cambridge University Press.

Netz, Reviel. 2004. The Transformation of Mathe matics in the Early Mediterranean
World: From Prob lems to Equations. Cambridge: Cambridge University Press.

Newell, Allen, and Herbert A. Simon. 1972. Human Prob lem Solving. Upper Saddle
River, NJ: Prentice- Hall, 1972.

Neyland, Daniel. 2016. “Bearing Account- able Witness to the Ethical Algorithmic
System.” Science Technology & Human Values 41, no. 1: 50–76.

Nissenbaum, Helen. 2004. “Hackers and the Contested Ontology of Cyberspace.”
New Media & Society 6, no. 2: 195–217.

Noble, Safiya Umoja. 2018. Algorithms of Oppression: How Search Engines Reinforce
Racism. New York: New York University Press.

Noë, Alva. 2004. Action in Perception. Cambridge, MA: MIT Press.

Nofre, David, Mark Priestley, and Gerard Alberts. 2014. “When Technology Became
Language: The Origins of the Linguistic Conception of Computer Programming,
1950–1960.” Technology and Culture 55, no. 1: 40–75.

References 353

Nudd, Tim. 2017. “Nutella’s Unique Product Now Comes in 7 Million Unique Jars.”
Adweek, June 6. https:// www . adweek . com / creativity / nutellas - unique - product - now
- comes - in - 7 - million - unique - jars / .

Nye, David E. 1992. Electrifying Amer i ca: Social Meanings of a New Technology, 1880–
1940. Cambridge, MA: MIT Press.

Obermeyer, Ziad, Brian Powers, Christine Vogeli, and Sendhil Mullainathan. 2019.
“Dissecting Racial Bias in an Algorithm Used to Manage the Health of Populations.”
Science 366, no. 6464: 447–453.

Ombredane, André, and Jean- Marie Faverge. 1955. L’analyse du travail. Paris: PUF.

O’Neal Jr., B. 1966. “Predictive Quantizing Systems (Differential Pulse Code Modula-
tion) for the Transmission of Tele vi sion Signals.” Bell System Technical Journal 45,
no. 5: 689–721.

O’Neil, Cathy. 2016. Weapons of Math Destruction: How Big Data Increases In equality
and Threatens Democracy. New York: Crown.

Ormerod, Tom. 1990. “ Human Cognition and Programming.” In Psy chol ogy of Pro-
gramming, edited by J. M. Hoc, T. R. G. Green, R. Samurcay, and D.J. Gilmore, 63–82.
London: Academic Press.

O’Shea, Donal. 2008. The Poincaré Conjecture: In Search of the Shape of the Universe.
New York: Walker Books.

Otsu, Nobuyuki. 1979. “A Threshold Se lection Method from Gray- Level Histo-
grams.” IEEE Transactions on Systems, Man and Cybernetics 9, no. 1: 62–66.

Owens, Larry. 1986. “Vannevar Bush and the Differential Analyzer: The Text and
Context of an Early Computer.” Technology and Culture 27, no. 1: 63–95.

Parker, Charlie. 2018. “It’s Watching You. Police Big Brother Surveillance Technol-
ogy to Spy on Your Social Media in Search for Hate Crime.” The Sun, December 14.
https:// www . thesun . co . uk / news / 7968627 / big - brother - surveillance - technology - spy
- social - media - police - search - hate - crime / .

Parrington, Norman, and Marc Roper. 1989. Understanding Software Testing. Chich-
ester: John Wiley.

Pasquale, Frank. 2015. The Black Box Society: The Secret Algorithms That Control Money
and Information. Cambridge, MA: Harvard University Press.

Pennington, Nancy. 1987. “Stimulus Structures and Mental Repre sen ta tions in Expert
Comprehension of Computer Programs.” Cognitive Psy chol ogy 19, no. 3: 295–341.

Pennington, Shelley, and Belinda Westover. 1989. “Types of Homework.” In A
Hidden Workforce: Homeworkers in England, 1850–1985, edited by Shelley Pennington
and Belinda Westover, 44–65. London: Palgrave Macmillan UK.

354 References

Penny, Simon. 2017. Making Sense: Cognition, Computing, Art, and Embodiment. Cam-
bridge, MA: MIT Press.

Penrose, Ann M., and Steven B. Katz. 2010. Writing in the Sciences: Exploring Conven-
tions of Scientific Discourse. 3rd ed. New York: Longman.

Pérec, Georges. 1989. L’Infra- ordinaire. Paris: Seuil.

Pestre, Dominique. 2004. “Thirty Years of Science Studies: Knowledge, Society and
the Po liti cal.” History and Technology: An International Journal 20, no. 4: 351–369.

Piccinini, Gualtiero. 2004. “The First Computational Theory of Mind and Brain: A
Close Look at McCulloch and Pitts’s ‘Logical Calculus of Ideas Immanent in Ner vous
Activity.’ ” Synthese 141, no. 2: 175–215.

Pickering, Andrew. 1995. The Mangle of Practice: Time, Agency, and Science. Chicago:
University of Chicago Press.

Pickering, Andrew. 2011. The Cybernetic Brain: Sketches of Another Future. Chicago:
University of Chicago Press.

Pickering, Andrew, and Adam Stephanides. 1992. “Constructing Quaternions: On
the Analy sis of Conceptual Practice.” In Science as Practice and Culture, edited by
Andrew Pickering, 139–167. Chicago: University of Chicago Press.

Plasek, Aaron. 2018. “On the Cruelty of Really Writing a History of Machine Learn-
ing.” IEEE Annals of the History of Computing 38, no. 4: 6–8.

Polachek, Harry. 1997. “Before the ENIAC.” IEEE Annals of the History of Computing
19, no. 2: 25–30.

Pu, Ida M. 2005. Fundamental Data Compression. Oxford: Butterworth- Heinemann.

Pugh, Emerson W. 1995. Building IBM: Shaping an Industry and Its Technology. Cam-
bridge, MA: MIT Press.

Putnam, Hilary. (1961) 1980. “Brains and Be hav ior.” In Readings in Philosophy of Psy-
chol ogy, edited by Ned Block, 24–36. Cambridge, MA: Harvard University Press.

Pylyshyn, Zenon W., ed. 1987. The Robots Dilemma: The Frame Prob lem in Artificial
Intelligence. Norwood, NJ: Praeger.

Pylyshyn, Zenon W. 1989. “Computing in Cognitive Science.” In Foundations of
Cognitive Science, edited by Michael N. Posner, 63–91. Cambridge, MA: MIT Press.

Ramón y Cajal, Santiago. 1968. The Structure of Ammon’s Horn. Springfield, IL: C. C.
Thomas.

Ratcliffe, Matthew. 2009. “Belonging to the World through the Feeling Body.” Phi-
losophy, Psychiatry, & Psy chol ogy 16, no. 2: 205–211.

References 355

Ratcliffe, Matthew. 2010. “The Phenomenology of Mood and the Meaning of Life.”
In The Oxford Handbook of Philosophy of Emotion, edited by Peter Goldie, 349–371.
Oxford: Oxford University Press.

Redmond, Kent C., and Thomas M. Smith. 1980. Proj ect Whirlwind: History of a Pio-
neer Computer. 1st ed. Bedford, MA: Digital Press.

Redmond, Kent C., and Thomas M. Smith. 2000. From Whirlwind to MITRE: The R&D
Story of The SAGE Air Defense Computer. Cambridge, MA: MIT Press.

Rheinberger, Hans- Jörg. 1997. Toward a History of Epistemic Things: Synthesizing Pro-
teins in the Test Tube. Stanford, CA: Stanford University Press.

Richards, Martin. 2005. “EDSAC Initial Orders and Squares Program.” University of
Cambridge Computer Laboratory. http:// www . cl . cam . ac . uk / ~mr10 / edsacposter . pdf
(last accessed May 2016).

Richter, Felix. 2017. “Smartphones Cause Photography Boom.” Statista Infographics,
August 31. https:// www . statista . com / chart / 10913 / number - of - photos - taken - worldwide
/ (last accessed January 2019).

Ringelhan, Stefanie, Jutta Wollersheim, and Isabell M. Welpe. 2015. “I Like, I Cite?
Do Facebook Likes Predict the Impact of Scientific Work?” PLOS ONE 10, no. 8:
e0134389.

Risen, James, and Laura Poitras. 2014. “N.S.A. Collecting Millions of Faces from Web
Images.” New York Times, May 31. https:// www . nytimes . com / 2014 / 06 / 01 / us / nsa
- collecting - millions - of - faces - from - web - images . html.

Ritter, James. 1995. “Mea sure for Mea sure: Mathe matics in Egypt and Mesopota-
mia.” In History of Scientific Thought. Ele ments of a History of Science, edited by Michel
Serres, 44–72. Oxford: Blackwell.

Roberts, Rachel. 2017. “Online Hate Crime to Be Tackled by New National Police
Hub, Home Secretary Says.” In de pen dent, October 8. https:// www . independent . co . uk
/ news / uk / politics / online - hate - crime - amber - rudd - home - office - national - police - hub
- facebook - twitter - trolls - a7988411 . html.

Rorty, Richard. 1980. Philosophy and the Mirror of Nature. Prince ton, NJ: Prince ton
University Press.

Rosenberg, Scott. 2008. Dreaming in Code: Two Dozen Programmers, Three Years, 4,732
Bugs, and One Quest for Transcendent Software. Reprint ed. New York: Three Rivers Press.

Rosenblatt, Frank. 1958. “The Perceptron: A Probabilistic Model for Information
Storage and Organ ization in the Brain.” Psychological Review 65, no. 6: 386–408.

Rosenblatt, Frank. 1962. Princi ples of Neurodynamics: Perceptrons and the Theory of Brain
Mechanisms. New York: Spartan Books.

356 References

Rosental, Claude. 2003. La trame de l’évidence: Sociologie de la demonstration en logique.
Paris: PUF.

Rosental, Claude. 2004. “Fuzzyfying the World: Social Practices of Showing the
Properties of Fuzzy Logic.” In Growing Explanations: Historical Perspectives on Recent
Science, edited by Norton M. Wise, 159–178. Durham, NC: Duke University Press.

Rotman, Brian. 1995. “Thinking Dia- Grams: Mathe matics, Writing, and Virtual
Real ity.” The South Atlantic Quarterly 94, no. 2: 389–415.

Rotman, Brian. 2006. “ Towards a Semiotics of Mathe matics.” In 18 Unconventional
Essays on the Nature of Mathe matics, edited by Reuben Hersh, 97–127. New York:
Springer Science & Business Media.

Rowan, Thomas C. 1957. “Psychological Tests and Se lection of Computer Program-
mers.” Journal of the ACM 4, no. 3: 348–353.

Rumelhart, David E., Geoffrey E. Hinton, and Ronald J. Williams. 1986. “Learning
Repre sen ta tions by Back- Propagating Errors.” Nature 323, no. 6088: 533.

Russakovsky, Olga, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma,
Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michel Bern stein, Alexander C.
Berg, and Li Fei- Fei. 2015. “ImageNet Large Scale Visual Recognition Challenge.”
International Journal of Computer Vision 115, no. 3: 211–252.

Sackman, Harold, W. J. Erikson, and E. E. Grant. 1968. “Exploratory Experimental
Studies Comparing Online and Offline Programming Per for mance.” Communications
of the ACM 11, no. 1: 3–11.

Sandvig, Christian, Hamilton Kevin, Karahalios Karrie, and Cedric Langbort. 2016.
“When the Algorithm Itself Is a Racist: Diagnosing Ethical Harm in the Basic Com-
ponents of Software.” International Journal of Communication 10: 4972–4990.

Santella, Anthony, Maneesh Agrawala, Doug DeCarlo, David Salesin, and Michael
Cohen. 2006. “Gaze- Based Interaction for Semi- Automatic Photo Cropping.” In Pro-
ceedings of the SIGCHI Conference on Human Factors in Computing Systems, Montreal,
QC, Canada, April, 771–780. New York: ACM.

Scheiber, Noam. 2016. “Uber Drivers and Others in the Gig Economy Take a Stand.”
New York Times, February 2. https:// www . nytimes . com / 2016 / 02 / 03 / business / uber
- drivers - and - others - in - the - gig - economy - take - a - stand . html.

Schmidhuber, Jürgen. 2015. “Deep Learning in Neural Networks: An Overview.”
Neural Networks 61: 85–117.

Seaver, Nick. 2013. “Knowing Algorithms.” Paper presented at Media in Transition 8,
Cambridge, MA. https:// static1 . squarespace . com / static / 55eb004ee4b0518639d59d9b
/ t / 55ece1bfe4b030b2e8302e1e / 1441587647177 / seaverMiT8 . pdf (last accessed April
2017).

References 357

Seaver, Nick. Forthcoming. Computing Taste: The Making of Algorithmic Music Recom-
mendation. Chicago: University of Chicago Press.

Sedgewick, Robert, and Kevin Wayne. 2011. Algorithms. 4th ed. Upper Saddle River,
NJ: Addison- Wesley Professional.

Seibel, Peter. 2009. Coders at Work: Reflections on the Craft of Programming. New York:
Apress.

Seitz, Frederick, and Norman G. Einspruch. 1998. Electronic Genie: The Tangled His-
tory of Silicon. Urbana: University of Illinois Press.

Serres, Michel. 1974. Hermès III: La traduction. Paris: Editions de Minuit.

Serres, Michel. 1983. Hermes: Lit er a ture, Science, Philosophy. Baltimore: The Johns Hop-
kins University Press.

Serres, Michel. 1995. “Gnomon: The Beginnings of Geometry in Greece.” In History
of Scientific Thought: Ele ments of a History of Science, edited by Michel Serres, 77–123.
Oxford: Blackwell.

Serres, Michel. 2002. Origins of Geometry. Manchester: Clinamen Press Limited.

Sha, Xin W. 2005. “Differential Geometrical Per for mance and Poiesis.” Configura-
tions 12, no. 1: 133–160.

Shannon, Claude E. 1948. “A Mathematical Theory of Communication.” Bell System
Technical Journal 27, no. 3: 379–423.

Shapin, Steven, and Simon Schaffer. 1989. Leviathan and the Air- Pump: Hobbes, Boyle,
and the Experimental Life. Prince ton, NJ: Prince ton University Press.

Sharkey, Jim. 2017. “New Driving Algorithm Helps Protect Curiosity Rover’s Wheels.”
Spaceflight Insider, July 4. https:// www . spaceflightinsider . com / space - centers / jet - pro
pulsion-laboratory/new- driving- algorithm- helps - protect - curiosity - rovers - wheels/
(last accessed October 2017).

Shen, Xiaohui, and Ying Wu. 2012. “A Unified Approach to Salient Object Detection
via Low Rank Matrix Recovery.” In Proceedings of the 2012 IEEE Conference on Com-
puter Vision and Pattern Recognition, Providence, RI, June, 853–860. New York: IEEE.

Sheppard, Sylvia B., Bill Curtis, Phil Milliman, and Tom Love. 1979. “Modern
Coding Practices and Programmer Per for mance.” Computer 12, no. 12: 41–49.

Shiffrin, Richard M., and Gerald T. Gardner. 1972. “Visual Pro cessing Capacity and
Attentional Control.” Journal of Experimental Psy chol ogy 93, no. 1: 72–82.

Shneiderman, Ben, and Richard Mayer. 1979. “Syntactic/Semantic Interactions in
Programmer Be hav ior: A Model and Experimental Results.” International Journal of
Computer & Information Sciences 8, no. 3: 219–238.

358 References

Shneiderman, Ben, Richard Mayer, Don McKay, and Peter Heller. 1977. “Experimen-
tal Investigations of the Utility of Detailed Flowcharts in Programming.” Communi-
cations of the ACM 20, no. 6: 373–381.

Sime, Max E., Andrew T. Arblaster, and Thomas G. Green. 1977. “Reducing Program-
ming Errors in Nested Conditionals by Prescribing a Writing Procedure.” Interna-
tional Journal of Man- Machine Studies 9, no. 1: 119–126.

Sime, Max E., Thomas G. Green, and D. J. Guest. 1973. “Psychological Evaluation of
Two Conditional Constructions Used in Computer Languages.” International Journal
of Man- Machine Studies 5, no. 1: 105–113.

Sime, Max E., Thomas G. Green, and D. J. Guest. 1977. “Scope Marking in Computer
Conditionals— A Psychological Evaluation.” International Journal of Man- Machine
Studies 9, no. 1: 107–118.

Simon, Herbert A., and Craig A. Kaplan. 1989. “Foundations of Cognitive Science.”
In Foundations of Cognitive Science, edited by Michael I. Posner, 1–47. Cambridge,
MA: MIT Press.

Simondon, Gilbert. 2017. On the Mode of Existence of Technical Objects. Minneapolis,
MN: Univocal Publishing.

Skiena, Steven S. 2008. The Algorithm Design Manual. 2nd ed. London: Springer.

Smith, Andrew. 2018. “Franken- Algorithms: The Deadly Consequences of Unpre-
dictable Code.” Guardian, August 30. https:// www . theguardian . com / technology / 2018
/ aug / 29 / coding - algorithms - frankenalgos - program - danger.

Smith, Blair R. 1983. “The IBM 701— Marketing and Customer Relations.” IEEE
Annals of the History of Computing 5, no. 2: 170–172.

Smith, Dorothy E. 1974. “The Social Construction of Documentary Real ity.” So cio-
log i cal Inquiry 44, no. 4: 257–268.

Soloway, Elliot. 1986. “Learning to Program = Learning to Construct Mechanisms
and Explanations.” Communications of the ACM 29, no. 9: 850–858.

Sormani, Philippe. 2014. Respecifying Lab Ethnography: An Ethnomethodological Study
of Experimental Physics. 1st ed. Farnham, UK: Routledge.

Souriau, Étienne. (1943) 2015. The Dif fer ent Modes of Existence. Translated by E.
Beranek and T. Howles. Minneapolis, MN: Univocal Publishing.

Srivastava, Biplav, and Francesca Rossi. 2018. “ Towards Composable Bias Rating of
AI Ser vices.” In Proceedings of the 2018 AAAI/ACM Conference on AI, Ethics, and Society,
New Orleans, LA, February, 284–289. New York: ACM.

Star, Susan L. 1983. “Simplification in Scientific Work: An Example from Neurosci-
ence Research.” Social Studies of Science 13, no. 2: 205–228.

References 359

Star, Susan L. 1989. Regions of the Mind: Brain Research and the Quest for Scientific
Certainty. Stanford, CA: Stanford University Press.

Star, Susan L., and Anselm Strauss. 1999. “Layers of Silence, Arenas of Voice: The Ecol-
ogy of Vis i ble and Invisible Work.” Computer Supported Cooperative Work 8, no. 1–2:
9–30.

Statista. 2019. “Digital Still Cameras CIPA Com pany Shipments 1999–2018.” Statista
. com. https:// www . statista . com / statistics / 264337 / cipa - companies - shipments - of - digital
- cameras - since - 1999/ (last accessed January 2019).

Steiner, Christopher. 2012. Automate This: How Algorithms Came to Rule Our World.
New York: Penguin.

Stern, Nancy B. 1981. From ENIAC to UNIVAC: Appraisal of the Eckert- Mauchly Com-
puters. Bedford, MA: Digital Press.

Strebel, Ignaz, Alain Bovet, and Philippe Sormani, eds. 2018. Repair Work Ethnogra-
phies: Revisiting Breakdown, Relocating Materiality. Basingstoke: Palgrave Macmillan.

Suchman, Lucy. 1987. Plans and Situated Actions: The Prob lem of Human- Machine
Communication. Cambridge: Cambridge University Press.

Suchman, Lucy. 1995. “Making Work Vis i ble.” Communications of the ACM 38, no. 9:
56–64.

Suchman, Lucy. 2007. Human- Machine Reconfigurations: Plans and Situated Actions.
2nd ed. Cambridge: Cambridge University Press.

Suchman, Lucy, Dominik Gerst, and Hannes Krämer. 2019. “ ‘If You Want to Under-
stand the Big Issues, You Need to Understand the Everyday Practices That Constitute
Them.’ Lucy Suchman in Conversation with Dominik Gerst & Hannes Krämer.”
Forum Qualitative Sozialforschung/Forum: Qualitative Social Research 20, no. 2: Art. 1.

Sutton, John. 2007. “Batting, Habit, and Memory: The Embodied Mind and the Nature
of Skill.” Sport in Society 10, no. 5: 763–786.

Swade, Doron. 2011. “Inventing the User: EDSAC in Context.” The Computer Journal
54, no. 1: 143–147.

Tarjan, Robert E. 1983. Data Structures and Network Algorithms. Philadelphia: SIAM.

Tent, M. B. W. 2006. The Prince of Mathe matics: Carl Friedrich Gauss. Wellesley, MA:
A. K. Peters/CRC Press.

Theureau, Jacques. 2003. “Course- of- Action Analy sis and Course- of- Action Centered
Design.” In Handbook of Cognitive Task Design, edited by Erik Hollnagel, 55–81. Hill-
sdale, NJ: Lawrence Erlbaum.

Theureau, Jacques, and Geneviève Filippi. 2000. “Analysing Cooperative Work in an
Urban Traffic Control Room for the Design of a Coordination Support System.” In

360 References

Workplace Studies, edited by Paul Luff, Jon Hindmarsh, and Christian Heath, 68–81.
Cambridge: Cambridge University Press.

Theureau, Jacques, Geneviève Filippi, Geneviève Saliou, and Pierre Vermersch. 2001.
“Development of a Methodology for Analysing the Dynamic Collective Organisation
of the Reactor Operator’s and Supervisor’s Courses of Experience While Controlling
a Nuclear Reactor in Accidental Situations in Full Scope Simulated Control Rooms.”
In CSAPC’01: Proceedings of the Eighth Conference on Cognitive Science Approaches to
Pro cess Control, edited by R. Onken. Munich, September.

Thévenot, Laurent. 1984. “Rules and Implements: Investments in Forms.” Social Sci-
ence Information 23, no. 1: 1–45.

Thomas, Walker H. 1953. “Fundamentals of Digital Computer Programming.” Pro-
ceedings of the IRE 41, no. 10: 1245–1249.

Thompson, Evan. 2005. “Sensorimotor Subjectivity and the Enactive Approach to
Experience.” Phenomenology and the Cognitive Sciences 4, no. 4: 407–427.

Thompson, Evan. 2010. Mind in Life: Biology, Phenomenology, and the Sciences of Mind.
Cambridge, MA: Belknap Press.

Tiles, Mary. 2004. The Philosophy of Set Theory: An Historical Introduction to Cantor’s
Paradise. Mineola, NY: Dover Publications.

Traweek, Sharon. 1992. Beamtimes and Lifetimes: The World of High Energy Physicists.
Cambridge, MA: Harvard University Press.

Tsotsos, John K. 1988. “A ‘Complexity Level’ Analy sis of Immediate Vision.” Interna-
tional Journal of Computer Vision 1, no. 4: 303–320.

Tsotsos, John K. 1989. “The Complexity of Perceptual Search Tasks.” In Proceed-
ings of the Eleventh International Joint Conference on Artificial Intelligence. Volume 2:
1571–1577. San Francisco, CA: Morgan Kaufmann.

Tsotsos, John K. 1990. “Analyzing Vision at the Complexity Level.” Behavioral and
Brain Sciences 13, no. 3: 423–445.

Tsotsos, John K., Scan M. Culhane, Winky Yan Kei Wai, Yuzhong Lai, Neal Davis,
and Fernando Nuflo. 1995. “Modeling Visual Attention via Selective Tuning.” Artifi-
cial Intelligence 78, no. 1–2: 507–545.

Turing, Alan M. 1937. “On Computable Numbers, with an Application to the Ents-
cheidungsproblem.” Proceedings of the London Mathematical Society 42, no. 1: 230–265.

Turing, Alan M. 1950. “Computing Machinery and Intelligence.” Mind 59, no. 236:
433–460.

Ullman, Ellen. 2012a. Close to the Machine: Technophilia and Its Discontents. Reprint
ed. New York: Picador.

References 361

Ullman, Ellen. 2012b. The Bug. New York: Picador.

Vandewalle Patrick, Jelena Kovacevic, and Martin Vetterli. 2009. “Reproducible
Research in Signal Pro cessing.” IEEE Signal Pro cessing Magazine 26, no. 3: 37–47.

Vapnik, Vladimir. 1999. The Nature of Statistical Learning Theory. 2nd ed. New York:
Springer.

Varela, Francisco J., Evan T. Thompson, and Eleanor Rosch. 1991. The Embodied
Mind: Cognitive Science and Human Experience. Revised ed. Cambridge, MA: MIT Press.

Vessey, Iris. 1989. “ Toward a Theory of Computer Program Bugs: An Empirical Test.”
International Journal of Man- Machine Studies 30, no. 1: 23–46.

Vetterli, Martin, Jelena Kovacevic, and Vivek K. Goyal. 2014. Foundations of Signal
Pro cessing. Cambridge: Cambridge University Press.

Villani, Cédric. 2016. Birth of a Theorem: A Mathematical Adventure. Reprint ed. New
York: Farrar, Straus and Giroux.

Vinck, Dominique. 1991. “La Coordination Du Travail Scientifique: Étude de Deux
Formes Specifiques: Le Laboratoire et Le Reseau.” PhD diss., École Nationale Supéri-
eure des Mines de Paris, Paris, France.

Vinck, Dominique, ed. 2003. Everyday Engineering: An Ethnography of Design and Inno-
vation. Cambridge, MA: MIT Press.

Vinck, Dominique. 2011. “Taking Intermediary Objects and Equipping Work into
Account in the Study of Engineering Practices.” Engineering Studies 3, no. 1: 25–44.

Vinck, Dominique. 2016. Humanités numériques: La culture face aux nouvelles technolo-
gies. Paris: Le Cavalier Bleu.

von Neumann, John. (1945) 1993. “First Draft of a Report on the EDVAC.” IEEE
Annals of the History of Computing 15, no. 4: 27–75.

von Neumann, John. (1958) 2012. The Computer and the Brain. 3rd ed. New Haven,
CT: Yale University Press.

Vygotsky, Lev S. 1978. Mind in Society: Development of Higher Psychological Pro cesses.
Cambridge, MA: Harvard University Press.

Wade, Nicholas. 1981. The Nobel Duel. 1st ed. Garden City, NY: Doubleday.

Wang, Wei, Yizhou Wang, Qingming Huang, and Wen Gao. 2010. “Mea sur ing
Visual Saliency by Site Entropy Rate.” In 2010 IEEE Conference on Computer Vision
and Pattern Recognition, San Francisco, CA, June, 2368–2375. New York: IEEE.

Wang, Zheshen, and Baoxin Li. 2008. “A Two- Stage Approach to Saliency Detection
in Images.” In Proceedings of the IEEE International Conference on Acoustics, Speech and
Signal Pro cessing, Las Vegas, NV, March– April, 965–968. New York: IEEE.

362 References

Ward, Dave, Tom Roberts, and Andy Clark. 2011. “Knowing What We Can Do:
Actions, Intentions, and the Construction of Phenomenal Experience.” Synthese 181,
no. 3: 375–394.

Ward, Dave, and Mog Stapleton. 2012. “Es Are Good: Cognition as Enacted, Embod-
ied, Embedded, Affective and Extended.” In Consciousness in Interaction: The Role
of the Natu ral and Social Context in Shaping Consciousness, edited by Fabio Paglieri,
89–104. Amsterdam: John Benjamins.

Warneken, Felix, and Alexandra G. Rosati. 2015. “Cognitive Capacities for Cooking
in Chimpanzees.” Proceeding of the Royal Society. B: Biological Sciences 282, no. 1809:
20150229.

Warwick, Andrew. 1992. “Cambridge Mathe matics and Cavendish Physics: Cun-
ningham, Campbell and Einstein’s Relativity 1905–1911 Part I: The Uses of Theory.”
Studies in History and Philosophy of Science Part A 23, no. 4: 625–656.

Warwick, Andrew. 1993. “Cambridge Mathe matics and Cavendish Physics: Cun-
ningham, Campbell and Einstein’s Relativity 1905–1911 Part II: Comparing Tradi-
tions in Cambridge Physics.” Studies in History and Philosophy of Science Part A 24,
no. 1: 1–25.

Watson, John B. 1930. Behaviorism. London: Kegan Paul Trench Trubner.

Webster, Guy. 2015. “Curiosity Mars Rover Checking Pos si ble Smoother Route.” Jet
Propulsion Laboratory News, January 2014. https:// www . jpl . nasa . gov / news / news . php
? release = 2014 - 028 (last accessed October 2017).

Weil, David. 2014. The Fissured Workplace: Why Work Became So Bad for So Many and
What Can Be Done to Improve It. Cambridge, MA: Harvard University Press.

Weinberg, Gerald M. 1971. The Psy chol ogy of Computer Programming. Hoboken, NJ:
Van Nostrand Reinhold.

Weissman, Larry. 1974. “Psychological Complexity of Computer Programs: An
Experimental Methodology.” SIGPLAN Notices 9, no. 6: 25–36.

Werbos, Paul. 1974. “Beyond Regression: New Tools for Prediction and Analy sis in
the Behavioral Sciences.” PhD diss., Harvard University.

Whitehead, Alfred N. (1929) 1978. Pro cess and Real ity. Edited by D. R. Griffin and
D. W. Sherburne. New York: Free Press.

Whitehead, Alfred N., and Bertrand Russell. 1910. Principia Mathematica. Cambridge:
Cambridge University Press.

Whitehead, Alfred N., and Bertrand Russell. 1911. Principia Mathematica. Volume II.
Cambridge: Cambridge University Press.

References 363

Whitehead, Alfred N., and Bertrand Russell. 1913. Principia Mathematica. Volume III.
Cambridge: Cambridge University Press.

Wiedenbeck, Susan. 1985. “Novice/Expert Differences in Programming Skills.” Inter-
national Journal of Man- Machine Studies 23, no. 4: 383–390.

Wilkes, Maurice. 1985. Memoirs of a Computer Pioneer. Cambridge, MA: MIT Press.

Wirth, Niklaus. 1976. Algorithms + Data Structures = Programs. Englewood Cliffs, NJ:
Prentice Hall.

Wittgenstein, Ludwig. 1922. Tractatus Logico- Philosophicus. London: Kegan Paul Trench
Trubner.

Wolfe, Jack M. 1971. “Perspectives on Testing for Programming Aptitude.”
In Proceedings of the 1971 Twenty- Sixth Annual Conference, 268–277. New York:
ACM.

Wolfe, Jeremy M., Kyle R. Cave, and Susan L. Franzel. 1989. “Guided Search: An
Alternative to the Feature Integration Model for Visual Search.” Journal of Experimen-
tal Psy chol ogy. Human Perception and Per for mance 15, no. 3: 419–433.

Wright, Patricia, and Fraser Reid. 1973. “Written Information: Some Alternatives to
Prose for Expressing the Outcomes of Complex Contingencies.” Journal of Applied
Psy chol ogy 57, no.2: 160–166.

Yapo, Adrienne, and Joseph Weiss. 2018. “Ethical Implications of Bias in Machine
Learning.” In Proceedings of the Fifty- First Hawaii International Conference on System Sci-
ences, Waikoloa Village, HI, January, 5365–5372. Atlanta, GA: Association for Informa-
tion Systems.

Yates, Joanne. 1989. Control through Communication: The Rise of System in American
Management. Baltimore: Johns Hopkings University Press.

Zemanek, H. 1981. “Dixit Algorizmi.” In Algorithms in Modern Mathe matics and Com-
puter Science Proceedings: Urgench, Uzbek SSR, September 16–22, 1979, edited by A. P.
Ershov and D. E. Knuth. Berlin: Springer.

Zhao, Qi, and Christof Koch. 2011. “Learning a Saliency Map Using Fixated Loca-
tions in Natu ral Scenes.” Journal of Vision 11, no. 3: 9.

Zhou, Bolei, Aditya Khosla, Agata Lapedriza, Aude Oliva, and Antonio Torralba.
2016. “Learning Deep Features for Discriminative Localization.” In Proceedings of
the 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV,
June– July, 2921–2929. New York: IEEE.

Ziewitz, Malte. 2016. “Governing Algorithms Myth, Mess, and Methods.” Science
Technology & Human Values 41, no. 1: 3–16.

364 References

Zuckerberg, Mark. 2016. “I Want to Share Some Thoughts on Facebook and the Election.”
Facebook, November 12. https:// www . facebook . com / zuck / posts / 10103253901916271
(last accessed October 2017).

Zunshine, Lisa, ed. 2015. The Oxford Handbook of Cognitive Literary Studies. Oxford:
Oxford University Press.

Zureik, Elia, and Karen Hindle. 2004. “Governance, Security and Technology: The
Case of Biometrics.” Studies in Po liti cal Economy 73, no. 1: 113–137.

Abbate, Janet, 103, 108–112, 313n24
Abstraction, 23, 200, 279
Academic rankings, 37
Accounts, 94, 169, 182, 207. See also

Documents; Graphical objects;
Inscriptions

Accumulators, 98, 162, 310n11
ACM (Association for Computing

Machinery), 111
Actants, 4–6, 12–14, 23, 39, 167–169,

172–174, 180–185, 191–194. See also
Actors; Elements; Entities

allies’/opponents’ configuration of,
168–169

enduring/ephemeral, 12
human/nonhuman, 12, 185, 293

Action-oriented, 23–25, 201, 262, 281,
291, 314n6

Actions. See Courses of action
Activities, 17–18, 23–25, 44–47,

133–134, 195, 201, 263–265,
278–281. See also Courses of action;
Practices

visible/invisible, 8–9, 91
Actors, 40, 111, 291, 299n1. See also

Actants; Entities
Adaequatio rei et intellectus, 127, 292
Affordances, 131–132, 135, 194
Agency, 7–11, 15–18, 25, 40, 119, 125,

130–133, 148, 291, 293

Aggregates, 4–5. See also Society; States
of affairs

a priori postulated, 297 (see also Eco-
nomic rationality; Habitus; Social,
structures)

Algebra, 84, 140, 204, 220, 222–223,
295, 307n15, 317n23, 318n26

formation of, 227, 318n25 (see also
Netz, Reviel)

Algorithmic, 40, 55, 59, 77, 86, 273, 285
behavior, 77
design, 19
drama, 22, 285–286, 291
infrastructure, 275–279
machinery, 275–277
studies, 24, 48–50 (see also Knuth,

Donald)
Algorithms, 5–11, 16–25, 48–50, 53–63,

77–79, 81–86, 237–238, 246–247,
263–265, 283–291

agency of, 11, 16, 18
axiomatic perspective on, 81–86,

246–247
biometric, 10
beauty of, 25
car-detection, 55, 57
classes on, 19
as computerized methods of calcula-

tion, 5–6
constituent act of, 17

Index

366 Index

Algorithms (cont.)
constitution of, 12–18, 25, 82–85,

203–204, 263–264, 267–268
controversies over, 10–11, 16, 17, 49,

195, 265, 284, 289
ecology of, 25, 50, 289
face-detection, 55–57, 241, 244,

248–250, 255
facial recognition, 10, 304n12
formation of, 11, 18, 23–25, 34, 44,

199, 201–202, 237, 279, 287, 293
image-processing, 39, 42, 69,

80, 85–86, 136, 200, 254, 257,
304n15

inner components of, 285
as inscrutable entities, 22, 47, 286
maintenance of, 7
manuals on, 18–19, 48
manufacture of, 40, 47–48
material base of, 68, 248
optimal execution of, 50
papers on, 18–19, 37–42
as powerful floating entities, 285
problem-oriented perspective on,

81–86, 246–247
as problem-solving devices, 48–49
proprietary trading, 77
as retrieving entities, 85, 238
saliency-detection, 53, 56–64, 68–69,

73, 75, 79, 238, 262, 306n8
scoring, 85
shaping of, 20, 24, 48, 51
signal-processing, 40, 43, 44
standard conception of, 49–50, 77
use of, 10

Amalgam, 126, 132, 292. See also
 Computationalism; Metaphysics

Amazon, 39, 65
Mechanical Turk (MTurk), 65, 272

(see also Contingent work)
American Bell, 167
American Journal of Mathematics, 205,

206, 315n7

ANT (Actor-Network Theory), 292.
See also Associations; Centre de
Sociologie de l’Innovation; Latour,
Bruno; Sociologie de la traduction;
Sociology; Trials

AOD (Army Ordnance Department),
94–95

APIs (Application Programming Inter-
faces), 65–66, 73, 139, 3016n10

Apple, 39, 304n11, 304n16
Aptitude tests, 105–109, 112, 115–116,

118, 136. See also Programming;
Psychology of programming;
Thurstone Primary Mental Abilities
Test

Artificial intelligence, 24, 202, 266, 268,
288, 289, 308n21, 313n27

Assemblages, 17, 42, 168, 180, 221,
257

Assets, 39
Associations, 5, 12–14, 16, 22, 263, 296,

297, 300n1. See also ANT; Centre de
Sociologie de l’Innovation; Net-
works; Sociology; Sociologie de la
traduction

Assumptions, 7, 13, 22, 138, 208, 209,
219, 242, 243, 246, 249, 279

Attachments, 11, 192–193, 294
sociology of, 192, 300n6

Axon sprouting, 229, 231–234

Backward extrapolation, 162, 225
BASIC (programming language),

167–168, 313n25
Behavioral studies, 105, 108, 113, 114,

116–118, 120, 135, 313n25
Bell Labs, 37, 100, 107
Biases, 10, 85, 307n19

gender, 11, 307n19
Big Brother Watch, 11
Big data, 11, 33, 266
Blockchain technology, 288, 324n5
Boeing, 107, 122, 145

Index 367

Boltzmann machines, 274–275, 313n27,
323n20

Bottom-up visual attention process, 53
Brains, 22, 91, 99, 105, 116, 120, 122,

123, 124, 229, 230
Brazeau, Paul, 218–220, 223, 234,

318n29, 319n32
BRL (Ballistic Research Laboratory),

94–98, 291, 309n5, 309n7
Bug reports. See Error reports
Bulky laboratories, 220–221, 224, 226,

229
Burks, Arthur, 98, 99, 101, 311n16
Byzantium, 221, 227

C (programming language), 71, 162,
295, 307n15, 321n6

C++ (programming language), 62, 71,
295, 307n15, 321n6

Callon, Michel, 42, 68, 101, 104, 167,
297, 300n3

CAM (Class Activation Mapping), 200
Captatio, 214. See also Trials, captation
Cathode-ray tube, 104, 309n6, 312n22
CCD (Charge-Coupled Device), 38, 294,

303n8. See also CMOS
Centre de sociologie de l’Innovation,

299n3. See also Sociologie de la
traduction

Certified facts, 217, 225–226, 232, 237,
254, 295, 318n26. See also External
allies; Internal allies

Chains of reference, 127–128, 133, 161,
163–165, 180–184. See also Knowl-
edge; Scientific facts; Scientific
laboratories

Church, Alonzo, 96
Classical sandwich, 124–126. See also

Cognitivism; Computationalism;
Metaphysics

Classifications, 132, 248, 270, 271, 272,
321n13

ClickWorker (company), 65

Clickworkers. See Crowdworkers
Climatology, 77, 211, 227
CMOS (Complementary Metal-Oxide

Semiconductor), 38–39, 291, 294,
302n5, 303n8

COBOL (Common Business-Oriented
Language), 110, 112, 312n22.
See also Compilers; High-level
 programming languages

Code, 89, 146–164, 165–183, 184–194,
258–263, 300n9, 314n6, 321n8.
See also Programs; Scripts

lines of, 71, 83, 147, 193, 200, 238,
258–259, 312n22

machine-readable, 54, 89, 307n15
Cognition, 90, 92, 114–115, 117–118,

119–126, 130–134
affective, 131–132, 133
as a computational process, 24, 91, 117
embodied, 131–133, 185
extended, 132

Cognitive, 82, 105, 113, 117, 119, 124,
125, 133–134, 135, 318n29

mechanisms, 23
models, 114
processes, 114, 122, 126, 127, 132
psychology, 53, 63, 114, 243
sciences, 117–118, 125, 306n8
scientists, 90, 105, 124

Cognitivism, 125–128, 130–132, 194,
292. See also Classical sandwich;
Computationalism; Metaphysics

Cold War, 104, 107, 123
Collective world, 4–10, 12–14, 90, 283,

287, 289, 292, 294, 296, 297. See also
Associations; Process thought; Trials

Commercial arrangements, 104, 122,
123, 284

comp.ai.fuzzy (web forum), 205, 206,
208

Compilers, 110, 155, 162, 163–165,
208, 264, 312n22. See also Hopper,
Grace M.

368 Index

Complexity theory, 49
Complex number theory, 218–219, 222–

224, 317n23, 318n24
Composition, 9, 18, 85, 122, 184,

284, 292. See also Compromises;
Negotiations

Compromises, 9, 11, 78, 284, 300n7
Computable numbers, 103, 120. See also

Turing, Alan
Computationalism, 124–125, 128–130,

135, 292, 293. See also Cognitivism;
Adaequatio rei et intellectus

Computational metaphor of the mind,
24, 91, 114, 117–118, 119–120, 123,
124, 128, 135, 293. See also Classi-
cal sandwich; Computationalism;
Cognitivism

Computer, 48–49, 117–118, 129, 147,
257–263, 308n1, 309n6, 311n20,
312n22

engineers, 11, 90, 300n12
human, 94, 309n7
industry, 108, 110–111, 284
science, 18–21, 22–25, 48–50,

162–165, 227–232, 237, 242, 295,
301n14, 306n9

science industry, 29, 85
scientists, 24–25, 40, 44, 64, 71,

89–92, 145, 200, 279, 284
as a sociotechnical process, 98–102
as a system of interacting organs,

100–105, 115–117, 123
terminals, 50, 104, 292, 318n29
vision, 40, 41, 53, 270, 272, 277,

304n11, 304n14, 304n16
women, 94, 99

Computer programming. See
Programming

Computing system, 91, 93, 98–99,
102–106, 112, 124, 277

post-ENIAC, 98, 100 (see also ENIAC;
EDVAC)

Conditional instruction, 171, 174,
314n4

Constitution, 12–17, 18–25, 82–85, 89,
130, 199, 203, 263–264, 267–268,
287–293

Construction, 12–17, 76–77, 182–184,
226–227, 234, 237, 246–247, 270,
292, 293

Contingent work, 65–66, 306n11.
See also Industrial homework

Controversies, 9–11, 17, 20, 195, 218,
225, 263, 284, 297, 319n34

Conviction strength, 207, 209–210,
215, 235, 318n26. See also Rhetori-
cal habits

Coordinate space, 37–38, 138, 220, 252
Coordinate system. See Coordinate

space
Corporate finance. See Finance
Courses of action, 21–23, 42–44,

89–91, 118–119, 263, 266, 284, 293,
302n27. See also Activities; Practices

Crowdsourcing, 64–67, 70–71, 306n11,
306n13, 307n14. See also Ghost work

affordable, 71, 307n17
companies, 65–66
tasks, 67, 68, 70, 72, 74, 83, 137–139,

141, 152, 185, 239, 240, 244, 263
web application, 69, 71

Crowdworkers, 71, 180, 239, 240, 241,
243, 246–249, 254–256, 268, 296,
322n15

CSF (Computer Science Faculty), 31–34,
37, 40, 293, 302n2

Cultural habits, 6, 19, 49, 78
Curiosity (robotic rover), 2–3, 5. See also

Pebbles of Planet Mars
wheels of, 2, 6

Dance of agency, 25, 131. See also
Whirlwind process

Dartmouth College, 167, 122

Index 369

Data, 21, 42–45, 53–54, 76–78, 136–
140, 152–154, 239–254, 257–262,
264–275

ballistic, 95–96, 99, 292
compression, 42, 52, 56, 63, 84, 139
justice, 86
mining, 10
structuration, 49, 84, 150
unlabeled, 54, 61, 238, 239

Database, 22, 32, 68, 70, 73, 76, 83, 157,
240, 244, 248, 250, 272

ground-truth, 24, 54, 58–59, 73–75,
83, 85, 238–239, 246–247, 272, 294,
320n3

Matlab, 71, 75, 240, 281
referential, 68, 86

Dataset, 50–67, 70–73, 83, 153, 241–
243, 250, 259, 280, 283

Data-target relationships, 242
Deep convolutional neural net-

works, 268, 271, 273, 275, 277.
See also Deep learning; Formulating,
machine; Machine learning

Deep learning, 46, 269–273, 277.
See also Deep convolutional neural
networks; Formulating, machine;
Machine learning

Delay-line storage, 95–96, 97–98, 104,
309n6. See also Radar technology

Desires, 8, 39, 49, 76, 78, 89, 125, 132,
135–136, 266, 284

Developers, 89, 141, 303n9. See also
Programmers

Devices, 6, 7–8, 9–10, 16, 37, 39, 56,
96, 195, 284, 288, 291, 294, 303n5,
308n1

autonomous, 129
functional, 93, 105, 135
input-output, 91, 104

Dichotomy between knowledge and
mind, 128. See also Amalgam; Com-
putationalism; Metaphysics

Differential analyzer, 95, 104, 106,
309n3

Digital humanities, 21, 34, 301n24
Digital image processing. See Image

processing
Digital images, 37, 54, 57, 238, 272,

274, 291, 294, 296, 303n9. See also
Matrices

Dimensionality reduction, 267, 294.
See also Shift in temporality

DIR (Lab’s director), 185–187
Discriminations, 10, 108
Disembodiment, 101
Distributivity, 6. See also Actants;

Associations
Documents, 8, 13–17, 19, 21
Durability, 12–14. See also Actants; Asso-

ciations; Mobility; Re-presentability

Eckert, John P., 95–99, 101–102, 106,
294, 311n15. See also ENIAC;
EDVAC; Mauchly, John

Economic rationality, 4–5. See also
Aggregates; Habits; Social, structures

Edification, 17
EDSAC (Electronic Delay Storage Auto-

matic Calculator), 104, 106, 312n22
EDVAC (Electronic Discrete Variable

Automatic Computer), 94, 98–104,
120–124, 273, 293, 294, 310n14,
311n15. See also ENIAC; Eckert,
John P.; Mauchly, John; von Neu-
mann, John

Electromechanical computers, 96,
98, 100, 101, 129. See also Harvard
Mark I

Electromechanical relays, 104
Electronic brains, 91, 99, 105, 116,

122, 124. See also Computa-
tional metaphor of the mind;
Computationalism

computers as, 122–124

370 Index

Electronic computing systems, 91, 93,
98, 104–106

Electronic speed, 90, 95–96, 101, 104
Elkan, Charles, 205, 208, 210, 215, 217
Empowerment, 10, 265
Enactive cognition, 92, 119, 130–134.

See also Cognition
Enactivism. See Enactive cognition
Enactment, 17, 106
Endocrinology, 219, 222, 226, 228, 229,

237
ENIAC (Electronic Numerical Integrator

and Computer), 95–102, 120, 122,
273, 291, 293, 294, 310n8, 310n11,
310n13, 311n16. See also Eckert,
John P.; EDVAC; Mauchly, John W.

engineering staff, 98–99
operating team, 96, 98, 101

Entities, 4–13, 121–128, 162–167,
180–184, 232–234, 256–257,
284–285, 296–297. See also Actants;
Actors

Epistemology, 20, 207
Equations, 100–102, 116, 200, 203,

221–224, 255, 267, 294, 318n23
differential, 94, 97–98, 309n5,

309n7
iterative, 94–95

Error reports, 162–163
Ethnography, 20–25, 33–34, 43–45,

51–52, 136, 263, 284, 295, 301n22,
318n27

ETI (European Technical Institute),
31–34, 293

European Conference on Computer
Vision, 40, 270, 304n14, 322n17

Evaluation set, 54, 76, 86, 89, 200, 238,
247, 256, 258, 263, 268

Experimental instruments, 166,
219–221, 223–226

Experimental practices, 161
Experiments, 127–128, 161–162,

218–221, 224–225, 228–229,

242–243, 280, 318n29. See also Sci-
entific instrumentation

Expert systems, 128–129, 205, 210
Extended things, 125–126, 296, 314n28.

See also Adaequatio rei et intellectus;
Metaphysics; Thinking things

External allies, 209, 211, 315n6. See also
Internal allies; Certified facts

Facebook, 1, 3, 5–6, 32, 39, 40, 209,
304n10, 315n6, 323n18

news feed, 1, 5
platform, 1, 209
vice president, 2, 5

Face detection, 55–57, 63–64, 67, 80,
244

Fairchild Semiconductor, 167. See also
Planar process

Fake news, 1, 3
False negatives, 54–56. See also False

positives; Performance, evaluations;
Precision; Recall; True positives

False positives, 54–56. See also False
negatives; Performance, evaluations;
Precision; Recall; True positives

FHS (Faculty of Human Science),
33–34

Finance, 6, 301n21
Financialization, 66
Firing tables, 95, 294, 308n2, 309n7
First Draft of a Report on the EDVAC, 94,

102–105, 117, 121–122, 273, 293,
310n14, 311n15. See also EDVAC;
von Neumann, John

Fissuration of the workplace, 66. See also
Crowdsourcing; Ghost work

Flat laboratories, 217, 224, 226–227,
232, 249, 254, 295. See also Bulky
laboratories; Laboratory studies of
mathematics

Flickr, 70, 75, 83, 139
Fluid dynamics, 77
Fluidity, 6. See also Devices

Index 371

Formulas, 200–201, 203–204, 206–207,
226, 265, 284. See also Equations;
Mathematics

Formulating, 17, 23–24, 201–204,
232–238, 241–242, 254–258, 263–271,
274–281, 289–295, 307n18. See also
Ground-truthing; Formulating

machine, 275 (see also Deep convolu-
tional neural networks; Deep learn-
ing; Machine learning)

FORTRAN, 110, 112, 312n22, 313n25.
See also Compilers; High-level pro-
gramming languages

Four colors conjecture, 205–206,
213–214, 217. See also Kempe,
Alfred; Guthrie, Francis; Heawood,
Percy; Mathematical, conjecture

Frame problem, 129, 132. See also
Computationalism

Fuzzy logic, 205–206, 210, 217, 237.
See also Elkan, Charles

Game theory, 97
Gaussian function, 247, 252, 254–255,

266, 270, 274, 278, 281, 307n18.
See also Nonlinear least square algo-
rithm; Scatterplot

Gay & Lesbian Alliance Against Defama-
tion, 11

Gaze prediction, 63, 243
GCMs (General Circulation Models), 77.

See also Climatology
Gender, 11, 16, 105, 108, 307n18

dynamics, 110–112
Gendered discriminations, 108, 112
General Electric, 106, 107
General Motors, 107, 122
Ghost work, 66, 272, 306n13. See also

Crowdsourcing; Fissuration of the
workplace

Gödel, Kurt, 121, 313n26. See also
Propositional calculus; Turing,
Alan

GOFAI (Good Old Fashioned Artificial
Intelligence), 128–129

Goldstine, Herman, 95–99, 311n16
Google, 32, 39–40, 85, 272, 304n11,

304n16, 321n12, 323n18
Brain, 40

GPUs (Graphical Processing Units),
269–270, 275–277

Grand narratives, 207, 315n5
Graphical objects, 13. See also Accounts;

Documents; Inscriptions
Greek geometers, 216, 227, 318n25,

320n35. See also Netz, Reviel
Ground-truth functions, 268–269, 277

approximations of, 278 (see also Formu-
lating, machine; Machine learning)

Ground-truthing, 23–24, 78, 85–89,
195, 199, 201, 237, 263–268,
277–281, 292–295

Ground truths, 24, 55–56, 61–64,
77–86, 202–203, 241–247, 274, 288,
294, 306n9

as biases, 76, 307n19
bounding-box, 61

Guillemin, Roger, 218–219, 221–225,
232, 318nn28–29, 319n32. See also
Brazeau, Paul; Peptide; Somatostatin

Guthrie, Francis, 205–207, 210.
See also Four colors conjecture;
Kempe, Alfred; Heawood, Percy;
Mathematical, conjecture

Habits, 6, 10, 13, 19, 39, 49, 78, 116,
127, 247, 284, 307n19

rhetorical, 213, 316n12 (see also Con-
viction strength)

Habitus, 4. See also Aggregates; Economic
rationality; Social, structures; Society

Hamilton, William R., 218–221,
223–225, 317n23, 318n25, 318n29,
319n32. See also Quaternions

Handwriting recognition, 77. See also
Deep learning

372 Index

Hardware, 147, 264, 295, 306n10,
307n15, 312n22, 313n24. See also
Microprocessor

architecture, 31
infrastructures, 110
manufacturers, 303n9

Harvard Mark I, 96, 310n10. See also
Electromechanical computers

HCI (Human-Computer Interaction),
118, 130

Heawood, Percy, 205–208, 211,
214–215, 217. See also Four colors
conjecture; Guthrie, Francis; Kempe,
Alfred; Mathematical, conjecture

Helping clause (methodology), 137,
188. See also Programming, practices

Heuristics, 10, 129
High-frequency trading, 77. See also

Finance
High-level features, 53, 55. See also

Saliency, detection
High-level programming languages,

110, 112, 141, 150, 259, 294, 295,
307n15. See also COBOL; Compilers;
FORTRAN; Matlab; Python

Hilbert’s Entscheidung problem, 120.
See also Turing, Alan

Hinton, Geoffrey, 270–278, 313n27,
322n18, 323n20. See also Deep con-
volutional neural networks; Deep
learning; Krizhevsky, Alex; Sutskever,
Ilya

Hopper, Grace M., 110, 312n22. See also
Compilers

html, 71, 73, 139
Human attention mechanisms, 63
Human brain. See Brains

IBM, 32, 39–40, 104, 107–110, 304n11,
310n10, 311n17, 311n20, 312n22

PAT (Programming Aptitude Test), 108
System 360, 312n23
Watson, 40, 304n11

IDE (Integrated Development
Environment), 141–143, 145, 157,
170, 191, 240–241, 267, 292, 293.
See also Matlab, software
environment

IEEE (Institute of Electrical and
Electronics Engineers), 40–41,
111

Conference on Computer Vision
and Pattern Recognition, 304n14,
304n16

ILSVRC (ImageNet Large Scale Visual
Recognition Challenge), 200, 273,
322n17. See also Li, Fei-Fei

ImageNet, 41, 200, 272–276,
321n14, 322n16, 323n22. See also Li,
Fei-Fei

challenge, 200, 271 (see also ILSVRC)
Image processing, 38–40, 42–44, 53–63,

84–86, 136–138, 199–200, 270–271,
303n6, 303n9, 322n18

Image recognition, 38, 41, 272, 294,
304n11, 304n15, 322n16

Impasses, 96, 165, 167, 180, 184, 258
work-arounds of, 92, 183, 192,

194–195, 259 (see also Technical
detours)

Industrial homework, 65. See also
Contingent work

Information, 43, 53–54, 70–71, 79, 117,
129, 150–151, 183–184, 262, 273,
292

accessibility, 10
Infra-ordinary, 19, 301n19
Infrastructures, 14, 104, 110, 285

scriptural, 13, 294
In medias res, 1, 147
Input-data, 68, 73, 83–84, 136, 238,

265, 273, 275–276, 278, 294. See also
Output-targets

Inputs, 48–50, 73–74, 99, 102, 104–106,
122, 131–132, 266–268, 277–278,
292

Index 373

Input-target relationships, 74
Inscriptions, 13–16, 148–170,

180–184, 200, 221–234, 237,
253–259, 280–281, 287, 301n14,
318nn28–29, 319n33. See also
Accounts; Documents; Graphical
objects

alignment of, 92, 146, 154, 155, 163,
165, 170, 181, 183, 194, 258

articulation of, 150, 154, 156, 161
comparison of, 54, 157, 161
mathematical, 200, 258, 281

Inscrutability, 22, 39, 47, 278–279,
286, 291, 302n26. See also Machine
learning; Deep learning; Deep
convolutional neural networks

Instagram, 40, 304n10
Instauration, 17, 193
Insurgent acts, 285–287
INT (Matlab interpreter), 147–161,

166–171, 174, 176–180, 261–262,
266–267, 294–295, 314n2, 321n8.
See also Matlab, Command Window;
Matlab, Editor

Intermediary objects, 162
Internal allies, 210–211. See also

 External allies
Interpersonal relationships, 6, 99
Intuitions, 43, 89, 132
Invisibilities, 11, 18, 297. See also

Visibility
negative/positive, 8–9, 18, 284

Invisibilization, 10, 288
Israeli secret services, 2, 3, 5–6

security software of, 7

James, William, 128, 147, 299n1,
314n30

JavaScript, 71, 73, 139, 145, 314n1
JPEG (Joint Photographic Experts

Group), 303n9
.jpg files, 138–139, 241, 248, 250–251.

See also Digital images

Kempe, Alfred, 205–208, 210–211,
213–215, 217, 316n10. See also Four
colors conjecture; Guthrie, Fran-
cis; Heawood, Percy; Mathematical,
conjecture

k-means clustering, 259–260, 321n7
Knowing mind, 127–128. See also Cog-

nitivism; Known thing; Metaphysics
Knowledge, 20, 125–128, 132–133, 166,

180–181, 203–204, 233–237, 255–
258, 288, 292

bodies of, 84, 226, 280
objective, 161, 301n14
about the real world, 126, 292 (see also

Cognitivism; Computationalism)
tacit, and necessary, 215, 217, 226,

232, 237, 252
Known thing, 127–128. See also Cogni-

tivism; Knowing mind; Metaphysics
Knuth, Donald, 49, 82, 304n17,

305n18, 308n1, 315n9. See also Algo-
rithmic, studies

Krizhevsky, Alex, 270–279, 313n27,
322n18. See also Deep convolutional
neural networks; Deep learning;
 Hinton, Geoffrey; Sutskever, Ilya

Lab meetings, 35, 43, 136, 271
Laboratory of mathematics, 219. See also

Flat laboratories; Bulky laboratories
Laboratory study, 17, 22–24, 295

of computer science, 19–21, 284
of mathematics, 218

Labor markets, 6
Latour, Bruno, 4, 13–14, 127–128,

166–168, 185, 199, 208–215,
257–258, 297, 299n1. See also Asso-
ciations; Sociologie de la traduction;
 Sociology; Trials

Law, John, 16–17, 301n15. See also Urry,
John

Li, Fei-Fei, 272, 277–278, 321n12,
322n15. See also ILSVRC; ImageNet

374 Index

Lippmann, Walter, 11, 284, 323n2
List of the orders, 103. See also Programs
Logarithm, 277, 250, 256, 260, 321n4
Logbook, 4, 45–47, 189–190, 218,

308n22, 315n11, 315n4, 321n5,
321nn10–11

Logical calculus, 99, 121
Logical operators, 121, 273
Logic gates, 103, 273
Logos, 5, 16, 297. See also Socius;

Sociology
Long-distance weapons, 94–95, 294,

309n7. See also Firing tables
Low-level features, 53, 305nn5–6.

See also Saliency, detection
Lynch, Michael, 18, 20, 127, 161,

229–234, 301n23

Machine code, 110, 147, 321n8
Machine learners, 268, 277–278
Machine learning, 11, 24, 77, 84, 202,

239, 242, 263, 268–271, 277
as unfolding along a continuum,

278–279
Maintenance, 13, 122, 128, 163, 194,

292, 303n9, 312n22, 313n25.
See also Repair work

studies of, 7–8
Manhattan Project, 97, 310n13
Maternity, 16. See also Gender
Mathematicable, 201, 226, 229, 232,

237. See also Formulating
Mathematical, 29, 49, 54, 77, 95, 102,

120, 201, 260, 295
biology, 122
claims, 76, 207–213, 246
conjecture, 205, 206, 211, 213, 217,

203–204, 206–207, 226, 229
fact, 215, 226, 229, 232–235, 236,

237–238, 247, 250–257, 279–280
formula, 200, 257, 263
inscriptions, 200, 204, 258, 281
journals, 208, 315n7

knowledge, 84, 89, 201–202, 204, 233–
235, 237, 238, 253–257, 284, 314n5,
320n36

logic, 96, 99
model, 23, 90, 262
neurology, 99
objects, 24, 217–218, 222, 226, 232–

235, 252–257, 263, 279–280, 319n34
operations, 83, 94, 261, 278, 280, 294
practices, 24, 50, 199, 237, 284
proof, 205, 210–212, 216
statements, 38, 278, 284
theories, 227–228, 231
truths, 207, 315n5

Mathematics, 22, 96–97, 164, 200, 203–
207, 228, 249, 279, 285, 295

combinability of, 201, 280
ecology of, 229, 232, 234, 237, 255,

257
as fundamental ingredient of thought,

216
as the queen of all sciences, 227
vascularization of, 201 (see also Labo-

ratory studies of mathematics)
MathWorks Inc., 141, 147, 267. See also

Matlab
Matlab, 139–143, 239–241, 249–255,

266–269, 292–293, 295, 307n15,
314n4, 314n8, 320n37. See also
MathWorks Inc

Command Window, 141–144, 147–
158, 268, 292

Editor, 141–144, 249, 259–260, 293
Help on Selection database, 15
software environment, 140–141, 240,

261
spreadsheet, 248, 261

Matlab fit, 246, 253, 260, 266–270.
See also Machine learning

Matrices, 58, 140–141, 150, 152, 186,
188–189, 191, 295, 296, 307n15.
See also Digital images

Matrix incrementation, 259, 315n8

Index 375

Mauchly, John, 95–99, 101–102, 106,
294, 311n15. See also Eckert, John P.;
EDVAC; ENIAC; von Neumann, John

Max-pooling algorithm, 275. See also
Deep convolutional neural networks;
Deep learning

McCulloch, Warren, 99, 101, 121–122,
124, 273, 313n27. See also Neural
networks; Pitts, Walter

Mechanical desk calculators, 94. See also
Firing tables; Human computers;
Women computers

Memory, 102, 104, 117, 273
Mental models, 105, 114–115, 117, 136,

292
Mental programs, 91, 118, 123, 125
Mental representations, 126, 133.

See also Representations
Mercury delay-line storage, 96–98,

104
data and instructions as pulses in,

100, 102 (see also EDVAC; Notion of
stored program)

Metaphysics, 125, 208, 292. See also
Amalgam; Computationalism

Microprocessor, 162, 165, 258, 312n22.
See also Hardware; Software

Microsoft, 39–41, 58, 304n11, 304n16
Mind, 24, 91, 114, 117–128, 135, 279,

293, 305n3, 320n39. See also Brains
as an information processor, 114, 117

(see also Computational metaphor of
the mind)

MIT, 56, 100, 107, 167, 309n3, 323n19
Press, 205

Mobility, 12–14
Model, 52, 57, 121–122, 125–126,

238–242, 244, 247–248, 254,
260–262, 268–271

computational, 68, 79, 81, 89,
238–239, 242, 247, 256–257,
260–262, 279, 283

mathematical, 22–23, 89, 262

Modes of practices, 92, 192, 194.
See also Computer programming

Modes of veridiction, 133, 162. See also
Amalgam; Metaphysics

Moore School of Electrical Engineer-
ing, 94–95, 100, 102–104, 106, 121,
136, 291, 293, 294, 309n6. See also
EDVAC; ENIAC

Moore School Series, 103–104. See also
ENIAC; EDVAC; EDSAC

Multiplier, 162, 310n11, 312n22
Multiverse, 128. See also James, William;

Metaphysics

NASA (US National Aeronautical and
Space Administration), 2, 5. See also
Planet Mars

National Security Agency, 40, 107, 304n12
NATO (North Atlantic Treaty Organiza-

tion), 111
Natural image, 38, 56–59, 64, 138, 141,

152, 271–273, 306n8. See also Digital
images

Nature (concept), 166, 225–226,
227–228, 319nn33–34. See also Sci-
entific practices

Nature (journal), 209
NDRC (National Defense Research

Committee), 95, 97, 310n8
NEC, 32, 40
Necessity, 19, 207, 214, 217. See also

Mathematical, claims; Mathematics
Negotiations, 9, 18, 284, 300n7. See also

Composition; Compromises
Negri, Antonio, 17, 286, 287, 323nn1–2,

324n3. See also Constituent power;
Constitution

Networks, 4, 20, 123–124, 127–128, 164,
201–202, 220, 232–233, 285, 317n15.
See also ANT; Associations; Centre de
Sociologie de l’Innovation; Latour,
Bruno; Sociologie de la traduction;
Sociology; Trials

376 Index

Netz, Reviel, 161, 203, 204, 216, 220,
227, 316n14, 317nn16–18, 318n25,
319n35, 320n36. See also Greek
geometers; Mathematical, proof

Neural networks, 41, 121, 123, 268–271,
273–275, 277, 313n27, 322n18,
323n20, 323n22. See also Deep
learning; Deep convolutional neural
networks; Neurons

Neurobiology, 63, 243
Neurons, 102, 121–122, 124, 229, 231,

313n27. See also McCulloch, War-
ren; Pitts, Walter as all-or-none firing
entities, 121, 123–124, 273, 274

New York Times, 13
Non-commutative, 219. See also Hamil-

ton, William R.; Quaternions
Nonlinear least square algorithm, 267.

See also Gaussian Function
Notion of stored program, 100, 104,

310n14. See also EDVAC
Number theory, 84, 218–219, 222–224,

249, 318n24
Numerical computing, 71, 73, 83, 295,

307n15
Nutella, 3–5

jars, 12–13
marketing campaign, 3, 6

Obligatory passage point, 68, 90, 119
Ogilvy & Mather Italia, 3, 6–7
Ontological weight, 126, 130, 191,

323n3. See also Metaphysics;
Multiverse

Ontology, 12, 296, 299n1
Operand, 267, 277–278
Operating system, 110, 306n10,

312n23. See also Hardware;
Software

Operators, 84, 99, 274. See also Math-
ematical, operations

logico-arithmetic, 121, 273
Optimization, 40, 49

Outputs, 49–50, 54, 68, 73, 83–85, 102,
121–122, 125, 262, 266–268

Output-targets, 68, 73, 78–79, 83–84,
89, 136, 246, 265, 273–278, 294

Outsourcing, 65–66, 306n12.
See also Contingent work; Industrial
homework

Palm oil, 3–4, 6
Panel diagrams, 99, 101. See also Burks,

Arthur; ENIAC
Parameters, 7, 112–116, 135, 222, 223,

254–256, 260, 266–270, 274, 277
learning, 77. See also Deep learning;

Machine learning
Patriarchy, 16
Peer-reviewed articles, 37, 42, 243, 295.

See also Scientific institution; Scien-
tific veridiction

Peptide, 218–219, 221–224, 227,
229, 234, 237, 318n28. See also
Brazeau, Paul; Guillemin, Roger;
Somatostatin

Perceptron algorithm, 273–274, 313n27.
See also Neural networks

Performance, 59, 69, 75–77, 79–81, 108,
112, 114–116, 238, 258, 296

evaluations, 59–60, 62, 80 (see also
Ground truths; Ground-truth
databases)

measures, 263
metrics, 54–55 (see also Precision;

Recall; Statistics)
Persuasion strength. See Conviction

strength
PhD students, 35, 238, 295, 312n22
Philosophy of perception, 91, 119.

See also Cognition; Enactive cognition
PHP, 71, 73, 139, 314n1
Piecework, 65. See also Contingent

work; Outsourcing
Pitts, Walter, 99, 121–122, 313n27.

See also McCulloch, Warren; Neurons

Index 377

Pixels, 37–39, 53, 58, 76, 140, 154, 186,
291, 294, 296, 189. See also Digital
images; .jpg files; Natural image

Planar process, 162, 167. See also Fair-
child Semiconductor

Planet Mars, 2, 5–6, 12–13. See also
NASA

pebbles of, 2–3, 5–6 (see also Curiosity
[robotic rover])

Plans, 89, 184, 185
as narratives, 185 (see also Scenarios)
as resources, 184 (see also Suchman,

Lucy)
Power, 14, 25, 110, 127, 201, 207, 209,

231, 234, 237, 257, 275, 286
constituent, 17, 283, 286–287, 324n3

(see also Negri, Antonio)
dynamics, 6
relations, 9

Practices, 8–10, 18–22, 24–25, 89–92,
102–105, 181–184, 193–194,
237–242, 279–281. See also Activities;
Courses of action

in the wild, 127
Precision, 54–56, 60, 75, 247. See also

Performance, metrics; Recall;
Statistics

Predictive algorithmic systems, 77
Preprocessing method, 136, 139
Problematization, 49–50, 62–63, 68, 75,

78, 82–84, 238, 246, 295, 307n19
Problem-solving, 48, 49, 119, 183
Processors, 90, 94, 155, 162, 163, 264,

321n8
Process thought, 4, 208, 296, 299n1.

See also Associations; Networks;
Trials

PROG, 137–141, 146, 148, 152, 156,
165, 169–171, 176–181, 184–186,
188–189, 192–193, 296, 315n12

Program intelligibility, 163, 315n9
Programmers, 90–91, 107–108,

110–112, 135–137, 145–146,

162–165, 192–194, 307n14, 315n9,
315n12. See also Developers

Programming, 17, 23–24, 89–92,
117–118, 122–123, 164–165, 199,
263–267, 277–279, 296

academic studies of, 93
activity, 89, 108, 116, 195, 237,

263–264, 278, 295
affects, 182, 192–193
behavioral studies of, 105, 183
cognitive studies of, 105, 114–115,

117–118, 123, 194
courses of action, 91, 192, 194, 293
episode, 92, 136–137, 154–155,

161–162, 165, 184–185, 200, 258,
281, 296

impasse, 124, 137
invisibilization of, 91, 93, 119, 181,

273
languages, 71–74, 110–112, 137,

139–142, 163, 167–168, 204,
260–261, 294, 295

methodologies, 50
practices, 43, 89–92, 116–119,

161–165, 194, 201, 225, 240–242,
273, 288

procedures, 83–84
sequences, 47, 141, 143–144, 146,

154–155, 161–164, 170, 174, 180
setting aside of, 91, 94, 98, 116, 288
team, 106
technical aspect of, 165, 180–182

(see also Technical detours;
Technicality)

tests, 105, 113–114
tutorials, 44

Programs, 22, 38, 59, 90–91, 98,
114–124, 258, 303n9, 306n10.
See also Code; Scripts

mental, 91, 123, 125 (see also
 Cognitivism; Computationalism)

Program testing, 163
Project PX, 95. See also ENIAC

378 Index

Project PY, 98. See also EDVAC
Propositional calculus, 121, 122. See also

Gödel, Kurt; Turing, Alan
Protocols, 14, 306n10, 316n14
Psychology of programming,

105–118. See also Aptitude tests;
 Behavioral studies of program-
ming; Cognitive studies of
programming

Psychometrics, 108, 312n21. See also
Thurstone Primary Mental Abilities
Test

Public, 9
concern, 10, 284
issues, 287 (see also Controversies)

Punched cards, 96, 308n1. See also
Hardware; Software; Programming

Python, 44–45, 47, 139, 141, 307n15,
314n1. See also High-level program-
ming languages

Quantum mechanics, 97. See also von
Neumann, John

Quaternions, 223–226, 237, 319n32.
See also Hamilton, William R.

Radar technology, 96, 107, 309n6.
See also Delay-line storage; Mauchly,
John

Radioimmunoassay, 218–223, 226–228,
232. See also Brazeau, Paul; Guille-
min, Roger; Peptide; Somatostatin

RAND Corporation, 106–108, 311n17.
See also SDC

System Development Division,
107–108

Rat pituitary cell cultures, 218–223,
228, 232–233, 318n26. See also
Brazeau, Paul; Guillemin, Roger;
Peptide; Radioimmunoassay;
Somatostatin

Ready-made science, 127. See also
Science in the making

Recall, 54–56, 60, 75, 247. See also Per-
formance, evaluations; Precision;
Statistics

Reduction, 50, 116, 119, 122–124,
232–234, 257, 270, 280–281,
320n39. See also Translations

Referential repositories, 24, 68, 76–78,
85–86, 164, 231, 261. See also Ground
truths; Ground-truth databases

Remote entities, 127, 163, 180, 184,
292. See also Scientific institution;
Scientific veridiction

Repair work, 7. See also Maintenance
Re-presentability, 14. See also Actants;

Associations; Durability; Mobility;
Re-presentations

Re-presentations, 133, 148, 296. See also
Accounts; Documents; Graphical
objects; Inscriptions

Representations, 126–127, 130–131,
133, 135, 148, 219, 223, 296, 303n9.
See also Mental representations

symbolic, 126, 130
Representativeness, 145, 302n28.

See also Statistics
Resistors, 96, 99, 162
RGB (Red Green Blue) color schema,

38, 150, 273–274. See also Digital
images; .jpg files; Natural image

Rhetoric, 207. See also Mathematical,
claims

crisis, 111 (see also Software, crisis;
Software, engineering)

promotional, 10
RTs (rearrangements), 4–7, 10. See also

Process thought; States of affairs

SAGE (Semi-Automatic Ground
Environment), 107–108, 311n19.
See also US Air Force

Saliency, 57, 59, 62–64, 67–68, 75, 83
binary problematization of, 61, 63–64,

67

Index 379

continuous, 67–68, 82, 243
detection, 51–53, 56–57, 59–64,

68–70, 73, 79, 81, 82, 238, 242, 272,
296, 314n29 (see also High-level fea-
tures; Low-level features)

map, 53
models, 52, 63, 67
probability map, 58–59

Salient, 57, 67, 249
features, 64, 67, 69, 71, 73, 239
object, 57–58, 61–62, 64, 238

Scatterplot, 252, 270, 281. See also
Gaussian Function

Scenarios, 92, 185, 191–195, 202, 242,
258–260, 263, 296. See also Plans, as
narratives; Programming, practices

Science (journal), 319n32
Science in the making, 127, 235. See also

Laboratory study
Scientific facts, 20, 126–128, 184,

201, 203, 215, 224–226, 234, 292,
301n16, 314n5. See also Certified
claims; Trials

Scientific institution, 133, 161, 224,
316n14. See also Peer-reviewed
articles; Scientific veridiction

Scientific instrumentation, 292. See also
Experiments

Scientific laboratories, 89, 161, 164,
222. See also Laboratory study

as counter-laboratories, 164
Scientific practices, 18, 161, 162, 183,

226, 301n14
Scientific truth, 128. See also Nature
Scientific valorization, 32
Scientific veridiction, 133, 162. See also

Amalgam; Metaphysics; Modes of
veridiction

Scripts, 45, 71–73, 80, 142, 163–164,
193, 249, 261, 296, 320n3. See also
Code; Programs

SDC (System Development Corporation),
108. See also RAND Corporation

Segmentation, 42, 61, 64, 68, 71, 74,
80–81, 137, 139, 239

low-level, 63
pixel-precision, 71, 263

Selective visual attention method, 53
Set theory, 49, 204
Shannon, Claude, 206–208, 210, 215,

217
Shannon-Hartley theorem, 206, 208,

210, 217. See also Scientific facts;
Scientific truth

Shift in temporality, 267. See also
Dimensionality reduction

ShortTask (web application), 65, 73.
See also Crowdsourcing

Signal processing, 31, 38, 40, 43–44,
217, 237, 267, 294, 303n7

Signals, 53, 121, 123, 206, 228, 273,
309n6

two-dimensional, 38–39, 292 (see also
Digital images)

Single sentence statements, 215, 232,
250, 252. See also Posterity trials;
Scientific truth

Skeptical readers, 211, 213, 216, 222,
224, 226, 228, 280, 316n14

Smith, Dorothy, 13, 15, 101
law of, 16, 287

Social, 4–7, 10–11, 15, 58, 62, 64, 67,
192, 297. See also Socius

forces, 4
media, 3, 6–7, 11, 209, 304n10
science, 4–6, 192, 285–286, 296, 297
structures, 4

Society, 4–5, 29, 166, 297. See also
Aggregates; Economic rationality;
Habitus; Social, structures

black box, 40
Sociologie de la traduction, 297
Sociology, 5–6, 11, 16, 21, 47, 167, 192,

225, 288–289, 296, 297, 300n6,
301n19, 301n21

Sociotechnical diagrams. See STG

380 Index

Sociotechnical process, 93, 101–103,
105, 167

Socius, 5, 16, 297, 299n4. See also Asso-
ciations; Logos; Social

Software, 33, 40–42, 110–116, 137,
140, 193, 293, 296, 300n9, 312n23.
See also Hardware; Programs

corporate, 137
crisis, 111
engineering, 111–112
industry, 105
infrastructures, 285
package, 7, 67
production costs, 111, 313n24
studies, 314n6

Solid-state physics, 37. See also CCD;
CMOS

Somatostatin, 222–226, 234. See also
Brazeau, Paul; Guillemin, Roger;
Peptide; Scientific facts

Spam filtering, 77
Spin-offs, 32, 34, 37, 43
Start-ups, 32, 304n15
States of affairs, 3–4, 12. See also

Aggregates; RTs
Statistics, 15, 77, 84. See also Perfor-

mance, evaluations; Precision;
Recall; Representativeness

STG (SocioTechnical Graph), 167–177,
179–180

syntagmatic dimension of, 168
paradigmatic dimension of, 168

Stochastic gradient retropropagation
algorithm (backprop), 274. See also
Deep convolutional neural networks;
Deep learning

Storage, 72, 96–98, 100, 104, 273.
See also Memory

computing, 96
writable electronic, 96

Stored-program digital computers,
104. See also Notion of stored
program

STS (Science and Technology Studies),
6, 18–19, 33–34, 127, 204, 225, 284,
295–296, 299n5, 315n12. See also
Social, science; Sociology

Stylization process, 215. See also Trials
Suchman, Lucy, 19, 130, 184–185, 258,

283
Sutskever, Ilya, 270–278, 313n27,

322n18
Switfness, 155, 162, 165. See also INT
Symbols, 116, 126, 133, 163–164, 260

Targets, 54–64, 81–86, 89, 200, 238–239,
246–247, 265, 267, 273, 294. See also
Output-targets

Tautology, 118, 135
Technical artifact, 165, 179–180
Technical detours, 165, 182, 191–192,

297. See also Impasses, work-arounds of
Technical innovations, 166
Technicality, 181. See also Technical

aspect of programming
Technical projects, 166–168, 184

frontline of, 168–169, 172 (see also
STG)

latitudinal dimension of, 167
longitudinal dimension of, 167

Technical zigzag. See Technical detours
Theoretical computer science, 31
Theureau, Jacques, 23, 293, 302n27.

See also Courses of action
Thinking things, 125, 296, 314n28.

See also Adaequatio rei et intellectus;
Extended things; Metaphysics

Thurstone Primary Mental Abilities
Test, 107, 312n21. See also Aptitude
tests; Programming; Psychology of
programming

Top-down visual attention process, 53
Training set, 54, 59, 74–86, 200, 238–

241, 247–255, 266–270, 275, 278–
281, 307n18. See also Evaluation set;
Ground truths

Index 381

Translations, 96, 123–124, 140, 228,
232, 263. See also Actants; ANT; Asso-
ciations; Sociologie de la traduction;
Trials

of training sets, 241–263, 266, 270,
278, 281 (see also Formulating;
Mathematicable)

Trials, 9, 208, 210, 217, 224–226, 235,
237, 254, 280, 318n26. See also ANT;
Associations; Latour, Bruno

captation, 213, 215–216 (see also
Captatio)

citation, 210
posterity, 215, 217, 235
publication, 209

True positives, 54–55, 78. See also
False negatives; False positives;
Performance, evaluations; Precision;
Recall

Trump, Donald, 1, 3, 5–6
Turing, Alan, 96, 103, 120, 310n12.

See also Hilbert’s Entscheidung
problem

Turing machines, 121–124, 273
Tweets. See Twitter
Twitter, 315n6
.txt files, 45, 47, 72–73, 138–140, 145,

147, 152, 154, 174, 258

Ullman, Ellen, 182–183, 308n1, 314n7.
See also Program testing; Program-
ming, affects

UNIVAC (Universal Automatic Com-
puter), 106, 110. See also Eckert,
John P.; Mauchly, John

Urry, John, 16–17, 301n15. See also Law,
John

US Air Force, 107, 167. See also SAGE

Vacuum tubes, 95–96, 310n8. See also
ENIAC

Value-accountability-by-design, 78

Values, 11, 49, 78, 85, 186, 189,
246–257, 260–262, 291, 296

face importance, 239–242, 247–251,
254–256, 262, 267–268

logarithmic, 250
relative saliency, 73–74, 239

Visibility, 9, 66, 229, 297. See also
Invisibilities

von Neumann, John, 96–103, 121–122,
135–136, 273, 293, 294,
310nn12–13, 311n16, 313n27

architecture, 93–94, 106, 136, 293,
308n1

Web, 66, 69, 71–72, 75, 80, 89, 138–140,
206, 208, 210, 246, 263, 274

search engines, 10, 57
technologies, 10, 303n9

Weight map, 73–74
West Bank, 2, 6

jails, 12–13
military commander of the, 3

Whirlwind process, 25, 311n16. See also
Dance of agency

Woolgar, Steve, 13–14, 20, 127,
161–162, 224–225, 292, 316n12

World War II, 94, 122, 308n2

Ziewitz, Malte, 22, 285–286, 291,
302n26. See also Algorithmic, drama

Zuckerberg, Mark, 1, 4, 12–13

Inside Technology Series

Edited by Wiebe E. Bijker, W. Bernard Carlson, and Trevor Pinch

Florian Jaton, The Constitution of Algorithms: Ground- Truthing, Programming, Formulating

Kean Birch and Fabian Muniesa, Assetization: Turning Things into Assets in Technosci-
entific Capitalism

David Demortain, The Science of Bureaucracy: Risk Decision- Making and the US Environ-
mental Protection Agency

Nancy Campbell, OD: Naloxone and the Politics of Overdose

Lukas Engelmann and Christos Lynteris, Sulphuric Utopias: The History of Maritime
Fumigation

Zara Mirmalek, Making Time on Mars

Joeri Bruynincx, Listening in the Field: Recording and the Science of Birdsong

Edward Jones- Imhotep, The Unreliable Nation: Hostile Nature and Technological Failure
in the Cold War

Jennifer L. Lieberman, Power Lines: Electricity in American Life and Letters, 1882–1952

Jess Bier, Mapping Israel, Mapping Palestine: Occupied Landscapes of International
Technoscience

Benoît Godin, Models of Innovation: The History of an Idea

Stephen Hilgartner, Reordering Life: Knowledge and Control in the Genomics Revolution

Brice Laurent, Demo cratic Experiments: Problematizing Nanotechnology and Democracy
in Eu rope and the United States

Cyrus C. M. Mody, The Long Arm of Moore’s Law: Microelectronics and American Science

Tiago Saraiva, Fascist Pigs: Technoscientific Organisms and the History of Fascism

Teun Zuiderent- Jerak, Situated Interventions: So cio log i cal Experiments in Healthcare

Basile Zimmermann, Technology and Cultural Difference: Electronic Music Devices, Social
Networking Sites, and Computer Encodings in Con temporary China

Andrew J. Nelson, The Sound of Innovation: Stanford and the Computer Music Revolution

Sonja D. Schmid, Producing Power: The Pre- Chernobyl History of the Soviet Nuclear
Industry

Casey O’Donnell, Developer’s Dilemma: The Secret World of Videogame Creators

Christina Dunbar- Hester, Low Power to the People: Pirates, Protest, and Politics in FM
Radio Activism

Eden Medina, Ivan da Costa Marques, and Christina Holmes, editors, Beyond Imported
Magic: Essays on Science, Technology, and Society in Latin Amer i ca

Anique Hommels, Jessica Mesman, and Wiebe E. Bijker, editors, Vulnerability in Tech-
nological Cultures: New Directions in Research and Governance

Amit Prasad, Imperial Technoscience: Transnational Histories of MRI in the United States,
Britain, and India

Charis Thompson, Good Science: The Ethical Choreography of Stem Cell Research

Tarleton Gillespie, Pablo J. Boczkowski, and Kirsten A. Foot, editors, Media Technolo-
gies: Essays on Communication, Materiality, and Society

Catelijne Coopmans, Janet Vertesi, Michael Lynch, and Steve Woolgar, editors,
Repre sen ta tion in Scientific Practice Revisited

Rebecca Slayton, Arguments that Count: Physics, Computing, and Missile Defense,
1949–2012

Stathis Arapostathis and Graeme Gooday, Patently Contestable: Electrical Technologies
and Inventor Identities on Trial in Britain

Jens Lachmund, Greening Berlin: The Co- Production of Science, Politics, and Urban Nature

Chikako Takeshita, The Global Biopolitics of the IUD: How Science Constructs Contracep-
tive Users and Women’s Bodies

Cyrus C. M. Mody, Instrumental Community: Probe Microscopy and the Path to Nano-
technology

Morana Alač, Handling Digital Brains: A Laboratory Study of Multimodal Semiotic Interac-
tion in the Age of Computers

Gabrielle Hecht, editor, Entangled Geographies: Empire and Technopolitics in the Global
Cold War

Michael E. Gorman, editor, Trading Zones and Interactional Expertise: Creating New
Kinds of Collaboration

Matthias Gross, Ignorance and Surprise: Science, Society, and Ecological Design

Andrew Feenberg, Between Reason and Experience: Essays in Technology and Modernity

Wiebe E. Bijker, Roland Bal, and Ruud Hendricks, The Paradox of Scientific Authority:
The Role of Scientific Advice in Democracies

Park Doing, Velvet Revolution at the Synchrotron: Biology, Physics, and Change in Science

Gabrielle Hecht, The Radiance of France: Nuclear Power and National Identity after World
War II

Richard Rottenburg, Far- Fetched Facts: A Parable of Development Aid

Michel Callon, Pierre Lascoumes, and Yannick Barthe, Acting in an Uncertain World:
An Essay on Technical Democracy

Ruth Oldenziel and Karin Zachmann, editors, Cold War Kitchen: Americanization,
Technology, and Eu ro pean Users

Deborah G. Johnson and Jameson W. Wetmore, editors, Technology and Society: Build-
ing Our Sociotechnical Future

Trevor Pinch and Richard Swedberg, editors, Living in a Material World: Economic
Sociology Meets Science and Technology Studies

Christopher R. Henke, Cultivating Science, Harvesting Power: Science and Industrial Agri-
culture in California

Helga Nowotny, Insatiable Curiosity: Innovation in a Fragile Future

Karin Bijsterveld, Mechanical Sound: Technology, Culture, and Public Prob lems of Noise
in the Twentieth Century

Peter D. Norton, Fighting Traffic: The Dawn of the Motor Age in the American City

Joshua M. Greenberg, From Betamax to Blockbuster: Video Stores tand the Invention of
Movies on Video

Mikael Hård and Thomas J. Misa, editors, Urban Machinery: Inside Modern Eu ro pean
Cities

Christine Hine, Systematics as Cyberscience: Computers, Change, and Continuity in Science

Wesley Shrum, Joel Genuth, and Ivan Chompalov, Structures of Scientific Collaboration

Shobita Parthasarathy, Building Ge ne tic Medicine: Breast Cancer, Technology, and the
Comparative Politics of Health Care

Kristen Haring, Ham Radio’s Technical Culture

Atsushi Akera, Calculating a Natu ral World: Scientists, Engineers and Computers during
the Rise of U.S. Cold War Research

Donald MacKenzie, An Engine, Not a Camera: How Financial Models Shape Markets

Geoffrey C. Bowker, Memory Practices in the Sciences

Christophe Lécuyer, Making Silicon Valley: Innovation and the Growth of High Tech,
1930–1970

Anique Hommels, Unbuilding Cities: Obduracy in Urban Sociotechnical Change

David Kaiser, editor, Pedagogy and the Practice of Science: Historical and Con temporary
Perspectives

Charis Thompson, Making Parents: The Ontological Choreography of Reproductive
Technology

Pablo J. Boczkowski, Digitizing the News: Innovation in Online Newspapers

Dominique Vinck, editor, Everyday Engineering: An Ethnography of Design and Innovation

Nelly Oudshoorn and Trevor Pinch, editors, How Users Matter: The Co- Construction of
Users and Technology

Peter Keating and Alberto Cambrosio, Biomedical Platforms: Realigning the Normal and
the Pathological in Late- Twentieth- Century Medicine

Paul Rosen, Framing Production: Technology, Culture, and Change in the British Bicycle
Industry

Maggie Mort, Building the Trident Network: A Study of the Enrollment of People, Knowl-
edge, and Machines

Donald MacKenzie, Mechanizing Proof: Computing, Risk, and Trust

Geoffrey C. Bowker and Susan Leigh Star, Sorting Things Out: Classification and Its
Consequences

Charles Bazerman, The Languages of Edison’s Light

Janet Abbate, Inventing the Internet

Herbert Gottweis, Governing Molecules: The Discursive Politics of Ge ne tic Engineering in
Eu rope and the United States

Kathryn Henderson, On Line and On Paper: Visual Repre sen ta tion, Visual Culture, and
Computer Graphics in Design Engineering

Susanne K. Schmidt and Raymund Werle, Coordinating Technology: Studies in the Inter-
national Standardization of Telecommunications

Marc Berg, Rationalizing Medical Work: Decision Support Techniques and Medical Practices

Eda Kranakis, Constructing a Bridge: An Exploration of Engineering Culture, Design, and
Research in Nineteenth- Century France and Amer i ca

Paul N. Edwards, The Closed World: Computers and the Politics of Discourse in Cold War
Amer i ca

Donald MacKenzie, Knowing Machines: Essays on Technical Change

Wiebe E. Bijker, Of Bicycles, Bakelites, and Bulbs: Toward a Theory of Sociotechnical
Change

Louis L. Bucciarelli, Designing Engineers

Geoffrey C. Bowker, Science on the Run: Information Management and Industrial Geo-
physics at Schlumberger, 1920–1940

Wiebe E. Bijker and John Law, editors, Shaping Technology / Building Society: Studies in
Sociotechnical Change

Stuart Blume, Insight and Industry: On the Dynamics of Technological Change in Medicine

Donald MacKenzie, Inventing Accuracy: A Historical Sociology of Nuclear Missile Guidance

Pamela E. Mack, Viewing the Earth: The Social Construction of the Landsat Satellite System

H. M. Collins, Artificial Experts: Social Knowledge and Intelligent Machines

http:// mitpress . mit . edu / books / series / inside - technology

T H E CO N S T I T U T I O N
O F A LG O R I T H M S

GROUND-TRUTHING,
PROGRAMMING, FORMULATING

F LO R I A N J ATO N
FOREWORD BY

GEOFFREY C. BOWKER

TH
E CO

N
S

TITU
TIO

N
 O

F A
LG

O
R

ITH
M

S
G

R
O

U
N

D
-TR

U
TH

IN
G

, PR
O

G
R

A
M

M
IN

G
, FO

R
M

U
LA

TIN
G

SCIENCE, TECHNOLOGY, AND SOCIETY

THE CONSTITUTION OF ALGORITHMS
GROUND-TRUTHING, PROGRAMMING, FORMULATING

FLORIAN JATON foreword by Geoffrey C. Bowker

Algorithms—often associated with the terms big data, machine learning, or
artificial intelligence—underlie the technologies we use every day, and disputes
over the consequences, actual or potential, of new algorithms arise regularly.
In this book, Florian Jaton offers a new way to study computerized methods,
providing an account of where algorithms come from and how they are constituted,
investigating the practical activities by which algorithms are progressively
assembled rather than what they may suggest or require once they are assembled.

Drawing on a four-year ethnographic study of a computer science laboratory
that specialized in digital image processing, Jaton illuminates the invisible
processes that are behind the development of algorithms. Tracing what he terms
a set of intertwining courses of action sharing common finalities, he describes
the practical activity of creating algorithms through the lenses of ground-truthing,
programming, and formulating. He describes courses of action that successfully
formulated some of the relationships among the data of a ground-truth database,
revealing the links between ground-truthing, programming, and formulating
activities—entangled processes that lead to the shaping of algorithms.

FLORIAN JATON is a Postdoctoral Researcher at the STS Lab at the University
of Lausanne.

Inside Technology series

“A provocative and skillful study of how algorithms come into the world—and
inevitably shape it. Jaton performs the daring feat of offering an empirically rich
analysis of algorithms without taking them for granted.”

—MALTE ZIEWITZ, Assistant Professor, Mills Family Faculty Fellow, Cornell
University

“This is a remarkable study of the spaces where algorithms are made: at once
an ethnographic and theoretical intervention, illuminating the birthplaces of
algorithmic systems and the collective processes that shape them.”

—KATE CRAWFORD, author of Atlas of AI

The MIT Press
Massachusetts Institute of Technology
Cambridge, Massachusetts 02142
http://mitpress.mit.edu

PEER REVIEWED

	The Constitution of Algorithms: Ground-Truthing, Programming, Formulating
	Contents
	Foreword
	Acknowledgments
	Introduction
	Negative Invisibilities
	Why “Constitution” (And Not Simply “Construction”)?
	A Laboratory Study
	Courses of Action
	Three Gerund Parts (But Potentially More)

	I Ground-Truthing
	1 Studying Computer Scientists
	The Lab
	Collecting Materials
	A Torturous Interlude
	Algorithm, You Say?

	2 A First Case Study
	Entering the Lab’s Cafeteria
	Backstage Elements: Saliency Detection and Digital Image Processing
	Reframing Saliency
	Constructing a New Ground Truth
	Almost Accepted (Yet Rejected)
	Problem Oriented and/or Axiomatic

	II Programming
	3 Von Neumann’s Draft, Electronic Brains, and Cognition
	A Report and Its Consequences
	The Psychology of Programming (And Its Limits)
	Putting Cognition Back to Its Place

	4 A Second Case Study
	Presentation of the Empirical Materials
	Aligning Inscriptions
	Technical Detours
	Attached to a Scenario

	III Formulating
	5 Mathematicsas a Science
	Where Is the Math?
	Written Claims of Relative Conviction Strengths
	Resisting Trials, Becoming Facts
	Flat Laboratories
	Mathematicable
	Formulating: A Definition

	6 A Third Case Study
	Presentation of the Empirical Materials
	Ground-Truthing—Formulating
	Reaching a Gaussian Function
	Formulating—Programming
	The (Varying) Reality of Machine Learning

	Conclusion
	Catching a Glimpse, Inflating the Unknown
	An Insurgent Document
	An Impetus to Be Pursued

	Glossary
	Notes
	Introduction
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Conclusion

	References
	Index
	Back Matter

