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Algorithms pervade our lives. They are po liti cal, cultural, and social facts 
that have become central to all parts of our existence over the past fifty 
years. Certainly, we had their forerunners before: endless checklists, safety 
protocols, and rules of conduct— each designed to take us out of ourselves 
and align our bodies, our selves with a bureaucratic or technical machine 
(in Foucault’s better term, a set “dispositifs techniques”). Bureaucracy makes 
us act like machines, algorithms seek to make us into machines.

A corollary is that if we want to do fundamental social science and envi-
sion new forms of po liti cal life we need to go where the action is. We need 
to get to know algorithms from the inside. They did not parachute down 
from another planet to invade us (much as it may feel like this): they are 
 human, fallible creations. The difficulties  here are that social scientists and 
po liti cal actors often  don’t  really understand the technical stakes, and sym-
metrically the computer scientists  don’t  really get the social stakes.

This is precisely why this book is so impor tant. It is a foundational text 
for exploring algorithms as a new form of social actor. How do algorithms 
get constructed to be effective actors; how do  humans get constructed so 
that they create algorithms which surpass  human understanding? Jaton’s 
quest  here has been fearless: go where the questions are, and locate the 
technical, social, and po liti cal issues on their home ground. As I read this 
book, I was constantly delighted as when reading a fine novel by not know-
ing what was  going to come next (von Neumann architecture, tests for 
nascent computer engineers)— but by immediately feeling a sense of inevi-
tability once the steps  were taken.

I’ve been playing with a vision latterly of  humans becoming progres-
sively more irrelevant to the operation of our po liti cal economy: we do 
what we can but are increasingly interstitial.  There is  little doubt that we 
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are creating machines that are more intelligent than we are and algorithms 
that know us better than we do ourselves. That’s just fine. But how much 
richer and more beautiful a world we  will create if we suffuse our algorithms 
with our own deeply held values created over thousands of years?

This book is not just for computer scientists or for social studies of sci-
ence scholars: it speaks to some of the fundamental questions of  human 
existence in this epoch. It provides tools and concepts for us to co- engineer 
our world (our planetary system, our species, our computers).

Chapeau! Florian. Happy reading all.
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For critics and advocates alike, if we want to know algorithms, we may need to 
live with them.

— Seaver (2013, 11)

Let us start this introduction in medias res, in the  middle of  things:

Rearrangement 1

The election of Donald Trump in November 2016 was quite surprising: 
how could such a controversial figure reach the White House? The rea-
sons, of course, are innumerous. But what if one of them was Facebook 
(Lapowsky 2016)?  After all, Trump supporters never  stopped using this 
platform to spread out disputed contents. What if voters  were brain-
washed by the “fake news” Facebook contributed to diffusing? What if 
this extensive interlinking participated in Trump’s advertisement and 
fund rais ing? However harsh this claim might be, it seriously harms the 
image of the web application that would rather help to “connect  people” 
than to build border walls (Isaac 2016). It seems then that monitoring 
needs to be increased, even though it may contradict some assumptions 
Mark Zuckerberg elevates as precepts (Zuckerberg 2016). The main tar-
get is the “News Feed,” the spine of the application that displays stories 
posted by Facebook users. What about slightly modifying how News Feed 
automatically selects new stories to make it ignore “low quality posts”? 
This may help restore Facebook’s public image, at least for a  little bit, at 
least for a  little while. And  after several months of in- house research and 
testing, a new algorithm is made operational that— based on frequen-
cies of posts and URLs of links— identifies spam users and automatically 
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deprioritize the links they share (Isaac and Ember 2016). According to one 
of Facebook’s vice presidents, this new method of computation should 
significantly reduce the diffusion of “low quality content such as clickbait, 
sensationalism, and misinformation” (Mosseri 2017).

Rearrangement 2

Planet Mars is a distant location. But hundreds of millions of kilo meters 
did not dishearten the US National Aeronautics and Space Administra-
tion (NASA) from sending the robotic rover Curiosity to explore its sur-
face. On May 6, 2012, the costly vehicle safely lands on Gale Crater. 
Quite a feat! Amazing high- resolution pictures are soon available on 
NASA’s website, showing the world the jagged surface of this cold and 
arid planet. Of course, Curiosity is far more than a remote- controlled car 
taking exotic pictures. It is a genuine laboratory on wheels with many 
high- tech instruments: two cameras for true- color and multispectral imag-
ing, two pairs of monochrome cameras for navigation, a robotic arm 
with an ultrahigh- definition camera, a laser- induced spectrometer, solar 
panels, two lithium- ion batteries, and so on (Jet Propulsion Laboratory 
2015). Yet  there is an obvious cost to this amazing remote- controlled 
laboratory: it needs to move its 350 kilograms (low gravity considered). 
The sharp, rocky surface of Mars does not alleviate the constant efforts 
of Curiosity’s wheels, irremediably wearing down. And in January 2014, 
the situation becomes alarming (Webster 2015): Is  there a way to extend 
the lifetime of Curiosity’s wheels?  After much research, a new driving 
algorithm becomes operational in June  2017 that uses real- time data 
from the navigation cameras to adjust Curiosity’s speed when it comes 
to sharp Martian pebbles (Good 2017). By reducing the load of Curios-
ity’s leading and  middle wheels up to 20   percent, this new method of 
computation for navigation is considered a serious boost for the mission 
(Sharkey 2017).

Rearrangement 3

Israeli secret ser vices in the West Bank are used to dismantling organ-
izations they define as terrorist by means of preventive actions and intim-
idation. But what about individuals who commit attacks on a whim? Just 
like several police departments in the United States (Berg 2014), Israeli 
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secret ser vices are now supported by a security software whose algorithm 
generates profiles of potential attackers based on aggregated data posted 
on social media. Yet while several US civil courts are seriously consid-
ering the harmful bias of  these new methods of computation (Angwin 
et al. 2016; Liptak 2017), Israeli military justice as applied to suspected 
Palestinian “attackers” prevents them from having any sort of  legal pro-
tection. Thanks to the ability of the West Bank military commander to 
stamp administrative detentions,  these “dangerous profiles” can be sen-
tenced to a renewable six- month incarceration without any possibility of 
appeal. Many Palestinians targeted by this state- secret technology “have 
served long years without ever seeing a court” (Gurvitz 2017).

Rearrangement 4

How can  people be made to eat more Nutella? It has not been easy  these 
recent years for the Italian brand of choco late spread. When palm oil 
production threatened remote orangutans, only a small fraction of citi-
zens was  eager to criticize its use in Nutella’s  recipe. But in May 2016, 
as soon as palm oil is suspected of speeding up the spread of cancer 
among Nutella consumers,  there starts to be a worrying drop in sales 
(Landini and Navach 2017). For Nutella, something needs to be done to 
reconnect with the stomachs of its customers. What about a fresh new 
marketing campaign? In collaboration with advertising agency Ogilvy & 
Mather Italia, seven million uniquely designed Nutella jars are soon pro-
duced and sold in rec ord time (Nudd 2017). At the heart of this success-
ful marketing move lies an algorithm that computes a carefully selected 
set of colors and figures to generate unique pop patterns (Leadem 2017).

States of affairs change. In November 2016, News Feeds of Facebook users 
 were subjected to spammers diffusing hoaxes and “fake news” that are pre-
sumed to have played a role in the election of Donald Trump. One month 
 later,  these News Feeds temporarily became monitored lists of stories worth 
being read. Similarly, Curiosity’s weight together with sharp Martian peb-
bles first seriously affected the robot’s wheels, thus compromising the initial 
duration of the mission. Yet a few years  later, several changes in the loco-
motion system slowed down this unexpected wear. In another case, Israeli 
secret ser vices  were at first powerless against attacks that  were not prepared 
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within dismantable cell organ izations. Yet  these ser vices soon  were able 
to identify suspects and put them in jail without any kind of  legal proce-
dure. Fi nally, Nutella was first an old- fashioned choco late spread whose 
 recipe included orangutan- endangering and cancer- related palm oil. It then 
became, temporarily, a trendy pop product. For better or worse, collective 
configurations are rearranged, thus forming new states of affairs; relation-
ships between  humans and nonhumans are reconstituted, thus temporarily 
establishing new networks. According to this ontological position that is 
often called “pro cess thought,”1 the collective world is constantly reshaped 
in this way.2

That being said, we may wish to comprehend some of the dynamics 
of  these messy rearrangements (RTs).  After all, as we all have to coexist on 
the same planet, getting a clearer view of what is  going on could not hurt; 
documenting a tiny set of the innumerous relationships that shape the 
world we inhabit may equip us with some kind of navigational instrument. 
Together, where do we go? What are we  doing? What is  going on?  These are 
impor tant, legitimate questions.

To address  these questions, two approaches are generally used. Broadly 
speaking, the first approach consists in postulating the existence of aggre-
gates capable of inducing states of affairs. Depending on academic tradi-
tions, such aggregates take dif fer ent names: they are sometimes called 
“social forces,” “fields and habitus,” “economic rationality,” or “social struc-
tures,” among many other variations.  These differently named yet a priori 
postulated aggregates are all pretenders to the definition of the social (or 
society), an influential yet evanescent  matter that supposedly surrounds 
individuals and orientates their actions. The scientific study of this  matter 
and the states of affairs it engenders is what I call the science of the social or, 
more succinctly, social science.

The second approach— the one this book embraces— consists in consider-
ing the social not as an evanescent  matter surrounding individuals but as the 
small difference produced when two entities come into contact and tempo-
rarily associate with each other (Latour 2005).3 This approach assumes that 
 every new connection between two actants— humans (Bob, the president, 
Mark Zuckerberg) or nonhuman entities (a wheel, a virus, a document)— 
makes a small difference that can, sometimes, be accounted for. If we accept 
calling “social” the small difference produced when two actants temporally 
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associate with each other, we may call “socio- logy” the activity that consists 
in producing specialized texts (log os) about  these associations (socius).4 Our 
initial four RTs are small examples of such an activity: Facebook, Curiosity, 
Israeli secret ser vices, and Nutella temporarily associate themselves with new 
actants, and the blending of  these new connections contributes to the for-
mation of new configurations summarized within a text. Had I added several 
rearrangements and accounted for their constitutive associations a bit more 
thoroughly, I would have produced a genuine so cio log i cal work. On the con-
trary, had I invoked some hidden force to explain  these reconfigurations; 
had I attributed the modifications of each state of affairs to some a priori pos-
tulated aggregate (e.g., economic rationality, society, culture), I would have 
produced a small work of social science. This distinction between sociology 
and social science  will accompany us throughout this book. It is thus impor-
tant to keep in mind that the pre sent volume is—or, at least, is intended to 
be— a so cio log i cal work.

With  these clarifications in mind, let us have a closer look on our four 
small so cio log i cal RTs. What do we see? We quickly notice that each RT 
is affected by an “algorithm,” for now loosely defined as a computerized 
method of calculation.  These four algorithms can be considered entities—or 
actants—as they all produce differences within specific configurations. In 
that sense,  these algorithms are fundamentally not dissimilar to the other 
actants they, at some point, associate with. In RT1,  there is Facebook, Don-
ald Trump, spams, supporters, News Feed, a new algorithm, a Facebook 
vice president, and many other actants that, together, rearrange some state 
of affairs. In RT2,  there is Mars, NASA, sharp pebbles, a navigational algo-
rithm, lithium- ion batteries, and many other actants that, together, rear-
range some state of affairs. The same is true of RT3 and RT4: algorithms are 
actants among many other actants.

Yet a closer look nonetheless suggests that the algorithms of our RTs pos-
sess characteristics that make them not completely akin to, say, sharp Mar-
tian pebbles or lithium- ions batteries. Contrary to such “firm” actants, the 
algorithms of our RTs appear more fluid; they seem to be able to move very 
quickly and make connections with other actants that  were at first remote 
from each other. In RT1, Facebook’s new algorithm can, in the end (and yet 
temporarily), associate itself with News Feeds of millions of users located 
all around the world almost instantaneously. In RT2, NASA’s algorithm can 
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reach Mars to make Curiosity’s wheels cope with, potentially, all sharp Mar-
tian pebbles. In RT3, the algorithm used by Israeli secret ser vices can clas-
sify thousands of social media texts sent by hundreds of thousand  people 
located throughout a two- thousand square- mile territory. In RT4, Ogilvy & 
Mather Italia’s algorithm can create millions of uniquely designed patterns 
instructing Nutella’s packaging factories in Italy and France. It seems then 
that  these algorithms can circulate and link up initially sparse actants in a 
very short amount of time. This is a nontrivial characteristic. To underline 
 these algorithms’ fluidity (they circulate), swiftness (they are fast), and dis-
tributivity (they are si mul ta neously scattered and united), let us temporar-
ily categorize them as devices, a special category of actant that, according to 
phi los o pher Gilles Deleuze, is “tangled, multi- linear ensembles [that] trace 
pro cesses that are always at disequilibrium, sometimes coming close to each 
other, sometimes getting distant from each other” (Deleuze 1989, 185).

If we continue considering our four RTs, we also quickly notice that each 
of  these fluid, swift, and distributed devices called algorithms contributes 
to modifying a network of relationships. In  every RT, one algorithm— 
well supported by many other entities (researchers, data, tests, computers, 
etc.)— participates in making Facebook less subject to the spread of hoaxes 
(RT1), Curiosity’s wheels a bit more durable (RT2), Palestinians definitely 
more “jailable” (RT3), and Nutella temporarily more salable (RT4). Along 
with all the entities they are associated with,  these methods of calculation 
seem then to participate in changing power dynamics: Facebook, Curios-
ity’s wheels, Israeli security ser vices, and Nutella become temporarily stron-
ger than Trump- spamming supporters, sharp Martian pebbles, West Bank 
potential “terrorists,” and palm oil scandals, respectively.

Scholars of Science and Technology Studies (STS)— a subfield of sociology 
and social science that aims to document the co- constitution of science, 
technology, and the collective world5— are nowadays prone to analyze 
algorithms’ propensity to modify power dynamics in, for example,  labor 
markets (Kushner 2013; Steiner 2012), surveillance strategies (Introna 2016; 
Introna and Wood 2002; Kraemer, van Overveld, and Peterson 2010), cor-
porate finance (Lenglet 2011; MacKenzie 2014; Muniesa 2011a), cultural 
habits (Anderson 2011; Hallinan and Striphas 2014), or interpersonal rela-
tionships (Beer 2009; Bucher 2012).  These scholars’ works are of the most 
importance as they raise and maintain wakefulness with regard to what 
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computerized methods of calculation do. Yet I must warn the reader right 
from the start: what algorithms do is not the main topic of this book.

However, as soon as one takes seriously into consideration the banal 
fact that objects and devices wear down and change, that “they break, mal-
function and have to be constantly mended, retrofitted and repurposed” 
(Domínguez Rubio 2016, 60), thorough so cio log i cal studies of what algo-
rithms do should be coupled with the studies of the maintenance and 
repair work required to keep them  doing what they do. Whereas mainte-
nance and repair work is currently receiving the attention of an increas-
ing number of studies (e.g., de la Bellacasa 2011; Domínguez Rubio 2014, 
2016; Denis and Pontille 2015; Lea and Pholeros 2010; Strebel, Bovet, and 
Sormani 2018), very few have specifically explored the work required to 
keep algorithms  doing what they do (but see Crooks 2019). It is a shame 
since the differences algorithms produce should be, at least in princi ple, 
proportional to the work required to make them continue to produce such 
differences in constantly evolving situations. If we continue to draw upon 
our four initial RTs, we can for example imagine that to keep on protecting 
users from spammers, Facebook’s new monitoring algorithm may need to 
be actualized to detect unexpected forms of trolling (RT1). Similarly, if Curi-
osity’s balance of weight happens to change— such as if it loses a piece of 
equipment— the par ameters of its driving algorithm  will have to be modi-
fied (RT2). In a similar vein, due to the progressive accumulation of small 
differences in the computer equipment of Israeli secret ser vices, the soft-
ware package allowing the new security algorithm to effectively compute 
social media data and generate profiles  will have to be slightly updated 
(RT3). Fi nally, for its algorithm to keep on supporting effective marketing 
coups, Ogilvy & Mather Italia  will need to keep on convincing its clients 
that consumers are attached to singular products (RT4). In short, we can 
make the fair assumption that without constant efforts to make algorithms 
keep on fitting with constantly changing situations (and vice versa),  these 
devices  will not produce differences for very long. Although the work nec-
essary to preserve the agency of algorithms (Introna 2016) is surely more 
and more common in con temporary economies, it remains poorly docu-
mented. Unfortunately, I  will not contribute to filling in this gap; despite 
the need for such studies to better understand the collective world we live 
in, this book does not deal with the maintenance of algorithms.
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What is this book’s topic, then? We have quickly seen that, from a so cio-
log i cal standpoint, algorithms can be considered two kinds of entities: 
devices that do  things and devices that need  things in order to keep on 
 doing what they do. Both views are, I believe, of  great significance. Yet my 
work follows a dif fer ent path. Instead of starting from algorithms as devices 
and studying their agency or need for maintenance, this book starts from 
unrelated entities (e.g., documents,  people, desires) and tries to account 
for how they come into contact to form, in the end, devices we may call 
“algorithms.” In short, I am studying what is happening before algorithms 
become fluid, swift, and distributed devices. Of course,  things are not so 
clear- cut; as we  will see, projections on both agency and maintenance 
requirements of  future algorithms may impact on their constructions. 
Moreover, already constructed algorithms participate in the formation of 
new algorithms. But still, it is impor tant for the reader to understand that 
I  will mainly inquire into the practical activities by which algorithms are 
progressively assembled in assignable locations rather than what they may 
suggest or require once they are assembled.

Negative Invisibilities

Already at this point, a question may arise: Why is it impor tant to account 
for the formation pro cesses of algorithms? Why spending time and energy 
writing— and reading— about their constitution? Are  there not other  things 
to do than making the activities by which algorithms come into existence 
vis i ble?

Certainly. As Star and Strauss (1999) have suggested, some activities need 
to remain provisionally invisible— that is, not accounted for— other wise the 
results of  these activities may lose some of their capacities. The circus is one 
example: making publicly vis i ble the infrastructure and training practices 
required to design and master, say, a Cirque du Soleil trapeze act may nega-
tively affect the act itself. Won der, surprise, or enchantment would poten-
tially be counteracted by the down- to- earth and uncertain operations that 
enabled the act.  Here, a so cio log i cal account would take the risk of spoiling 
the act; it may lower the act’s capacity to act.6 Following the distinction 
made by Star and Strauss (1999, 23), the relative invisibility of the trapeze 
act is, in that sense, positive: it helps the product of  these circus practices 
to be, by lack of a better term, adequate. The lack of any publicly available 
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account and the presence of secrecy help the act become an act, just as they 
help the public become the public of the act. In such a very specific situa-
tion, one may assume  there is a mutual desire to believe in mastery.

But as soon as  there are controversies about the products of some prac-
tices, the terms of their adequacy are disputed; when some capacity to act 
is put into question, disagreements about its formation need to be con-
fronted. Let us, for example, imagine that the same Cirque du Soleil trapeze 
act leads to an accident. If disputes arise about this accident,  there  will 
be requests to make vis i ble the practices that contributed to producing it. 
From being positively invisible, the practices required to do this trapeze act 
would become negatively invisible: for the dif fer ent parties of the dispute 
to become able to negotiate, empirical accounts of how this act comes into 
existence  will become necessary. What does the Cirque du Soleil need to 
perform this controversial act? Which ele ments could be changed to re adjust 
this fragile assemblage? In short, in order to propose compromises, in order 
to better compose, disputants  will benefit from empirical accounts of the 
practices of trapeze;7 documenting what performers and entertainers cher-
ish and fear and what they are attached to might allow constructive dissen-
sions about the agency of what they produce to unfold.

Despite its obvious limits, this small imaginary example indicates that the 
request for visibility is somewhat correlated with the rise of controversies. 
When  there are controversies over the products of practices,  these products 
cannot be considered adequate anymore: positive invisibilities may thus 
switch to negative invisibilities that themselves call for empirical accounts— 
which can take the form of so cio log i cal investigations—on which disputes 
may arise and negotiations unfold. Of course,  these accounts are very risky 
as they inherently speak in the name of individuals (Latour 2005, 121–140). 
To make vis i ble what communities of practice need and cherish, and what 
they are attached to, the so cio log i cal account that may establish common 
grounds for further contentious negotiations would need to overcome many 
 trials: Does the account make vis i ble the actants that are crucial to the work 
of the prac ti tion ers? Do surprising but empirically supported connections 
unfold? Does the account propose new grips for collective composition? 
A single “no” to any one of  these questions would make the so cio log i cal 
account fail to fulfill its initial commitment.

What about algorithms? Not so long ago,  these devices attracted  little 
attention. They  were certainly involved in changing power relations, but 
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 these pro cesses  were not, or only to a  limited extent, public issues.  Things 
began to change in the late 1990s when sociologists started to question the 
discourse on empowerment and information accessibility put forward by 
the promoters of web technologies.8 Hoffman and Novak (1998) showed, 
for example, that the accessibility and use of web technologies in the United 
States  were largely function of racial differences. Lawrence and Giles (1999) 
stressed that, contrary to the promotional rhe toric of almost unlimited 
access, the search engines available in the late 1990s  were only able to index 
a small and oriented fraction of the web. In the same vein, Introna and Nis-
senbaum (2000) underlined the under ground— and potentially harmful— 
influence of the heuristics used for the classification of URLs by  these same 
late-1990s search engines. The post-9/11 period that followed focused on 
criticisms of biases in programs and algorithms— the term appeared at that 
time in the critical lit er a ture9— for surveillance and preventive detection. 
In his study of the social implications of data mining technologies, Gandy 
(2002) warned, for example, that they are the gateway to rational discrimi-
nation, potentially strengthening correlative habits between social status 
and group membership. From a po liti cal economy perspective, Zureik and 
Hindle (2004) discussed biometric algorithms’ propensity to trivialize social 
profiling, categorization, and exclusion of national groups. Another exam-
ple is the work of Introna and Wood (2004): their analy sis of facial recog-
nition algorithms highlighted the potential biases of  these devices, which 
 were often, at that time, presented as impartial. This line of so cio log i cal 
research led, at the beginning of the 2010s, to numerous investigations 
on discriminations (e.g., Kraemer, van Overveld, and Peterson 2010; Gil-
lepsie 2014 Steiner 2012) and invisibilizations (Bucher 2012; Bozdag 2013) 
induced by the use of algorithms.

This research direction has continued in recent years, with increasingly 
comprehensive works revealing the contrasting, and often questionable, 
effects of algorithms on con temporary socie ties (e.g., Crawford and Calo 
2016; Noble 2018; O’Neil 2016; Pasquale 2015).  These awareness- raising 
efforts  were also reported in the press, further making algorithms matters of 
public concern (e.g., Mazzotti 2017; Risen and Poitras 2017; Smith 2018). This 
dynamic— too complex to be thoroughly dealt with in this introduction10— 
has led to the current situation where the collective world is steadily affected 
by controversies over algorithms. A quick look at the news, at the time of 
writing, suffices to remind us of it. UK police is about to use a new algorithm 
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to identify online hate crime on social media (Roberts 2017)? This soon trig-
gers hostile reactions from the nonprofit organ ization “Big  Brother Watch,” 
ready to “fight any attempt to curb  free speech online” (Parker 2018). A new 
algorithm is published in an academic journal that can presumably deduce 
 people’s sexuality from photo graphs of  faces (Levin 2017)? The Gay & Lesbian 
Alliance Against Defamation soon condemns such a “dangerous and flawed 
research that could cause harm to LGBTQ  people around the world” (Ander-
son 2017).11 Facebook’s algorithm continues to bombard a grieved  woman 
by parenting ads  after the stillbirth of her son (Brockell 2018)? Thousands 
of tweets soon denounce gender bias from tech companies (Mahdawi 2018). 
 Every week, a new dispute arises regarding the consequences— actual or 
potential—of new algorithms, often preceded by changing attributive nouns 
such as big data, machine learning, or more recently, artificial intelligence.

The intended relevance of this book should be considered in the light of 
the current controversies over the agency of algorithms. Following in the 
footsteps of authors such as Bechman and Bowker (2019), Barocas and Selbst 
(2016), and Grosman and Reigeluth (2019)—to whom I  shall return  later in 
the book—my aim  here is to propose intellectual tools to prepare the elabora-
tion of compromises. The invisibility of the practices under lying the devel-
opment of algorithms can indeed no longer be considered positive: as they 
are the object of repeated disputes, it is now certainly impor tant, or at least 
in ter est ing, to document the practical pro cesses that enable them to come 
into existence. Roughly put, if sociology has looked, with a certain success, 
at the effects of algorithms, it is now time for it to inquire into the  causes of 
 these effects, however distributed and multiple they may be. A gap needs to 
be filled in; by means of empirical accounts of how computer scientists and 
engineers nurture algorithms, some risky yet refreshing grounds for con-
structive disputes may be provided.12 The needs, attachments, and values 
of  those who design algorithms—as documented by my  limited so cio log-
i cal account— may contradict other needs, attachments, and values. But 
at least, in  these days of controversies, parties in dispute may slowly start 
to negotiate, as Walter Lippmann says, “ under their own colors” (1982, 
91). Yet before considering how I intend to effectively run this inquiry into 
the practical formation of algorithms, I quickly need to further specify its 
po liti cal dimension. To do so, I  shall now make a quick detour by discussing 
the unconventional term “constitution” I use  here to qualify my venture.
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Why “Constitution” (And Not Simply “Construction”)?

At the beginning of this introduction, I asserted that the collective world is 
constantly rearranged: heterogeneous entities never stop associating with 
each other, the blending of  these associations temporarily establishing new 
states of affairs. From this (debatable) ontological position, it follows that 
the world is not “out  there,” ready to be grasped from some outside stand-
point. Instead, according to this pro cessual ontology, the world is always 
becoming; it is the active product of associations between  human and non-
human actants.

Yet one may rightly argue that every thing is not always reinvented. While 
some associations bring about ephemeral actants (e.g., a cry of joy, tears of 
sadness, laughs at some joke), some other associations bring about actants 
that are more enduring. Many entities that populate/generate the collective 
world are of this sort: Mark Zuckerberg, the planet Mars, West Bank jails, 
Nutella jars— just to mention some entities we encountered in our small ini-
tial RTs— are quite enduring entities. Such actants, thanks to their ability to 
live on beyond the  here and now of their instantiation, may in turn associate 
themselves with other actants, thus contributing to the continuous genera-
tion of the collective world. Such relatively stable actants possess some dura-
bility that allows them to bring about and orient what is becoming.

If we continue considering differences among actants, we quickly notice 
that some durable actants can move from one place to another more or less 
easily. Let us keep on using familiar entities to illustrate this point. If we 
consider the planet Mars and West Bank jails,  these entities appear rather 
static. It is difficult for them to associate with actants capable of making 
them deviate from their initial trajectories: without impor tant mobilization 
efforts, the planet Mars and West Bank jails  will just stay where they are. 
This is not quite the case for Mark Zuckerberg who, once associated with 
actants such as “shoes,” “cars,” or “roads,” can markedly change his initial 
trajectory and, in turn, associate himself with other actants that  were at 
first distant from him. Yet, largely due to his body envelope, Mark Zucker-
berg’s relative mobility is rather costly: in order for him to somehow keep 
on being Mark Zuckerberg, in order for him to maintain most of his dura-
bility while he is moving, he would need to associate with many other 
actants (e.g., oxygen, food, space for his legs, coffee breaks) protecting him 
from being too much altered. In the case of Nutella jars, the story is a bit 
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dif fer ent. They too need to associate with other actants to deviate from 
their initial trajectories (e.g., supply chain man ag ers, railway lines, sale con-
tracts, delivery  people). But contrary to Mark Zuckerberg, one can make the 
fair assumption that Nutella jars’ alteration is slower: due to their proper 
materiality, due to their own medium, they can, for example, be stored, 
piled up, and handled without being significantly transformed. Among our 
exemplary durable entities, Nutella jars seem then the most durable and 
mobile: when compared to the planet Mars, West Bank jails, or even Mark 
Zuckerberg— and when provided adequate associations— these jars can 
move from one place to another without being too much altered.

When cumulated, durability and mobility are nontrivial characteris-
tics: entities that combine both abilities are more likely to associate with 
other entities, thus actively contributing to the generation of the collective 
world. But a very special category of entities cumulates another ability that 
makes them certainly the most world- generative of all.  These entities go by 
dif fer ent names: Jack Goody calls them “graphical objects” (1977); Bruno 
Latour and Steve Woolgar call them “inscriptions” (1986, 43–91); Dorothy 
Smith calls them “accounts” or “documents” (1974). But no  matter how 
 these are labeled, sociologists have long emphasized on  these actants’ fasci-
nating capacity to be durable and mobile and to carry with them some char-
acteristics of other actants—or of other associations between actants. This 
is essentially what texts,  tables, graphs, or drawings do: thanks to the pres-
ence and constant maintenance of specific habits, rules, and technologies— 
what Jérôme Denis (2018) calls scriptural infrastructures— these often durable 
and mobile inscriptions can host some aspects of actants and associations 
and pre sent them again (re- present) somewhere  else. This scriptural trans-
port of (part of) actants— that itself necessitates many other actants to 
unfold— may in turn create a link between what has happened and what 
is to become. This sounds like an odd statement, but such a phenomenon 
is in fact very common:  Every time I read a New York Times article, a con-
nection is made between what has happened in the past (some events) 
and what is happening now (me, considering this event and, eventually, 
reacting to it). Of course, this connection, this link has been formatted in 
order to be hosted in the specific materiality of the inscription I am con-
sidering ( here, the newspaper article). Such a link is thus always a partial, 
but potentially faithful, in- formed version of what has happened. When 
I’m reading the New York Times, I  don’t see mi grants struggling to reach 
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Eu rope in horrendous conditions; I see a flat surface with words that re- 
present me  those mi grants; this re- presentation triggering in me feelings of 
helplessness, shame, and despair, evanescent actants that  will, in turn, con-
tribute to the continuous generation of the collective world (though quite 
insignificantly). To qualify inscriptions’ capacity to carry some properties 
of actants- associations and establish formatted yet generative connections 
between times and locations, I  shall use the term “re- presentability.” More 
than just being durable and mobile actants, inscriptions are thus also re- 
presentable: they can— together with suitable infrastructures— carry, trans-
port, and display properties that are not only theirs.

Durability, mobility, re- presentability:  these are capacities not to be under-
estimated. Inscriptions, despite their often- modest appearances (lists of num-
bers, drawings, articles,  tables, graphs), greatly participate in the shaping of 
our world. A new molecule appears that revolutionizes our understanding 
of the  human hypothalamus? As well documented by Latour and Woolgar 
(1986), such an association- prone actant derives, to a large extent, from 
inscriptions assembled, accumulated, compiled, and compared within and 
between laboratories. A new management technique starts to align corpo-
rate activities to a single arbitrary standard? As proposed by Thévenot (1984) 
and Yates (1989), such Taylorist normalization— and its consequences— 
heavi ly relies on mea sures, coding, and equity methods whose scriptural 
circulation allows the centralization of control over the workers. A new 
algorithm is published that may ignite original ave nues of research in digi-
tal image pro cessing? As I  will try to show throughout this book, the for-
mation of such an actant owes a  great deal to the production, circulation, 
transformation, and compilation of many dif fer ent types of inscriptions. 
We  will more thoroughly examine the world- generative capacity of inscrip-
tions in due time (especially in chapters 4, 5, and 6). For now, suffice it to 
say that  these durable, mobile, and re- presentable actants contribute a lot 
to what is constantly happening.

But what ever their generative power, “inscriptions” do not exist by 
themselves: they obviously need to be produced before they start to circu-
late. In that sense,  every inscription needs to be inscribed. Extracting some 
aspects of associations (or “events”; at this point, both terms are equivalent) 
and re- presenting them on flat, durable media is not at all evident: What 
part of the event  shall be kept and written down? What language  shall be 
used? What protocol  shall be followed to  later compare this inscription 
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with some  others and produce, in turn, new compiled inscriptions? Consid-
ering the world- generative potential of inscriptions,  these are major issues, 
most of time supported by orga nizational and professional practices with 
their own goals, rules, and princi ples that  every day engage hundreds of 
millions of  people and instruments. This oriented work consisting in pro-
ducing inscriptions and, eventually, capitalizing on their world- generative 
potential is what Dorothy Smith (1974) calls “the fabric of documentary 
real ity.”13 And this fabric is highly po liti cal.

To illustrate her point, Smith takes the a priori mundane example of 
birth certificates. Inscribing a birth on a report is, in fact, not evident nor 
neutral. It is the product of an orga nizational and professional practice that 
shapes births and their accounts in very peculiar terms, very dif fer ent from, 
say, how  mothers and  fathers may want to remember it. As she put it:

“Jessie Franck was born on July 9th, 1963” appears maximally unequivocal in this 
re spect. But as we examine how it has been fabricated it becomes apparent that its 
character as merely a rec ord is part of how it has been contrived. Every thing that 
a  mother and a  father might want to have remembered as how the birth of Jessie 
Franck was for them is stored elsewhere and is specifically discarded as irrelevant 
in the practices of the recording agency. The latter is concerned only to set up 
a certified and permanent link between the birth of a par tic u lar individual—an 
 actual event, and a name and certain social coordinates essential to locating that 
individual— the names of her parents, where she was born,  etc. (Smith 1974, 264)

Birth certificates are very selective— they only keep a very small part of 
birth events— and this se lection is oriented  toward the potential of such 
concise inscriptions— their features can, in turn, be used for identification 
purposes or government statistics. Moreover, as being inscriptions that can 
be remobilized in other spaces, birth certificates and their desired purposes 
make a specific version of births that  will, in many cases, impose on other 
concurrent versions. Despite their very partial and partisan origins,  these 
circulating inscriptions  will form a fulcrum for other inscriptions, progres-
sively establishing formal, factual, and so- called “neutral” versions of births.

This po liti cal aspect of inscription practices which aim to make partial 
partisan versions of events does not only concern administration. The 
power of Smith’s argument lies in that it is also applicable to any inscription 
as it is materially impossible to fully inscribe an event in all its subtleties: 
choices need to be made regarding what  will be kept (and formatted) and 
what  will be ignored. What inscriptions gain as world- generators also lose 
as world- betrayers, the latter being even a condition to the former.14
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With  these ele ments in mind, let us now come back to this pre sent book. 
Have I not said it intends to be a so cio log i cal work? Have I not said it 
intends to account for associations that progressively form devices we call 
algorithms? At this point,  these assertions can be further specified. Sociol-
ogy, as a professional activity that consists in producing specialized texts 
(log os) about associations (socius), does not escape what I  shall now call 
“Dorothy Smith’s law”: however descriptive it is, sociology brings into 
being—by means of inscriptions— partial realities to the detriment of other 
realities. What is true for administrators (Desrosières 2010), economists 
(MacKenzie, Muniesa, and Siu 2007), or scientists (Latour 1987) is also true 
for sociologists: while describing realities by means of texts, they also enact 
 these realities.

As Law and Urry (2004, 396) well summarized it,  there is no innocence:15 
a text, however faithful— and some texts are definitely more faithful than 
 others—is also a wishful accomplishment. I must then admit that what I 
intend to do in this book is not only describing what happens in par tic u lar, 
algorithm- related, situations: due to this book’s very existence as a textual 
inscription, it is also an attempt at enacting a world to the detriment of 
other enacted worlds. My gesture is thus analytical and po liti cal: it aims to 
produce a descriptive account of how algorithms come into existence—we 
can keep that— but also, and in the same movement, to propose a new ver-
sion of their realities. The motivation  behind this analytico- political move 
 were presented in the previous section: in  these days of controversies over 
the agency of algorithms, a refined— yet formatted and thus intrinsically 
 limited— account of their inner components may establish grounds for 
constructive disputes about and with algorithms.

To come back to the title of this section, I assume the classical notion of 
“construction” does not well express such a venture. Construction has been 
for sure a useful term for sociology as it has equipped many valuable cri-
tiques of naturalized  matters: studies on the construction of gender (Lorber 
and Farrell 1991), patriarchy (Lerner 1986), or maternity (Badinter 1981), 
just to mention some classics, have all been wonderfully liberating. But 
considering recent developments in STS and sociology in general, it appears 
that construction suffers from being two- faced: while it well expresses its 
descriptive aspirations— showing how results have been produced—it also 
tends to hide its po liti cal claims— generating realities to the detriment of 
 others.16 Due to its propensity to hide “Dorothy Smith’s law”  under the 
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cover of analytical ambitions, I consider it wiser to renounce using the term 
“construction” to qualify my overall gesture.

I am not the first sociologist to dismiss construction. It is in fact quite 
a popu lar move, motivated by more or less the same arguments as pre-
sented above. Law and Urry (2004) prefer to use “enactment” as it better 
expresses the performativity of descriptive ventures. Latour (2013), inspired 
by Souriau ([1943] 2015), has recourse to “instauration” as it underlines the 
fragility of practical, succeeding assemblages. Ingold (2014), in the wake 
of Rorty (1980), gives priority to “edification” as it stresses the continu-
ous and never fully achieved aspect of what is about to happen. All  these 
notions are surely in ter est ing alternatives to construction. But at the risk of 
feeding in a so cio log i cal jargon already well supplied, I choose  here to use 
the notion of “constitution” as it has the significant advantage of contain-
ing natively a double signification: a pro cess by which something occurs 
as well as a document advocating for rights and prerogatives.  Here lies an 
in ter est ing tension that may recall the assumed ambivalence of my gesture: 
describing and contesting. Moreover, as a constitution is never fixed once 
and for all (it can be amended, completed, abolished), the notion forces us 
to recognize the necessary incompleteness of my venture, the three activi-
ties that I try to put into existence  here— ground- truthing, programming, 
and formulating (more on this  later, obviously)— must be considered partial 
and temporary. Many more gerund articles, as long as they are supported 
by empirical materials, can be potentially added to the pre sent constituent 
act of algorithms.

For all  these reasons, this book’s title The Constitution of Algorithms should 
be understood as the putting into text and existence— si mul ta neously 
empirical and activist—of what algorithms  shall be. At the very end of the 
inquiry, in light of the accounted ele ments, I  will come back to the implica-
tions of this analytical/insurrectional gesture in a section borrowing from 
Antonio Negri’s (1999) work on “constituent power.” For now, let us just 
note and accept this ambivalence by using the term constitution, a con-
stant reminder of this inquiry’s bi polar ity.

A Laboratory Study

At this point, I have no other choice than to ask the reader to follow me—at 
least temporarily—in assuming that in  these days of controversies over the 
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agency of algorithms, the invisibility of the work required to design, shape, 
and diffuse them is negative as it prevents disputing parties from having 
common grounds for negotiations. Let us also assume that one way to pro-
pose such grounds, and thus to suggest constructive disputes and composi-
tion attempts, could be to conduct so cio log i cal inquiries in order to make 
vis i ble the work practices required to make algorithms come into existence. 
Let us fi nally assume that this volume is an attempt at such an inquiry that, 
in its capacity as a world- generative inscription, cannot but be a partial, 
partisan, and open- ended (while also faithful and empirical) constitution 
of algorithms. If we accept  these debatable assumptions, the next question 
could be: How can I effectively run such a partial, empirical, and activist 
inquiry? On what materials can I ground it?

It would be tempting to use readily available sources, such as the many 
academic papers and manuals describing the internal workings of algo-
rithms. This is in fact what several STS scholars have done in some very 
in ter est ing works.17 However, I have reasons to believe that the sole use of 
 these sources surreptitiously contributes to the perpetuation of the negative 
invisibility of algorithms’ components. Regarding computer science papers 
published in academic journals, it would, of course, be incorrect to say that 
this lit er a ture is erroneous: on the contrary, it attests to what is about to, 
perhaps, become scientifically true.18 But as many impor tant science stud-
ies have shown,  these scientific publications tend to report the results of 
pro cesses, not the practical activities that led to  those results.  Under  these 
conditions, it is problematic to solely use academic publications to make 
the formation of algorithms vis i ble since  these documents are themselves 
supported and framed by unstated ele ments. Michael Lynch (1985) well 
summarized this prob lem inherent in the analy sis of scientific publications:

[Methods sections of scientific research papers] supply step- by- step maxims of 
conduct for the already competent practitioner to assimilate within an indefinite 
mix of common sense and unformulated, but specifically scientific, practices of 
inquiry.  These unformulated practices are necessarily omitted from the domain of 
study when science studies rely upon the literary residues of laboratory inquiry as 
the observable and analyzable presence of scientific work. (Lynch 1985, 3)

Moreover, for entangled reasons we  will cover throughout this book, authors 
of academic papers tend also to defend their algorithms against concur-
rent algorithms. A claim published in a scientific journal is indeed directed 
against other claims and is intended to obtain the reader’s support. Hence 
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the importance of captation techniques that aim “to lay out the text so 
that wherever the reader is  there is only one way to go” (Latour 1987, 57). 
 These conviction habits and the additional necessity they provide— essential 
ele ments to establish objective constructions— tend to purify the scientific 
accounts of algorithms of the many disparate ele ments that have contrib-
uted to their textual existence. When relying on  these documents to analyze 
computerized methods of calculation, it is therefore the hesitations, doubts, 
and “infra- ordinary” equipment and writings that tend to escape the ana-
lyst’s gaze.19

But what about the numerous manuals that teach us how to design 
algorithms?20 Do they not provide descriptions of how to assem ble com-
puterized methods of calculation? Are they not, in that sense, connectors 
between algorithms and the collective world they contribute to shaping? 
 These pedagogical resources are certainly crucial to inculcate students and 
newcomers with the basic components of computerized methods of cal-
culation, which are essential to their so cio log i cal analy sis. Yet, as Lucy 
Suchman (1995) reminded us,  these resources are, by definition, normative 
accounts of how work should be done, not of how work is effectively done. 
This is a crucial but often forgotten precision: “[ These] normative accounts 
represent idealization and typifications. As such, they depend for their 
writing on the deletion of contingencies and differences” (Suchman 1995, 
61). Instead of accounting for what it is being done during mundane situ-
ations, manuals account for what  ought to be done. They are (impor tant) 
peremptory  recipes, not empirically grounded accounts of practices.21 This 
is, I believe, the main limitation of con temporary studies that rely mainly 
upon textbooks and classes on algorithmic design: they inform about how 
con temporary pedagogues want algorithms to be constructed, not on how 
 these algorithms are constructed on a day- to- day basis. Instead of getting 
closer to computer scientists by accounting for their work,  these studies, 
other wise very in ter est ing, tend to move them further away.22

Academic papers and manuals are therefore sources that should be han-
dled with precautions. But how to reach what  these sources, which remain 
useful and impor tant, contribute to keeping out of sight? How to get a 
higher definition, yet still intrinsically  limited, picture of the work required 
to assem ble algorithms? Fortunately, for this very specific purpose, I can 
rely on a proven STS analytical genre often labeled “laboratory study.” The 
first such studies appeared in the 1970s, mostly in the United States. In a 



20 Introduction

sense, the collective (Western) world was at that time not so dissimilar to 
the one we are experiencing  today: controversies about types of agencies 
 were arising continuously. But instead of algorithms,  these controversies 
mostly concerned scientific facts often developed in life science, physics, 
and neurology. For many reasons that are too entangled to be discussed 
in this introduction,23 several scholars felt the need to deflate the delusive 
aspect of scientific facts by so cio log i cally accounting for mundane prac-
tices of natu ral scientists trying to manufacture certified knowledge (Col-
lins 1975; Knorr- Cetina 1981; Lynch 1985; Latour and Woolgar 1986). The 
method of  these scholars was quite radical: in reaction to the authoritative 
precepts of epistemology,  these authors borrowed from ethnography its 
in situ analytical perspective to document “the soft underbelly of science” 
(Edge 1976). As Latour and Woolgar put it:

We envisaged a research procedure analogous with that of an intrepid explorer 
of the Ivory Coast, who, having studied the belief system or material production 
of “savage minds” by living with tribesmen, sharing their hardship and almost 
becoming one of them, eventually returns with a body of observations which he 
can pre sent as a preliminary research report.  … We attach par tic u lar importance 
to the collection and description of observations of scientific activity obtained in 
a par tic u lar setting. (1986, 28; emphasis in the original)

Instead of starting from scientific theories, minds, or “laws of Reason,” 
 these laboratory ethnographers— who actively participated in the launch-
ing of Science and Technology Studies— de cided to start from mundane 
actions and work practices to document and make vis i ble how scientific 
facts  were progressively assembled. Several other monographs accounting 
for the practices of physicists (Traweek 1992; Sormani 2014) and design 
engineers (Vinck 2003) followed the seminal 1980s laboratory studies, each 
time providing insightful new results. We  will cover some of  these results in 
due time. For now, suffice it to say that the pre sent so cio log i cal inquiry is 
based almost entirely on  these works. But what does that concretely imply?

It first implies locating places where individuals work daily to assem ble 
algorithms. For my case, this localization exercise was not very difficult 
as I was institutionally close to a Eu ro pean technical institute with about 
twenty computer science laboratories working  every day to propose new 
algorithms and to make them circulate in broader academic and indus-
trial networks. A more arduous task was to convince the director of one 
 these laboratories to let me describe the practical shaping of algorithms as 
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an “intrepid explorer.” Fortunately, institutional movements related to the 
establishment of a new institute of digital humanities enabled me to share 
my research ambitions with a computer science professor open to inter-
disciplinarity.24 And  after several  trials, I could be part of her laboratory of 
digital image pro cessing for two and half years, from November 2013 to 
March 2016.  These  were no passive moments: as required by the analytical 
genre of laboratory studies and also by the rules of the laboratory to which 
I was affiliated as full member, I had to participate in the life of the labora-
tory and thus become somewhat competent. Although the skills I progres-
sively acquired certainly did not make me become a computer scientist, 
they  were nonetheless crucial for speaking adequately about issues that 
mattered to my new colleagues. But participating and discussing  were not 
enough: I also had to write down, collect, and compile what I did, saw, and 
discussed. Very concretely, this implied taking a lot of notes. Discussions, 
meetings, pre sen ta tions, actions: every thing I experienced had, ideally, to 
be written down, referenced in notebooks and computer documents to be 
 later retrieved, compared, sampled, and analyzed. This full- time data com-
pilation work implied one last move:  after my stay within the computer sci-
ence laboratory— during which I participated in proj ects, held discussions 
with colleagues, observed what they did, wrote down as much as I could, 
and made pre sen ta tions about my preliminary results (pro cesses that have 
deeply transformed me and the sociology I now do)— I had to return to 
my own community of research to more thoroughly work on the collected 
materials and write an investigation report that, progressively, has become 
the pre sent book.

But  these all- too- basic ele ments— that  will be more thoroughly presented 
in chapter 1— elude one impor tant question: How to effectively account 
for, and thus write down and analyze, what computer scientists do as they 
try to shape new algorithms within their laboratory? How to experience, 
capture, and analyze their actions?

Courses of Action

As soon as one is convinced of, and enabled to, undertake a laboratory 
study to document—in a partial yet faithful way— the constitution of algo-
rithms, one quickly lands in uncharted territory. If  there are laboratory 
studies of life sciences, physics, medicine, or brain sciences, very  little has 
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been published on computer science work.25 The cost of entry and the time 
required to carry out this type of investigation certainly contributed to this 
situation. But it is also pos si ble that a peculiar habit of thought partici-
pated in this disinterest. Indeed, for entangled reasons I  will try to tackle in 
chapters 3 and 5, the fair assumption that computer code and mathe matics 
actively contribute to the shaping of computerized methods of calculation 
is often doubled with the not- so- fair assumption that both code and mathe-
matics have no, or  little, empirical thickness. This assumed evanescence of 
the ingredients of algorithms contributes, in turn, to making them appear 
inscrutable. This common habit— that Ziewitz (2016) associated with an 
“algorithmic drama”26— may have discouraged sociologists from entering 
sites where algorithms are  shaped, diffused, and maintained: Why bother 
trying to inquire into  these places since every thing happens in the heads of 
 those who work  there?

But like any ethnographer involved in the daily work of a scientific 
laboratory— trying to participate, talk adequately, and compile empirical 
materials— I quickly realized that very few  things could be attributed to the 
brains of my colleagues, however clever they  were. Of course, they never 
 stopped  doing  things— writing on scratch paper, comparing graphs, typing 
on keyboards, inspecting databases, moving their mouse cursors, taking cof-
fee breaks— that at first appeared unrelated. But as I stubbornly accounted 
for  these  things in my logbooks, I soon realized that the succession of  these 
small elementary “blocks” of action sometimes ended up forming bigger 
accomplishments: a database, a script, a complete program, an algorithm. 
By remaining continuously with my new colleagues in their laboratory, 
conscientiously writing down observations and even recording some work 
sequences (with their prior authorization), I was soon forced to admit 
that what we call “practice” is in fact a term without opposite (Latour 1996). 
In the artificial setting of my laboratory study, accounting for as many 
associations as pos si ble, I soon realized that the much- debated distinction 
between “theory” and “practice” was an artifact. In the laboratory,  there 
 were only practices whose successions ended up sometimes forming “data-
bases,” “computer programs,” “mathematical models,” or “algorithms.” A 
little- equipped retrospective look on  these trajectories could easily ignore 
their importance. But once I managed to slow  these trajectories down 
and patiently account for them— sometimes with the help of  those who 
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 were realizing them— I realized that I could almost do without any internal 
“abstract” cognitive mechanisms.

Following the seminal work of Jacques Theureau (2003), I  shall use the 
term courses of action for  these accountable chronological sequences of ges-
tures, looks, speeches, movements, and interactions between  humans and 
nonhumans whose articulations may end up producing something (a piece of 
steel, a plank, a court decision, an algorithm,  etc.).27 Sticking to this generic 
definition is crucial as it  will help us resist the supposed abstraction of com-
puter science work: what ends up being called a “mathematical model,” 
“code,” or even “algorithm” must be, one way or another, the product of 
accountable courses of action unfolding within specific situations and car-
ried out by assignable actants. Moreover, I  shall include  under the generic 
term “activity” courses of action unfolding in dif fer ent times and locations 
that yet lead to related achievements. In this volume, an activity  will then 
be understood as a set of intertwining courses of actions sharing common finali-
ties. The three parts of this volume are all adventurous attempts to pre sent 
activities taking part to the formation of algorithms; hence their respective 
titles ending with ing: ground- truthing, programming, formulating.

This leads to one potential limitation of courses of action as laboratory 
studies allow them to be accounted for. I mentioned  earlier that trajectories 
must often be slowed down to identify the courses of action whose articula-
tion may lead to the formation of something. This slowing down is salutary 
as it allows many crucial shaping actions to unfold. But it also has one flaw: 
it forces one to proceed very slowly. As a consequence, any small a priori 
mundane course of action may unfold on a dozen pages, thus limiting the 
number of cases.28

Three Gerund Parts (But Potentially More)

I hope the reader has gotten a sense of why I de cided to make this inquiry, 
how I tried to conduct it, and where it may eventually lead. But before 
diving in this exploratory study, I  shall briefly pre sent the three parts of 
this book that, following my action- oriented methodology, are all gerunds: 
ground- truthing, programming, formulating.

Part I mainly deals with the work required to define prob lems capable 
of being solved computationally. In chapter 1, I pre sent the overall setting 
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of the inquiry and introduce basic notions in digital image pro cessing and 
standard algorithmic study. In chapter 2, I go directly to the heart of the 
 matter and follow a group of young computer scientists trying to publish one 
of their algorithms. During this first case study of image pro cessing in the 
making, we  will encounter what computer scientists call “ground truths”: ref-
erential repositories that work as material bases for algorithms. The centrality 
of ground truths and of the work required to build them make me assert that, 
to a certain extent, we get the algorithms of our ground truths.

Part II tries something that has rarely been attempted: considering com-
puter programming as a practical, situated activity. In chapter 3, I propose 
historical and conceptual reasons why programming has resisted— and 
still resists— ethnographic scrutiny. At the end of the chapter, I focus on 
the computational meta phor of the mind, the main conceptual stumbling 
stone preventing any close analy sis of computer programming practices. 
In chapter 4, building on notions and concepts introduced in the previ-
ous chapters, I carefully describe computer programming courses of action 
I attended during my laboratory study. Besides opening new ave nues of 
research, this second case study leads, inter alia, to the following proposi-
tion: a programmer may never solve any prob lem.

In part III, I consider the role of mathe matics in the formation of algo-
rithms. In chapter 5, I first build on STS- inspired inquiries into mathe matics 
to pre sent mathematical practices as stakeholders of scientific activity. I 
then use this unconventional view on mathe matics to define formulat-
ing as the activity of translating entities  until they acquire the same form 
as previously- defined mathematical objects. In chapter 6, I build on  these 
theoretical arguments to account for courses of action that successfully 
formulated some of the relationships among the data of a ground- truth 
database. This third and last case study  will also make us appreciate some 
of the numerous links between ground- truthing, programming, and formu-
lating activities, entangled pro cesses that, sometimes, leads to the shaping 
of algorithms.  These ele ments  will fi nally allow me to touch on the topic 
of machine learning and artificial intelligence,  here considered audacious 
yet costly attempts at automating formulating practices. In the conclusion, 
I develop some corollaries of the empirical and theoretical ele ments this 
inquiry unfolded.

Although ground- truthing, programming, and formulating activities fol-
low each other in the pre sent volume, they do not necessarily do so in the 
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“real” life of action. In places such as the computer science laboratory we 
 will soon get to know,  these activities form a whirlwind pro cess whose ele-
ments influence each other in a dance of agency (Pickering 1995). Moreover, 
even though this book’s narrative thread is sequential— with subsequent 
chapters sometimes referring to previous ones— one may browse through 
it in dif fer ent ways. Readers interested in ethnographic accounts may, for 
example, jump from one case study to another before eventually coming 
back to more theoretical pieces such as chapters 3 and 5. Readers who  favor 
conceptual ventures may wish to go the other way round, starting with intel-
lectual  matters before coming back to down- to- earth accounts of practices. 
Of course, curious readers without specific expectations may also follow the 
book’s thread, starting from chapter 1 and ending with the conclusion.

As mentioned  earlier, it is impor tant to keep in mind— almost like a 
mantra— that  these three activities forming an empirical and partisan ver-
sion of what algorithms  shall be are not fixed nor exclusive. Even though 
they form, I believe, a refreshing and faithful conception of how algorithms 
come into existence, the precise ecol ogy of algorithms would clearly benefit 
from further investigations.  There are surely many more activities contrib-
uting to the formation of algorithms that  future ethnographies and case 
studies  will, hopefully, unfold. In that sense, although this volume does 
intend to bring about an alternative action- oriented constitution of algo-
rithms, my arguments should also be considered preliminary propositions 
asking for further considerations.

At any rate, inscriptions make worlds only when read: at this point, my 
main concern is that readers— sociologists interested in the constitutive 
relationships of algorithms; computer scientists curious about an alterna-
tive action- oriented account of their work; or in fact, anyone concerned 
about the power, and beauty, of algorithms— are intrigued enough to come 
with me to explore some of the  things that are happening in a computer 
science laboratory.
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The fact that techniques mediate advances suggests a way in which mathemati-
cal prob lems that arise in society are ultimately in some relationships with the 
techniques which that society has forged. This, in turn, suggests that mathemati-
cians, like socie ties, can only pose  those questions to which a potentiality of a 
response exists.

— Ritter (1995, 72)

The introduction presented the rationale of this inquiry. Now, obviously, 
the hard work begins: effectively  doing it! We  will start smoothly though, 
with two straightforward chapters. Chapter 1 specifies the overall setting of 
the inquiry: a well- respected computer science laboratory that specializes 
in digital image pro cessing; I  shall call it “the Lab.” I start by presenting 
its environment and some aspects of its organ ization as well as its place, 
modest but substantive, in the heterogeneous ecosystem of computer sci-
ence industry. I  will also consider methodological  matters and discuss the 
notion of algorithm as it is generally presented in the specialized lit er a ture. 
Chapter 2 starts in the  middle of  things at the Lab’s cafeteria during a work-
ing session where the Group— three young computer scientists— tries to 
coordinate the development of a new algorithm.  After a quick parenthesis 
where I pre sent the basic issues at stake, we  will closely follow this proj ect, 
meeting along the way entities called “ground truths” whose importance in 
the constitution of algorithms we  will learn to appreciate. The last section 
of chapter 2  will be a brief summary.





This inquiry took place in a Eu ro pean technical institute (ETI) between 
November 2013 and February 2016. This public school was integral part of 
the global academic landscape and hosted more than five thousand under-
graduate and twenty- five hundred gradu ate students in five faculties: basic 
sciences, engineering, life sciences, architecture, and computer science. 
In this investigation, I  will mainly focus on the computer science faculty 
(CSF), one of the most renowned within the ETI for its ability to attract 
foreign students and professors, to raise impor tant research funds, and to 
engage in numerous partnerships with the industry.

Over the time of this inquiry, the CSF employed nearly forty professors 
supervising the training of more than 780 undergraduate and 550 gradu ate 
students. The CSF professors  were supported in their teaching activities by 
around 250 doctoral students who  were also working on the completion of 
their PhD  theses, generally over four years. Research among CSF members 
was extremely varied, ranging from theoretical computer science and hard-
ware architecture to machine learning and signal pro cessing. Significant 
 human and material resources  were invested to gird the  whole domain of 
computer science and take active part to its development.

Teaching, research, and administrative activities of the CSF  were mainly 
located in six buildings linked to each other by a system of paths, foot-
bridges, and under ground passages. Within this complex, the most recent 
building (inaugurated in 2004) served as a nerve center, housing most of the 
laboratories, the best equipped conference rooms, and the faculty’s cafete-
ria, highly prized for its breathtaking view of the surroundings (figure 1.1). 
Opposite the CSF’s main building, on the other side of a small road, was 
another complex of buildings housing around one hundred start- ups and 
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spin- offs as well as several offices of large companies and ser vice provid-
ers. Created in the 1990s, this innovation area had the explicit purpose 
of bringing fundamental research outputs closer to the industry, accord-
ing to dynamics of scientific valorization close to  those analyzed by Lili-
ana Doganova (2012). Members of this innovation area often interacted 
with members of the CSF during both formal and informal events, many of 
which took place in the CSF main building.

However, the vast majority of CSF students did not launch start- ups at 
the end of their training programs. Rather, they tended to be hired by large 
national and international technology companies. This was particularly true 
for doctoral students whose research funds  were frequently supported by large 
companies such as Google, IBM, NEC, or Facebook following calls for proj-
ects, thus creating multiple and regular professional connections. Visiting 
trips and internships  were also routinely or ga nized within technology com-
panies as part of master’s and doctoral programs. This was another distinctive 
feature of CSF: within the ETI, CSF students had the greatest employability.

But public money nonetheless constituted the main financial resource 
for ongoing research proj ects.  Here, too, the CSF seemed to have a strategic 

Figure 1.1
The CSF main building. On the left and right sides of the central patio, lines of offices 
and seminar rooms. In the center of the image, in air- conditioned rooms with 
glazed win dows, three server farms store local programs, experiments, and databases. 
On the top floor, illuminated, one can discern the entrance to the faculty cafeteria.
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advantage within the ETI, heavi ly capitalizing on and participating in pub-
lic speeches reporting the advent of a new industrial revolution around 
big data, machine learning, and artificial intelligence. In addition, thanks 
to the CSF’s reputation as a potential trainer of a new generation of digital 
entrepreneurs (with several iconic pre ce dents participating in this reputa-
tion), its financing requests could play the renewal of industry card, a goal 
explic itly put forward by national research funding agencies. Relative to its 
size within the ETI, the CSF was thus one of the faculties to which the most 
public research funds  were allocated.

Although the CSF hosted cutting- edge computer equipment, its premises 
remained open most of the time. From 7 a.m. to 7 p.m., apart from incon-
spicuous surveillance cameras placed in sensitive areas such as server farms, 
no special security procedures  were in place. Unlike, for example, Vincent- 
Antonin Lépinay’s (2011) analy sis of General Bank’s trading rooms, my 
ethnographic inquiry was largely conducted in an open environment with 
no explicit surveillance mechanisms. For example, it was common to meet 
tourists who came to visit and photo graph the high- tech architecture of 
the CSF premises. From 7 p.m. to 7 a.m., the security system was comple-
mented by two night watchmen and locked entrance doors (with alarms) 
for  those without an access card.

Nevertheless, while the CSF premises remained open most of the time, I 
of course needed institutional support to collaborate with computer scien-
tists and document their courses of action. Without an e- mail address and 
an account within the administrative system, it was, for example, impos-
sible to connect to the CSF servers or use advanced software, both constitut-
ing the basic infrastructure of most ongoing proj ects. Moreover, given the 
deliberately small size of most of the CSF laboratories (around twenty col-
laborators  under the supervision of a professor), it was impossible to blend 
into the mass and investigate in a hidden way.

As a Science and Technology Studies (STS) sociologist without any for-
mal training in computer science, I first had difficulty raising the interest of 
the CSF professors as my research questions appeared too abstract and their 
impact too uncertain. Fortunately, at some point I had the opportunity to 
surf on a broader institutional movement seeking to bring the CSF closer to 
the faculty of  human sciences (FHS) of a neighboring university to which I 
was then affiliated. In early 2013, with the stated desire to penetrate cultural 
spheres, the ETI’s management started to invest in the establishment of a 
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center for digital humanities. As this movement involved the recruitment 
of new teaching and research staff, it quickly created links between human-
ity scholars of FHS— some of them STS- inspired— and computer scientists of 
ETI, and it was in this context of disciplinary rapprochement that I met the 
director of a laboratory that specialized in digital image pro cessing.  After 
several furtive yet decisive exchanges, I obtained her support to apply for a 
national fellowship promoting interdisciplinary research. Following several 
se lection rounds, my application was fi nally retained in September 2013, 
therefore committing me to run a four- year FHS- CSF doctoral proj ect with 
the stated ambition of carry ing out an ethnographic inquiry into the for-
mation of algorithms.1 This dual institutional affiliation allowed me to be 
officially accredited as full member of CSF’s image- processing laboratory 
for a period of two- and- a- half years. From November 2013 to March 2016, I 
had not only the same rights as any laboratory member, notably in terms of 
research infrastructure, but also the same prerogatives, notably in terms 
of pre sen ta tion of results. While  these conditions of investigation  were at first 
quite tough— after all, I had initially no experience in computer science— 
they gave me the unique opportunity to stay, observe, and work for what I 
 will from now on call “the Lab.”

The Lab

The Lab was located on the third floor of the CSF main building. Typical of 
the organ ization of the CSF, it was centered upon the tutelary figure of a full 
professor, the director of the Lab. The director was assisted by a secretary 
dealing with administrative issues that  were often complex due to the high 
proportion of collaborators who came from abroad (especially from Persia, 
India, and China).2 Among  these collaborators, one postdoc student stayed 
at the Lab for one- and- a- half years. An invited scholar also had a desk and 
took active part in teaching and research activities. Members of spin- offs, 
sometimes related to the innovation area mentioned  earlier, also stayed 
within the Lab for the duration of their fund raising, ranging from one to 
two years. It was not uncommon for  these spin- off collaborators to make 
pre sen ta tions at Lab seminars (more on this  later), though in  these situa-
tions the other collaborators  were required to re spect an unofficial “nondis-
closure arrangement.” Some collaborators in between two research contracts 
 were also sometimes hired as “scientists,” a temporary position allowing 
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them to pursue their ongoing work in decent conditions. However, most 
of the Lab’s members  were PhD students aged from twenty- three to thirty 
years old and generally holders of four- year employment contracts, at the 
end of which they  were asked to submit doctoral  theses allowing them 
to become doctors of computer science. During my time in the Lab, the 
number of PhD students varied from six to ten and depended on the num-
ber of submitted  theses and awarded research contracts. In parallel to their 
research activities,  these students also had to work as teaching assistants for 
bachelor’s and master’s classes, including  those given by the Lab’s director. 
All in all, for the two- and- a- half years of my collaboration, the Lab hosted 
between ten and sixteen  people, including myself.

Like many CSF professors, the director continuously tried to establish 
community dynamics within her Lab. This involved, for example, bringing 
cakes and biscuits to encourage informal chatting at the end of the weekly 
Lab meetings, during which one or two collaborators presented their work 
in pro gress. Two Lab dinners at nearby restaurants  were also or ga nized each 
year; one around Christmas, the other at the end of June. Echoing a cor-
porate outing, a two- day excursion was or ga nized during the summer as 
well. The Lab’s PhD students also contributed to this dynamic by frequently 
organ izing “after- work” outings to the school pub on their own initiative. 
All  these facilitation efforts effectively created and maintained relation-
ships among collaborators, many of whom had initially arrived in the Lab 
without knowing anyone in the area.

To some extent, the architectural organ ization of the Lab also partici-
pated in  these community dynamics as the seven offices, generally occu-
pied by two researchers facing each other,  were each aligned along the same 
hall (see figures 1.2 and 1.3). The Lab also had a private cafeteria that pro-
vided  tables, chairs, fridges, and coffee machines. As we  will see  later, this 
cafeteria was often used as a meeting point, even though the Lab had its own 
seminar room.

If  these community dynamics, greatly encouraged by the Lab’s direc-
tor, did contribute to creating an enriching work environment, then they 
also went along with managerial aspects. For example, attendance and con-
tribution to Lab meetings  were mandatory, with each collaborator being 
required to make at least one pre sen ta tion per semester. In addition, similar 
to corporate settings, collaborators  were required to inform the secretary in 
the event of illness or incapacity, thus suggesting they should be at the Lab 
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Figure 1.2
The Lab’s hall. On the left,  behind closed doors, the Lab’s cafeteria and seminar room. 
On the right, seven offices most of the time occupied by two researchers.

Figure 1.3
Inside one of the Lab’s offices. Two researchers  were generally facing each other, though 
they  were  behind one to three large monitors.
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 every working day  unless other wise specified. Moreover, scientific collabo-
rators  were asked to meet with the director at least once  every two weeks to 
inform her of their research pro gress. This allowed the director to have an 
actualized view on the ongoing proj ects while committing collaborators to 
sharing results, questions, prob lems, or doubts with her.

This leads us to one central ele ment penetrating many aspects of the 
Lab: researchers  were asked to produce outputs. This incentive to produce 
tangible results derived from a broader dynamic, now common to research 
institutions desiring to achieve, and maintain, the heights of the academic 
rankings of world universities (Espeland and Sauder 2016). Although most 
of the CSF laboratory directors held stable academic positions, they none-
theless had to be accountable for the per for mance of their research teams as 
the category of output having the greatest impact on  these evaluations  were 
articles published in peer- reviewed journals and conferences. Most of the 
research efforts I attended and participated in  were then directed  toward 
this very specific goal: publishing peer- reviewed articles. Despite its close 
relations with the tech industry and its effective support for the launch of 
spin- offs, the Lab was, in that sense, mainly academic- paper oriented.

But what was the content of the peer- reviewed articles that members of 
the Lab sought to publish in academic journals and conference proceed-
ings? What was the Lab working on? The research field of the Lab was 
existentially linked to the advent of a piece of equipment called the charge- 
coupled device (CCD). The history of the CCD’s development, from its 
patented concept at Bell Labs in the late 1960s to the many norms and stan-
dards that supported its industrialization during the 1990s, is a long and 
tortuous story.3 In addition, a precise understanding of its now- stabilized 
internal functioning would require foundations in solid- state physics.4 For 
what interests us  here— superficially understanding the main topic of the 
Lab’s academic papers—we can just focus on what CCDs and their dif fer ent 
variations such as complementary metal- oxide semiconductors (CMOSs)5 
allowed the Lab to do (i.e., the potentialities  these devices suggest).

In a nutshell, through the translation of electromagnetic photons into 
electron charges as well as their amplification and digitalization, CCDs and 
CMOSs—as industrially produced devices supported by many standards— 
enable the production of digital images constituted of discrete square ele-
ments called pixels.6 Or ga nized according to a coordinate system allowing the 
identification of their locations within a grid,  these discrete pixels— assigned 
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eight- bit red, green, and blue values in the case of color images (see figure 1.4)— 
have the ability to be pro cessed by computer programs that are themselves, 
most of time, inspired by certified mathematical statements. Many terms of 
the former sentence  will be discussed at length in the following chapters. 
For now, it is enough to comprehend that in each of the seven offices of the 
Lab as well as in many other scientific and industrial locations, pictures of 
buildings, shadows, mountains, smiles, or elephants—as produced by stan-
dardized CCDs and CMOSs— were also considered two- dimensional signals 
that could be pro cessed by means of computerized methods of calculation.7 
The design and shaping of  these methods, their pre sen ta tion within aca-
demic papers, and their expression as computer programs able to automati-
cally compute the constitutive ele ments of digital photo graphs (often called 
“natu ral images”) was the main research focus of the Lab.8 This specific area 
of practice was and is generally called “two- dimensional digital signal pro-
cessing” or, more succinctly, “image pro cessing” or “image recognition” (when 
it deals with recognition tasks).

Even though spending time and energy assembling computerized meth-
ods of calculation capable of pro cessing CDD-  and CMOS- derived pixels in 
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Figure 1.4
Schematic of the pixel organ ization of a digital photo graph as enabled by industri-
ally produced and standardized CCDs and CMOSs. The schematic on the right is an 
imaginary zoom of the digital photo graph on the left.  Every pixel is identified by its 
location within a coordinate system (x/y). Moreover, assuming the image on the left 
is a color image, each pixel is described by three complementary values, commonly 
referred to as a red, green, and blue (RGB) color scheme. As most standard computers 
now express RGB values as eight- bit memory addresses (e.g., one byte),  these triplets 
can vary from zero to 255 or, in hexadecimal writing, from 00 to FF.
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meaningful ways might at first sound esoteric, such an activity plays an impor-
tant role in con temporary economies.9 This is to be related with the unpre-
ce dented production, circulation, and accessibility of digital photo graphs:10 
thanks to image- processing algorithms,  these numerous two- dimensional 
signals have become traces potentially indicating habits, attributes, prefer-
ences, and desires. Instead of a noisy, expansive stream of inscrutable data, 
the many digital photo graphs produced and shared  every day have turned 
into valuable assets (Birch and Muniesa 2020) with the advent of image pro-
cessing and recognition. This is a phenomenon whose magnitude must be 
grasped.  Giant technology ser vices companies such as Facebook, Google, 
Amazon, Apple, IBM, or Microsoft all have laboratories whose members work 
 every day to manufacture new algorithms to commercially exploit the infi-
nite potential of digital photo graphs, tangible expressions of what users, 
clients, and partners are assumedly attached to.11 Nation- states are not to 
be left out  either; power ful public agencies also massively invest in image 
pro cessing to make use of the capabilities of digital photo graphs for security, 
control, and disciplinary purposes.12 In recent years, similar to what Hine 
(2008) described for the case of biological systematics, image pro cessing has 
been seen as a resource in control and planning and, to this end, has increas-
ingly become the object of strategic policy concern and support.

All this may sound gloomy. However, image pro cessing is inextricably 
a fascinating research area with many dedicated academic journals13 and 
conferences.14 The research issue is indeed appealing: how to make box- like 
computing machines see and possibly use their formalist ecol ogy to make 
them detect, recognize, and reveal  things that we, as bipedal mammals, 
cannot grasp with our organic senses? Huge academic efforts are invested 
 every day in the development of algorithms capable of manipulating CCD-  
and CMOS- enabled pixels to make computers become genuine visual equip-
ment. It is impor tant to note, however, that a clear- cut boundary among 
image- processing groups cannot be easily drawn: academic researchers are 
funded by public agencies but also by private companies that themselves 
are sometimes solicited by public agencies that then take part in the devel-
opment of industrial products. For better or worse,  these heterogeneous 
actants associate with each other and cooperatively participate in the devel-
opment and worldwide diffusion of image- processing algorithms through 
computing devices. And at its own level, the Lab was participating in this 
highly collective endeavor.
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Yet one may rightly object that a sixteen- person academic laboratory 
for image pro cessing such as the Lab is not akin to, say, a  giant technology 
ser vices com pany such as Google or a power ful state agency such as the 
National Security Agency. How dare I treat on the same level a small yet 
respected academic institution welcoming an ethnographer interested in 
the manufacture of algorithms and gigantic actors attached to secrecy and 
daily contributing to the progressive establishment of a “black  box society” 
(Pasquale 2015)? It is true that impor tant differences exist between an algo-
rithm as an academic proposition and an algorithm as a commercial product 
or an  actual control device (notably in terms of optimization and software 
implementation). Nevertheless, it is crucial to specify that academic contri-
butions such as  those of the Lab do irrigate the work of large industrial and 
state actors.  These connections are often made vis i ble during in- house talks 
where alumni working in the industry are invited to discuss their ongoing 
proj ects in academic settings. During my stay at the Lab, I attended many 
such talks and was at first surprised to find that  behind a priori impressive 
affiliations such as Google Brain or IBM Watson lay a computer scientist not 
so dissimilar to the ones I daily interacted with, saying more or less the same 
 things, and working in teams of similar proportions (though for a signifi-
cantly dif fer ent salary). For example, in November 2015, the director of the 
Lab invited an Instagram employee—an alumnus of the Lab—to talk about 
their new browsing system whose main components derived from a paper 
published in the Proceedings of the 2014 IEEE Conference on Computer Vision 
and Pattern Recognition. In June 2014, a former Lab member working for 
NEC in a five- person team also presented her ongoing algorithmic proj ect 
as deriving from a series of papers presented at the 2013 Eu ro pean Confer-
ence on Computer Vision in which she participated. Other  people— mostly 
from IBM and Google— also took part in  these “invited talks” or ga nized by 
the Lab and neighboring CSF signal- processing laboratories, most of the 
time mentioning and using state- of- the- art publications.15 Actors who  were 
officially part of the industry appeared then closely connected to the aca-
demic community, working in teams of similar size, participating in the 
same events, and sharing the same references. Better still, this continuous 
interaction between academic laboratories such as the Lab and the gigantic 
tech industry was a two- way street: companies like Google, Facebook, and 
Microsoft also or ga nized academic events, sponsored international confer-
ences, and published papers in the best- ranked journals (see figure 1.5).16
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Nonetheless it remains true that academic publications are not commer-
cial products; if university and industrial laboratories both publish papers 
presenting new image- processing algorithms, then  these methods are rarely 
workable as they are. To become genuine goods capable of making impor-
tant differences in the collective world, they must take part in wider pas-
sivation and valuation pro cesses that  will significantly modify their initial 
properties (Callon 2017; Muniesa 2011b). Depending on their circulation 
within differentiated networks, some computerized methods of calcula-
tion initially designed by industrial or academic image- processing laborato-
ries can thus remain very specialized and intended for ad hoc purposes (e.g., 
superpixel segmentation algorithms), whereas  others can become widespread 
and industrially implemented in broader assemblages such as digital cameras 
(e.g., red- eye- removal algorithms), expensive software, and large informa-
tion systems (e.g., text- recognition algorithms, compression schemes, or fea-
ture clustering). However, before they may circulate in broader networks and 
hybridize to the point of becoming parts of larger systems, image- processing 
algorithms first need to be designed, discussed, and shared among a heteroge-
neous research community in which the Lab played an active role.  Whether 
widespread or specialized, image- processing algorithms— also sometimes just 
called “models” within the computer science community— first need to be 
nurtured, trained, evaluated, and compared in places like the Lab.

Developing image- processing algorithms and publishing them in peer- 
reviewed academic journals and conferences was thus a central activity within 
the Lab, and it was this activity that I intended to account for. Yet I still had to 
find a way to document the courses of action that took place  there.

Collecting Materials

Thanks to my interdisciplinary research contract, I was part of the Lab for 
two- and- a- half years. Just as any other collaborator, I had a desk, an e- mail 
address, and an account within the administrative system. Yet despite  these 
optimal conditions for ethnographic investigation, it would be an under-
statement to claim that the first days  were difficult: every thing happening 
around me seemed at first out of reach. Fortunately, the rules of the Lab that 
I had to observe quickly allowed me to experience assignable situations. I 
divided  these situations progressively into seven dif fer ent yet interrelated 
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types whose systematic account and referencing ended up constituting my 
corpus of field data.

The first type of situation I experienced was the Lab meetings I mentioned 
 earlier. During  these weekly meetings, the Lab’s members gathered in a small 
conference room to attend and react to pre sen ta tions of works in pro gress. 
 Every PhD student (me included), postdoc, spin- off member, or invited 
scholar  were asked to make at least one pre sen ta tion each semester.  These 
meetings turned out to be crucial to my inquiry for at least three reasons. 
First, they helped me identify the research topics of my new colleagues. I 
could then use this information to initiate discussions with them in more 
informal settings. Second, Lab meetings allowed me to pre sent my research 
proj ect as well as some of its preliminary propositions in front of the  whole 
Lab.  These mandatory exercises thus forced me to put my exploratory intu-
itions to the test and, often, retrofit them. Third,  these situations gave me 
opportunities to share doubts and needs as in September 2015 when I used 
this tribune to publicly ask for help in my attempts to better document com-
puter programming practices (more on this in chapter 4). Yet although  these 
Lab meetings  were essential to the advancement of my inquiry, most of the 
data I  will use in the following chapters  were not collected during  these situa-
tions. Indeed, as  these meetings mostly dealt with results of ongoing research 
proj ects within the Lab, the empirical pro cesses and courses of action that led 
to  these results  were generally not at the center of the discussions.

The second type of situation was conferences or ga nized by the Lab and 
neighbored signal- processing laboratories. As mentioned  earlier, some of 
 these conferences  were invited talks where alumni working in the industry 
came to discuss ongoing proj ects. Other conferences  were closer to tradi-
tional keynotes and gave the floor to prominent researchers, mainly from 
academic institutions. Though, again, I do not directly use data collected 
from  these conferences in the empirical chapters,  these events  were none-
theless crucial situations to experience and account for as they allowed me 
to identify current debates in computer science and better appreciate some 
of the relationships between research and industry.

A third type of situation I experienced was the so- called Group meet-
ings in which I participated between November 2013 and June 2014.  These 
Group meetings  were part of an image- processing proj ect to which the Lab’s 
director had assigned me, and they  were precious for my ethnographic 
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inquiry as they made me encounter what computer scientists call ground 
truths— inconspicuous entities that are yet central to the formation of algo-
rithms.  These entities  will be introduced in chapter 2 and  will accompany 
us throughout the rest of the book.

A fourth type of situation took place at the office desks of the Lab. Finding 
appropriate ways to account for  these “desk situations” was an impor tant 
felicity condition of this inquiry as it was at  these precise moments and loca-
tions that courses of action crucial to the  actual construction of algorithms 
often took place. I had the chance to follow and account for such desk situ-
ations during a small part of the image- processing proj ect to which I was 
assigned between November 2013 and June 2014 (more on this in chapter 6) 
as well as during several computer programming episodes that took place 
between September 2015 and February 2016 (more on this in chapter 4).

A fifth type of situation was the numerous classes and tutorials in which 
I participated throughout my time at the Lab. From basic signal- processing 
classes to advanced Python programming tutorials, a significant part of 
my time and energy was dedicated to learning the language of computer 
science. Even if I do not directly use ele ments I saw in classes or during 
tutorials in the following case studies,  these situations nonetheless greatly 
helped me speak with my computer scientist colleagues. Though quite time 
consuming— again, I had initially no experience in computer science— 
these learning activities  were crucial prerequisites to interact adequately 
with my fellow workers about issues that mattered to them.

A sixth type of situation was the semi- structured interviews I conducted 
throughout my stay at the Lab.  These interviews  were initially exploratory 
in nature and aimed to give me a better understanding of how my col-
leagues saw their work. However, as the investigation progressed, I instead 
used interviews as retroactive tools to revisit with Lab members the events 
for which I could only partially account. This helped me fill in some of the 
many gaps in my data.

Fi nally, a seventh generic type of situation was the informal discussions I 
had daily with the Lab’s members. Although I conducted twenty- five semi- 
structured interviews,  these  were clearly not as valuable as the numerous con-
versations I had during coffee breaks, lunches, Christmas parties, corporate 
outings, or after- work sessions at the pub. Besides facilitating my integration 
within the Lab,  these situations helped me share what I was experiencing and 
documenting. During  these informal moments, I could, for example, discuss 
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past pre sen ta tions, recently published papers, ongoing proj ects, forthcoming 
programming operations, or unclear ele ments I had seen in class.

From November 2013 to April 2016, I spent most of my working time in 
and around the Lab, switching among  these seven types of situations and 
trying to account for them in my logbooks the best I could. At the end of 
the day, sometimes  until late in the eve ning, I used a text editor to clean 
up  these notes, classify them according to an increasingly consistent taxon-
omy, and reference them to the paper pages from which they derived (see 
figure 1.6). This collecting and referencing system was at first very messy 
as the number of situational categories increased to the point of no lon-
ger being relevant and my single initial Word document became increas-
ingly cumbersome. However,  after a  couple of months, I could identify the 
seven dif fer ent yet interrelated situational categories I have just presented, 
and thanks to the computer programming skills I progressively acquired 
through classes and tutorials, I de cided to stick to individual .txt files whose 
content could be browsed by  simple yet power ful Python programs I started 
to draft (see figure 1.7). Once systematized, this ad hoc data management 
plan more or less nimbly allowed me to juggle my digitized data while main-
taining access to the original paper notes.

In April 2016,  after a small farewell party, I left the Lab with around one 
thousand pages of handwritten notes; two thousand .txt files; a dozen mod-
ulable Python scripts; and hundreds of audio, image, and movie record-
ings as well as numerous half- finished analytical propositions. And with all 
 these empirical materials literally  under my arm, I (temporarily) exited my 
field site, asking myself serious questions about the significance of all this.

A Torturous Interlude

Ethnography is a transformative experience. Encountering worlds and writ-
ing about them— what is the point of even trying such an odd exercise? 
Computer science now gives me comfort. And as for my former sociolo-
gist peers, what  will they think of this new me? I cannot talk anymore. 
Hell of a journey, significant metamorphosis: “I understand, and since I 
cannot express myself except in pagan terms, I would rather keep quiet,” 
someone said a long time ago. Yet words  shall be written, promises kept, 
and something not forgotten: my new “new” colleagues (the former ones) 
have all gone through similar journeys.  After all, we are in the same shaky 
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boat, trying to write faithful so cio log i cal documents from scattered empiri-
cal data. But how can I do justice to my  limited yet empirical materials, 
distorted voices of  those for whom I proposed to become the spokesperson 
(without any mandate)? I lack every thing: a history, a medium, a language. 
Where do I start? Maybe in the  middle of  things, as always. Back to fun-
damentals, to practices, to courses of action. Read and reread classics; dive 
again and again into my materials while sharing them with my colleagues 
who are gradually becoming pairs again (how could I have forgotten that?). 
Half- relevant  things start to emerge— almost- analytical propositions. What 
data can make them bloom in a written document? Not even a fraction, an 
infinitesimal quantity: tiny snapshot of an enlightened world. Accountable 
activities start taking shape on text pages. But are they still readable? Inscrip-
tions only make worlds when read. Conceptual shortage: both computer 
science and sociology may not have the means to confront the manufac-
ture of algorithms. The slightest  little programming sequence soon sug-
gests the rewriting of computers’ history; any small formula demands an 
alternative philosophy of mathe matics (what a cluttered topic!). We walk 
around with eyes wide shut. Gradually, though, patterns emerge: courses of 
action become vectors tracing genuine, accountable activities; an impres-
sionist draft from which adversarial lines appear: they may be power ful 
but not inscrutable. How could we start composing with algorithms? The 
hope is so dim, and the means so  limited. “A voice cries out in the desert,” 
and so on and so on. Enough laments: the  whole  thing is driven by issues 

1. import OS
2. import mmap
3.
4. for i in os.listdir(“/Users/florianjaton/logbook"):
5. if i.endswith(“txt”):
6. f = open(i)
7. s = mmap.(f.fileno(), 0, access=mmap.ACCESS_READ)
8. if s.find(“ground truth” and “NK”) != -1:
9. file = open(“0_list-entries”, “a”)
10. file.write(i)
11. file.write(“\n”)

Figure 1.7
Example of a small Python script used to browse the content of the .txt files. This 
script, working as a small computer program, makes the computer list the names of 
the .txt files whose content include the keywords “ground truth” and “NK” in a new 
document named “0_list- entries.”
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more impor tant than my small personal trou bles. And I guess I must now 
validate my return ticket to propose a partial- yet- empirical constitution of 
algorithms, somehow.

Algorithm, You Say?

 Going through the previous, unusual section, I hope the reader could 
appreciate that writing an ethnographic document about the shaping of 
algorithms can somewhat be tortuous— even more so when one realizes 
that in computer science the notion of algorithm is rarely problematic! As a 
sociologist and ethnographer interested in the manufacture of algorithms, 
I indeed landed in an academic field whose most illustrious figures have 
dedicated— and still dedicate— their lives to the study of algorithms. To 
many computer science professionals then, the fuss about “what an algo-
rithm is” is overhyped; as one colleague suggested me on my first week 
in the Lab, taking the local undergraduate course in “algorithmic study” 
may allow me to complete my research in rec ord time… In order to specify 
my analytical gesture, it is thus impor tant to look at this well- established 
computer- science- oriented take on algorithms to consider the pre sent work 
as an original complement to it.

When browsing through the numerous— yet not infinite— computer sci-
ence manuals on algorithmic study, one notices algorithms are defined in 
quite a homogeneous way. Authors typically start with a short history of 
the term17 before quickly shifting to its general con temporary acceptation 
as a systematic method composed of dif fer ent steps.18 Authors then specify that 
the rules of an algorithm’s steps should be univocal enough to be imple-
mented in computing devices, thus differentiating algorithms from other a 
priori systematic methods such as cooking  recipes or installation guides. In 
the same movement, it is also specified that  these step- by- step computer- 
implementable methods always refer to a prob lem they are designed to 
solve.19 This second definitional ele ment assigns algorithms a function, allow-
ing computers to provide answers that are correct relative to specific prob-
lems at hand.

Right  after  these opening statements, computer science manuals tend to 
or ga nize  these functional step- by- step computer- implementable problem- 
solving methods around “inputs” and “outputs.” The functional activity 
of algorithms is thus further specified: the way algorithms may provide 
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right answers to defined prob lems is by transforming inputs into outputs. 
This third definitional movement leads to the standard well- accepted con-
ception of algorithm as “a procedure that takes any of the pos si ble input 
instances and transforms it to the desired output” (Skiena 2008, 3).20

 These a priori all- too- basic ele ments are, in fact, not trivial as they push 
ahead with an evaluation stance and frame algorithms in a very oriented 
way. Indeed, by endowing itself with problems- inputs and solutions- outputs, 
this take on algorithms can emphasize on the adequacy relation between  these 
two poles. The study of algorithms becomes then the study of their effective-
ness. This overlooking position is fundamental and penetrates the entire field 
of algorithmic study whose scientific agenda is well summarized by Knuth: 
“We often are faced with several algorithms for the same prob lem and we 
must decide which is best” (1997a, 7; italics added).21 From this point, algo-
rithmic analyses can focus on the elaboration of meta- methods that allow 
the systematization of the formal evaluation of algorithms.

Borrowing from a wide variety of mathematical branches (e.g., set the-
ory, complexity theory), methods for analyzing algorithms as proposed by 
algorithmic students can be extremely elegant and power ful. Moreover, in 
the light of the significant advances in terms of implementation, data struc-
turation, optimization, and theoretical understanding, this standard concep-
tion of algorithms as more or less functional interfaces between inputs and 
outputs— themselves defined by specific prob lems— certainly deserves its 
high respectability. However, I believe this standard conception has some lim-
its that, in  these days of controversies over algorithms, are impor tant enough 
to suggest complementary alternatives that yet still need to be submitted.

First, the standard conception of algorithms overlooks the definition of 
the prob lems that algorithms are intended to solve. According to this view, 
prob lems and their potential solutions are already made, and the role of 
algorithmic studies is to evaluate the effectiveness of the steps leading to 
the transformation of inputs into outputs. Yet it is fair to assume that prob-
lems and the terms that define them do not exist by themselves. As it is 
shown in chapter 2 of this book, for example, prob lems are delicately irri-
gated products of problematization pro cesses engaging habits, desires, skills, 
and values. And  these collective pro cesses greatly participate in the way 
algorithms—as problem- solving devices— will further be designed.

The second limit is linked to the first one: if one considers problemati-
zation as part of algorithmic design, the nature of the competition among 
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algorithms changes. The best algorithms are not only the ones whose for-
mal characteristics certify their superiority but also the ones that managed 
to associate with their prob lems’ definitions the procedures capable of eval-
uating their results. By concentrating on formal criterions— without taking 
into account how  these formalisms participated in the initial shaping of the 
prob lems at hand— the standard conception of algorithms tends to cover 
up the evaluation infrastructure and politics of algorithms. As shown in 
chapter 2, for example, evaluative procedures do not necessarily follow the 
design of algorithms; they also, sometimes, precede and influence it.

Third, the  actual computerization of the iterative methods is not consid-
ered. Even though the standard conception of algorithms rightly insists on 
the centrality of computer code for the optimal execution of algorithms, 
this insistence takes the shape of programming methodologies that do not 
consider the experience of programming as it is lived at computer termi-
nals. According to this standard conception of algorithms, writing num-
bered lists of instructions capable of triggering electric pulses in desired 
ways is mainly considered a means to an end. But as it is shown in chap-
ters 4 and 6 of this book, programming practices—by virtue of the collec-
tive pro cesses they require in order to unfold— also sometimes influence 
the way algorithms come into existence.

Fourth, little is said about how mathematical statements end up being 
enrolled for the transformation of inputs into outputs and how this enroll-
ment affects the considered algorithms. To the standard conception of 
algorithms, mathematical statements appear out of the blue, ready to be 
scrutinized by means of other mathematical statements capable of evaluat-
ing their effectiveness. Yet as the chapter 6 of this book indicates, enroll-
ing mathematical statements in order to operate the transformation of 
inputs into outputs is a problematic pro cess in its own right, and again, 
this impacts the nature of algorithms. The initial conception of the dataset 
and its progressive problematization, reor ga ni za tion, and reduction engage 
expectations and anticipations that fully participate in the ecol ogy of algo-
rithms in the wild.

The pre sent work therefore intends to open up algorithms and extend 
them to pro cesses that they are attached to but whose standard conception 
prevents from appreciating. If this venture does not, of course, aim to con-
test the results of algorithmic studies, it intends to enrich it with grounded 
so cio log i cal considerations.



Let us start this ethnographic inquiry into the constitution of algorithms 
with a first dive into the life of the Lab. More precisely, let us start on Novem-
ber 7, 2013, at the Lab’s cafeteria. At that time, I had only been at the Lab 
for a few days. During my first Lab meeting, I introduced myself as an eth-
nographer who had four years to submit a PhD thesis on the practical shap-
ing of algorithms. Reactions had been courteous, although tinged with some 
indifference. Attention went up a notch when the director told the invited 
postdoc CL, the third- year PhD student GY, and the first- year PhD student BJ 
that I would take part to their ongoing proj ect. It is this proj ect we  will follow 
in this first case study centered around several Group meetings, collective 
working sessions where CL, GY, and BJ (and myself) tried to coordinate the 
submission of a paper on a new algorithm.1

Entering the Lab’s Cafeteria

Around 3 p.m. on November 7, 2013, I (FJ) entered the Lab’s cafeteria for 
the first Group meeting. By that time, the Group and the topic of the proj-
ect had already been defined: previous discussions among the Lab asso-
ciates agreed that a new collective publication in saliency detection was 
relevant regarding the state of the art as well as the expertise of CL, GY, 
and BJ. Naturally, as any ethnographer freshly landed on his field site, I 
was terribly anxious: Would I live up to the expectations? Would they help 
me understand what they do? My participation in the proj ect was clearly a 
top- down decision as the Lab’s director had assigned me to the proj ect to 
help me properly start my inquiry. Would the Group welcome me? I tried 
to read some papers on saliency detection that CL previously sent me but 
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I was confused by their tacit postulates. How would it be pos si ble to detect 
this strange  thing called “saliency” since what is impor tant in a digital 
image certainly varies from person to person? And what is this odd notion 
of “ground truth” that the papers’ algorithms seem to rely on? “Ground” 
and “truth”: for an STS scholar, such a conjunction sounded highly prob-
lematic. As soon as I entered the Lab’s cafeteria though, the members of 
the Group presented me with the ambitions of the proj ect and how they 
intended to run it:2

Group meeting, the Lab’s cafeteria, November 7, 2013

CL: “So you heard about saliency, right?”

FJ: “Well, I’ve read some stuff.”

CL: “Huge topic, but basically, when you look at an image, not every thing 
is impor tant usually, and you focus only on some ele ments.  … What we 
try to do basically, it’s like a model that detects ele ments in an image that 
should attract attention.  … GY’s worked on a model that uses contrasts to 
segment objects and BJ has a model that detects  faces.  We’ll use them as a 
base.  … For now, most saliency models only detect objects and  don’t pay 
attention to  faces.  There’s no ground truth for that. But what we say is 
that  faces are also impor tant and usually attract directly the attention.  … 
And that’s the point: we want to include  faces to saliency, basically.”

GY: “And segment  faces.  Because face detectors output only rectangles.  … 
 There can be many applications [for the model], like in display or com-
pression for example.”

Many questions immediately arose. How and why is it impor tant to focus 
on “ele ments that should attract attention”? Why is it problematic not to 
have a “ground truth” to detect “multiple objects and  faces”? And what is 
a ground truth anyway? Why is it related to “saliency” and its potential 
industrial applications? Already at this early stage of the inquiry, the mean-
dering flows of ethnography somewhat deprive us from our landmarks. To 
follow the Group and become able to fully explore  these materials, some 
more equipment is obviously needed. I  will thus temporally “pause” the 
account of the Group’s proj ect and consider for a while the sociohistorical 
background of saliency detection that underlies the Group’s framing of its 
proj ect. Once  these introductory ele ments are acquired, I  will be come back 
to this first Group meeting.
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Backstage Ele ments: Saliency Detection and Digital Image Pro cessing

“Saliency” for computer scientists in image pro cessing is a blurry term with 
a history that is difficult to track. The term “saliency” was gradually created 
by straddling dif fer ent— yet closely related— research areas. One point of 
departure could be the 1970s when explicative models developed in cogni-
tive psy chol ogy and neurobiology3 started to schematize how the  human 
brain could quickly  handle an amount of visual data that is far larger than 
its estimated pro cessing capabilities (Eason, Harter, and White 1969; Lappin 
and Uttal 1976; Shiffrin and Gardner 1972).4  After many disputes and con-
troversies, a rough agreement about the overall pro cess of  humans’ “selec-
tive visual attention method” had progressively emerged that distinguishes 
between two neuronal pro cesses of selecting and gating visual information 
(Itti and Koch 2001; Heinke and Humphreys 2004).5 On the one hand, 
 there is a task- independent and rapid “bottom-up visual attention pro cess” 
that selects con spic u ous stimuli such as color contrasts, feature orienta-
tions, or spatial frequency. On the other hand,  there is a slower “top- down 
visual attention pro cess” that operates selectively based on tasks to accom-
plish. The term “saliency map” was proposed by Koch and Ullman (1985) 
to define the final result of the brain’s bottom-up visual attention pro cess.

In the 1980s, the way that cognitive psychologists and neurobiologists 
theorized two dif fer ent “paths” for the brain to pro cess light signals— one 
fast and generic, the other slower and task- specific— inspired scientists whose 
machines face a similar prob lem in computer vision: the stream of sampled 
digital signals that emanated from CCDs  were too large to be pro cessed all 
at once. From this point, two dif fer ent classes of image- processing detection 
algorithms have progressively been  shaped. The first class was inspired by the 
assumed bottom-up schematic pro cess of visual attention and tried to detect 
“low- level features” inscribed within the pixels of a given image, such as 
intensity, color, orientation, and texture.6 Through the academic efforts of 
Laurent Itti and Christof Koch in the 2000s (Itti, Koch, and Niebur 1998; 
Itti, Koch, and Braun 2000; Itti and Koch 2001; Elazary and Itti 2008; Zhao 
and Koch 2011), the term “saliency” was progressively assimilated into this 
first class of algorithms that became labeled saliency- detection algorithms. 
The second class of image- processing detection algorithms was inspired by 
the assumed top- down schematic pro cess of visual attention and is based 
on “high- level features” that have to be learned by machines according to 
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specific metrics (e.g., face or car detection). This often involves automated 
learning procedures and the management of increasingly large databases 
(Grimson and Lozano- Perez 1983; Lowe 1999).

Despite differences in terms of substratum, both high- level and low- level 
detection algorithms  were, and are, bound to the same construction work-
flow that consists of five interrelated and problematic steps:

1. The acquisition of a finite dataset.

2. On the data of this dataset, the manual labeling of clear targets, defined 
 here as the ele ments ( faces, cars, salient regions) the desired algorithm 
 will be asked to detect.

3. The construction of a database gathering the unlabeled data and their 
manually labeled counter parts. This database is usually called “ground 
truth” by the research community.

4. The design of the algorithm’s calculating properties and par ameters based 
on a representative part of the ground- truth database.

5. The evaluation of the algorithm’s per for mances based on the rest of the 
ground- truth database.

To illustrate this schematic workflow, let us hypothesize the existence of φ, 
a standard detection algorithm in image pro cessing. The very existence of 
φ depends upon a finite set of digital images for which  human workers have 
previously labeled targets (e.g.,  faces, cars, salient regions). The unlabeled 
images and their manually labeled counter parts are then gathered together 
within a database to form the ground truth of φ. To design and code φ, the 
ground truth is randomly split into two parts: the “training set” and the 
“evaluation set.” The designers of φ would use the training set to extract for-
mal information about the targets, often with help of mathematical expres-
sions. Once formulated and translated into machine- readable code, the 
algorithm φ is tested on the evaluation set to see how well it detects targets 
that  were not used to design its properties. From its confrontation with the 
evaluation set, φ produces a precise number of outputs that can be qualified 
 either as “true positives,” “false negatives,” or “false positives,” thanks to the 
previous human- labeling work. Out of this comparison between manually 
designed targets and automatically produced outputs, statistical mea sures 
such as precision (the fraction of detected items that  were previously defined 
as targets) and recall (the fraction of targets among the detected items) can 
be obtained to compare and rank competing algorithms (see figure 2.1).
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One drawback of high- level detection algorithms is that they are task- 
specific and cannot by themselves detect dif fer ent types of targets: a face- 
detection algorithm  will detect  faces, a car- detection algorithm  will detect 
cars, a plane- detection algorithm  will detect planes, and so on.7 Yet, one of 
the benefits of such high- level detection algorithms is that the definition of 
their targets ( faces, cars, planes) often involves minor ambiguities for  those 
who design them: cars,  faces, or planes have rather unambiguous character-
istics that facilitate agreement. Targets and ground truths can then be man-
ually  shaped by computer scientists in order to train high- level detection 
algorithms. Moreover,  these ground truths can also serve as referees among 
competing high- level detection algorithms as they provide precision and 
recall metrics. The subfield of face detection with its numerous ground truths 
and algorithmic propositions provides a paradigmatic example of a highly 

Figure 2.1
Schematic of precision and recall mea sures on φ. In this hy po thet i cal example, φ 
(grey background) detected thirty targets (true positives) but missed eigh teen of them 
(false negatives). This per for mance means that φ has a recall score of 0.62. The algo-
rithm φ also detected twelve ele ments that are not targets (false positives), and this 
makes it have a precision score of 0.71. From this point, other algorithms intended to 
detect the same targets can be tested on the same ground truth and may have better 
or worse precision and recall scores than φ.
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developed and competitive topic in image pro cessing since at least the 2000s 
(see figure 2.2).

In the 2000s, unlike research in high- level detection, low- level saliency 
detection had no “natu ral” ground truth allowing the design and evalua-
tion of computational models.8 At that time, if the task- independent and 
adaptive character of saliency detection was theoretically in ter est ing for 
automatic image cropping (Santella et al. 2006), adaptive display on small 
devices (Chen et al. 2003), advertising design, and image compression (Itti 
2000), the absence of any ground truth that could allow the training and 
evaluation of computational models prevented saliency detection from 
being an active topic in digital image pro cessing. As Itti, Koch, and Niebur 
(1998) confessed when they tested the very first saliency- detection algo-
rithm on natu ral images:

Results Reported in Terms of Percentage Correct Detection (CD) and Number
of False Positives (FP), CD/FP, on the CMU and MIT Datasets

Face detection system CMU-130 CMU-125 MIT-23 MIT-20

Schneiderman & Kanade—Ea [170] 94.4%/65
90.2%/110
92.3%/8
93.6%/7
94.8%/7

84.5%/8

89.4%/3
91.5%/1
94.1%/3

79.9%/5
94.1%/64
74.2%/20
72.3%/6
87.1%/0

Schneiderman & Kanade—Wb [170]
Yang et al.—FA [217]
Yang et al.—LDA [217]
Roth et al. [157]
Rowley et al. [158] 86.2%/23

86%/8Feraud et al. [42]
Colmenarez & Huang [22] 93.9%/8122
Sung & Poggio [182]
Lew & Huijsmans [107]
Osuna et al. [140]
Lin et al. [113]
Guand Li [54]

aEigenvector coefficients.
bWavelet coefficients.

Figure 2.2
An exemplary comparison  table among high- level face- detection algorithms. Two 
ground truths are used for this comparison  table from Car ne gie Mellon University 
(CMU) and the Mas sa chu setts Institute of Technology (MIT). On the left, a list of 
algorithms named according to the papers in which they  were proposed. In this 
 table, the ‘Percentage of Correct Detection’ (CD) indicates the recall values and the 
‘Number of False Positives’ (FP) suggests the precision values. Source: Hjelmås and 
Low (2001, 262). Reproduced with permission from Elsevier.
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With many such [natu ral] images, it is difficult to objectively evaluate the model, 
 because no objective reference is available for comparison, and observers may disagree 
on which locations are the most salient. (Itti, Koch, and Niebur 1998, 1258; italics 
added)

Saliency detection in natu ral images is an equivocal topic not easily expressed 
in a ground truth. Whereas it is usually straightforward (and yet time con-
suming) to define univocal targets for training and evaluating high- level 
face- detection or car- detection algorithms, it is far more complex to do so 
for saliency- detection algorithms  because what is considered as salient in a 
natu ral image tends to change from person to person. While in the 2000s 
saliency- detection algorithms might have been promising for many indus-
trial applications, no one in the field of image pro cessing had found a way to 
design a ground truth for natu ral images.

In 2007, Liu et al. proposed an innovative solution to this issue and cre-
ated the very first ground truth for saliency detection in natu ral images. 
Their shift was smart, costly, and contributed greatly to framing and estab-
lishing the subfield of saliency detection in the image- processing lit er a ture. 
Liu et al.’s first move was to propose one pos si ble scope of saliency detection 
by incorporating concepts from high- level detection. According to them, 
instead of trying to highlight salient areas within digital images, compu-
tational models for saliency should detect the most salient object within a 
given digital image. They thus framed the saliency prob lem as being binary 
and one- off object related. According to them, to get around the impasse 
of saliency detection, saliency- detection algorithms should distinguish one 
salient object from the rest of the image:

We incorporate the high- level concept of salient object into the pro cess of visual 
attention in each respective image. We call them salient objects, or foreground 
objects that we are familiar with.  … We formulate salient object detection as a 
binary labelling prob lem that separates a salient object from the background. 
Like face detection, we detect a familiar object; unlike face detection, we detect a 
familiar yet unknown object in an image. (Liu et al. 2007, 1–2)

Thanks to this refinement of the concept of saliency (from “anything that 
first attracts attention” to “the one object in a picture that first attracts 
attention”), Liu et al. could or ga nize an experiment in order to construct 
legitimate targets to be retrieved by computational models. They first ran-
domly collected 130,099 high- quality natu ral images from internet forums 
and search engines. Then they manually selected 20,840 images that fit 
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with their definition of the saliency prob lem: images that, according to 
them, contained only one salient object. This initial se lection operation 
was crucial as it excluded images with several potential salient objects. The 
result was an initial dataset of no complex pictures with mixed features (see 
figure 2.3).

They then proceeded in two steps. First, they asked three  human workers 
to manually draw a rectangle on what they thought was the most salient 
object in each image. For each image, Liu et al. then obtained three dif fer-
ent rectangles whose consistencies could be mea sured by the percentage of 
shared pixels. For a given image, if its three rectangles  were more consis-
tent than a chosen threshold ( here, 80  percent of pixels in common), the 
image was considered as containing a “highly consistent salient object” 
(Liu et al. 2007, 2).  After this first se lection step, their dataset called α con-
tained around thirteen thousand images.

For the second step, Liu et al. randomly selected five thousand highly 
consistent salient- object images from α to create a second dataset called β. 
They then asked nine other  human workers to label the salient object of 
 every image in β with a rectangle. This time, Liu et al. obtained for  every 
image nine dif fer ent yet highly consistent rectangles whose average sur-
face was considered their “saliency probability map” (Liu et al. 2007, 3). 
Thanks to this constructed social agreement, the five thousand saliency 
probability maps—in a computer science perspective, tangible matrices con-
stituted of specific numerical values— could then be considered the best 
solutions to the saliency prob lem as they framed it. The  whole ground 
truth— the database gathering the natu ral images and their corresponding 

Figure 2.3
Samples from Liu et al.’s dataset. Pictures contain one centered and contrastive ele-
ment. Source: Microsoft Research Asia (MSRA) public dataset, Liu et al. (2007).
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saliency probability maps— became the material base on which the desired 
algorithm could be developed. By constructing this ground truth, Liu et al. 
defined the terms of a new prob lem whose solutions could be retrieved by 
means of calculating methods.

The shift  here was not trivial. Indeed, by organ izing this survey, invit-
ing  people into their laboratory, welcoming them, explaining the topic to 
them, writing the appropriate computer programs to make them label the 
images, and gathering the results in a proper database in order to statisti-
cally pro cess them, Liu et al. transformed their initial reduced conception 
of saliency detection into workable and unambiguous targets with specific 
numerical values. At the end of this laborious pro cess, Liu et al. could ran-
domly select two thousand images from set α and one thousand images 
from set β to construct a training set (Liu et al. 2007, 5–6) to analyze the 
shared features of their constructed- yet- sound- by- virtue- of- agreement tar-
gets. Once the adequate numerical features  were extracted from the targets 
of the training set and implemented in machine- readable language, they 
used the four thousand remaining images from set β to statistically mea sure 
the per for mances of their algorithm. Further, and for the very first time, 
they also could compare the detection per for mances of their algorithm with 
two competing algorithms that had already been proposed by other labora-
tories but that could not have been evaluated on natu ral images before due 
to the lack of any “natu ral” targets related to saliency. Besides the  actual 
completion of their saliency- detection algorithm, the  great innovation of 
Liu et al. was then to redefine the saliency prob lem so that it could allow 
per for mance evaluations (see figure 2.4).

By publishing their paper and also publicly providing their ground truth 
online, it is not an exaggeration to say that Liu et al. established a newly 
assessable research direction in image pro cessing. A costly infrastructure 
had been put together, ready to be reused to support other competing algo-
rithmic propositions with perhaps better per for mances according to Liu 
et  al’s ground truth and the definition of saliency it encapsulates. Their 
publication was more than a paper: it was a paper that allowed other papers 
to be published as they provided a ground truth that could be used by other 
researchers as long as they properly quote the seminal paper and accept the 
ground truth’s restricted— yet operational— definition of saliency.9

Another impor tant paper for saliency detection— and therefore also for 
the Group’s proj ect that we  shall soon continue to follow— was published 
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in 2008 by Wang and Li. To them, even though Liu et al. (2007)  were right 
to frame the saliency prob lem as a binary prob lem, their bounding- box 
ground truth remained unsatisfactory as it could well evaluate inaccurate 
results (see figure 2.5). To refine the mea sures of Liu et al.’s very first ground 
truth for saliency detection, Wang and Li randomly selected three hundred 
images from β dataset and used a segmentation tool to manually label the 
contours of each of the three hundred salient objects. What they proposed 
and evaluated then was a saliency- detection algorithm that “not only cap-
tures the rough location and region of the salient objects, but also roughly 
keeps the contours right” (Wang and Li 2008, 965).

From this point, saliency detection in image- processing was almost set: 
even though many algorithms exploiting dif fer ent low- level pixel informa-
tion  were  later proposed (Achanta et al. 2009; Chang et al. 2011; Cheng 
et  al. 2011; Goferman, Zelnik- Manor, and Tal 2012; Shen and Wu 2012; 
Wang et al. 2010), they  were all bound to the saliency prob lem as defined 
by Liu et al. in 2007. And even though other ground truths have  later been 
proposed in published papers (Judd, Durand, and Torralba 2012; Movahedi 
and Elder 2010) to widen the scope of saliency detection (notably by propos-
ing images with two objects that could be decentered), Liu et al.’s seminal 
framing of saliency detection as a binary object- related prob lem remained 
unchallenged. And when the Group started their proj ect in November 2013, 

(a) (b) (c) (d) (e)

Figure 2.5
Image (a) is an unlabeled image of Liu et al.’s ground truth; image (b) is the result of 
Wang & Li’s saliency- detection algorithm; image (c) is the imaginary result of some 
other saliency- detection algorithm on (a); and image (d) is the bounding- box target 
as provided by Liu et al.’s ground truth. Even though (b) is more accurate than (c), it 
 will obtain a lower statistical evaluation if compared to (d). This is why Wang & Li 
propose (e), a binary target that matches the contours of the already defined salient 
object. Source: Wang and Li (2008, 968). Reproduced with permission from IEEE.
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Liu et al.’s problematization of the saliency prob lem was continuing to sup-
port a competition among algorithms that differentiated themselves by 
speed and accuracy (see figure 2.6).

With this brief history of saliency in image pro cessing, we are better 
equipped to follow the Group as it tries to construct its own innovative 
saliency- detection algorithm. Social surveys, salient objects whose contours 

Image Ground
Truth

Ours CB LR SVO RC CA  GB SER

Figure 9. Comparison of different methods on the ASD, SED and SOD datasets. The first three rows are from
the ASD dataset, the middle three rows are from the SED dataset, the last three rows are from the SOD dataset.

Table 1. Comparison of average execution time (seconds per image).
Method Ours CB SVO RC LR CA GB SER FT LC SR IT
Time(s) 0.105 1.179 40.33 0.106 11.92 36.05 0.418 25.19 0.016 0.002 0.002 0.165
Code Matlab Matlab Matlab C++ Matlab Matlab Matlab C++ C++ C++ C++ Matlab

Figure 2.6
2013 comparison table between different saliency-detection algorithms. The number of 
competing algorithms has increased since 2007.  Here, three ground truths are used for 
per for mance evaluations: ASD (Achanta et al. 2009), SED (Alpert et al. 2007), and SOD 
(Movahedi and Elder 2010). Below the figure, a  table compares the execution time of 
each implemented algorithm. Source: Jiang et al. (2013, 1672). Reproduced with permis-
sion from IEEE.



A First Case Study 63

define the targets of competing algorithms, ground truths bound to a binary 
problematization of saliency, promising industrial applications: the stage we 
are about to explore is supported by all of  these ele ments, constraining the 
members of the Group in the shaping of their proj ect as well as providing 
them opportunities for further reconfigurations.

Reframing Saliency

If, at the beginning of the chapter, the Group’s explanations appeared quite 
cryptic, the previous introductory review should now enable us to under-
stand them critically. Let us thus look at the same excerpt once again:

Group meeting, the Lab’s cafeteria, November 7, 2013

CL: “So, you heard about saliency, right?”

FJ: “Well, I’ve read some stuff.”

CL: “Huge topic, but basically, when you look at an image, not every thing 
is impor tant usually, and you focus only on some ele ments.  … What we 
try to do basically, it’s like a model that detects ele ments in an image that 
should attract attention.  … GY’s worked on a model that uses contrasts 
to segment objects and BJ has a model that detects  faces.  We’ll use them 
as a base.  … For now, most saliency models only detect objects and  don’t 
pay attention to  faces.  There’s no ground truth for that. But what we say is 
that  faces are also impor tant and usually attract directly the attention.  … 
And that’s the point: we want to include  faces to saliency, basically.”

GY: “And segment  faces.  Because face detectors output only rectangles.  … 
 There can be many applications [for the model], like in display or com-
pression for example.”

According to the Group, saliency- detection models should also take  human 
 faces into account as  faces are impor tant in  human attention mechanisms. 
Moreover, investing this interstice within saliency detection would be a 
good opportunity to merge some of the Group’s recent researches on both 
low- level segmentation and high- level face detection. The idea to combine 
high- level face detection with low- level saliency detection derived from 
previous image- processing papers (Borji 2012; Karthikeyan, Jagadeesh, and 
Manjunath 2013) inspired themselves by studies in gaze prediction (Cerf, 
Frady, and Koch 2009), cognitive psy chol ogy ( Little, Jones, and DeBruine 
2011), and neurobiology (Dekowska, Kuniecki, and Jaśkowski 2008). But the 
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Group’s ambition  here was to go further in the saliency direction as framed 
by Wang and Li (2008),  after Liu et al. (2007), by proposing an algorithm 
capable of detecting and segmenting the contours of  faces. In order to accom-
plish such subtle results, the previous work done by GY on segmentation and 
BJ on face detection would constitute a precious resource to work on.

The Group also wanted to construct a saliency- detection model that 
could effectively pro cess a larger range of natu ral images:

Group meeting, the Lab’s cafeteria, November 7, 2013

GY: “But you know [to FJ], we hope the algorithm could detect multiple 
objects and  faces.  Because in saliency detection, models can only detect 
like one or two objects on  simple images. They  don’t detect multiple 
salient objects in complex images.  … But the prob lem is that  there’s no 
ground truth for that.  There’s only ground truth with like one or two 
objects, and not that many  faces.”

In many cases, natu ral images not only capture one or two objects dis-
tinguished from a clear background; pictures produced by users of digital 
cameras— according to the Group— are generally more cluttered than  those 
used to train and evaluate saliency- detection algorithms in the wake of Liu 
et  al. (2007). Indeed, at least in November  2013, saliency detection was 
becoming a research area where algorithms were more and more efficient 
only on  those— rare— natu ral images with clear and untangled features. But 
the Group also knew that this issue was intimately related to the then avail-
able ground truths for saliency detection that were all bound to Liu et al’s 
restricted initial definition of saliency that only fit  simple images. From this 
point, as the Group wanted to propose a model that could detect a dif fer ent 
and more subtle saliency, it had to construct the targets of such saliency; 
as it wanted to propose a model that could calculate and detect multiple 
salient features (objects and  faces) in more complex and realistic images, 
it had to construct a new ground truth that would gather complex images 
and their corresponding multiple salient features.

The Group’s desire to redefine the terms of the saliency prob lem did 
not come ex nihilo. When Liu et al. did their research on saliency in 2007, 
it was difficult for computer scientists to or ga nize large social surveys on 
complex images. But in November 2013, the growing availability of crowd-
sourcing ser vices enabled new potentialities:
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Group meeting, the Lab’s cafeteria, November 7, 2013

GY: “But we want to use crowdsourcing to do a new ground truth and 
ask  people to label features they think are salient.  … And then we could 
use that for our model and compare the results, you see?”

In broad strokes, crowdsourcing— a contraction of “crowd” and “outsourc-
ing” initially coined by journalist Howe (2006)—is “a type of participative 
online activity in which an individual, an institution, a non- profit organ-
ization, or a com pany proposes to a group of individuals of varying knowl-
edge, heterogeneity, and number, via a flexible open call, the voluntary 
undertaking of a task” (Estellés- Arolas and González- Ladrón- de- Guevara 
2012, 195). In November  2013, this ser vice was offered by several com-
panies such as Amazon (via Amazon Mechanical Turk), ClickWorker, or 
Employment Crossing (via ShortTask), whose own application program-
ming interfaces (APIs)10 recommended surveys to registered online con-
tingent workers mainly located in the United States and India. Once a 
worker submits their completed task— which can vary greatly in time and 
complexity— the organ ization that designed the survey (e.g., a research 
institution, a com pany, an individual) can decide on its validity. If the task 
is considered valid, the worker receives from the crowdsourcing com pany 
the amount of money initially indicated in the open call. If the task is con-
sidered not valid, the worker receives nothing and has, most of the time, no 
possibility of appeal. As the moral economy of crowdsourcing has recently 
been the object of critical so cio log i cal studies, it is necessary to devote a 
short sidebar to it.

Contingent work has long supported industrial efforts. As, for example, 
documented by Pennington and Westover (1989), the textile industry as it 
developed in  England in the 1850s relied heavi ly on off- site manufactur-
ing operations, often referred to as “industrial homework.”  Women and 
 children living in the countryside, operating as proto- on- demand workers, 
 were asked to make crucial finishing touches too fine for the machines of 
the time. Almost si mul ta neously, a similar phenomenon was taking place 
in the United States, particularly in the Pittsburg, Pennsylvania, area: even 
though it was often seen as a reminiscence of a pre industrial era that was 
doomed to dis appear, “piecework” or ga nized on a commission basis in part-
nership with rural  house holds was a necessary lever for the scaling up of 
mass manufacturing (Albrecht 1982). And if trade  unions did  later manage, 
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through painful strug gles, to somewhat improve the working conditions 
of employees (e.g., US Fair  Labor Standards Act in 1938, French Accords de 
Matignon in 1936),  these improvements mostly concerned full- time work 
carried out on designated production sites that was mostly reserved for 
white male adults. The concessions made to salaried workers during the 
first half of the twentieth  century thus mostly concerned  those who ben-
efited from visibility and proximity: contingent work, which was scattered, 
not very vis i ble,  little valued, and considered unskilled, continued to pass 
 under the radar. To this— and to many other  things that are beyond the 
scope of this sidebar11— was  later added a more or less explicit corporate 
strategy of circumventing  unionization and work regulations (which  were 
already reserved for specific trades) based notably on the growing avail-
ability of information and communication technologies. This strategy of 
“fissuration of the workplace” (Weil 2014), well in line with the financial-
ization of Western economies,12 helped to further promote outsourcing: 
instead of depending on employees benefiting from statutory logic, it has 
become preferable and valued to depend on remote worldwide networks 
of contingent staff. And crowdsourcing, as distributed computer- supported 
on- demand low- valued work, can be seen as the continuation of contin-
gent work’s support to and modification of industrial capitalism. As Gray 
and Suri (2019, 58) noted: “ Those on- demand jobs  today are the latest itera-
tion of expendable ghost work. They are, on the one hand, necessary in the 
moment, but they are too easily devalued  because the tasks that they do are 
typically dismissed as mundane or rote and the  people often employed to 
do them carry no cultural clout.”13

Let us come back to the Lab. In November 2013, like most  people, the 
Group was not aware of the dynamics under lying generalized outsourcing 
and devaluation of contingent  labor as supported by con temporary crowd-
sourcing pro cesses. An indication of this unawareness could be found in the 
term “users” the Group often employed to refer to the anonymous workers 
engaged in this new form of precariat.14 For the Group, at that moment, 
the estimated benefits of crowdsourcing were huge: once the desired web 
application was coded and set with an instruction, such as “please highlight 
the features that directly attract your attention,” the Group would be able 
to pay a crowdsourcing com pany whose API would take charge of linking 
the survey to dozens of low paid “users” of the Group’s web application. In 
turn,  these “users”— that I  will from now on call “workers”— would feed the 
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Group’s server with labeling coordinates that could be pro cessed on soft-
ware packages such as Matlab.15 For our story, crowdsourcing—as a rather 
easily available paid service—created a difference: the gathering of many 
manually labeled salient features became more manageable for the Group 
than it had been for Liu et al. in 2007, and an extension of the notion of 
saliency to multiple features became—at least in November 2013— doable.

Another difference effected by crowdsourcing was a potential redefinition 
of the saliency prob lem as being continuous:

Group meeting, the Lab’s cafeteria, November 7, 2013

FJ: “So, basically you want many labels?”

GY: “Yes  because you know, in the state- of- the- art face detection or 
saliency models only detect  things in a binary way, like face/no face, 
salient/not salient. What we also try to do is a model that evaluates the 
importance of  faces and objects and segments them. Like ‘this face is 
more impor tant than this other face which is more impor tant than that 
object’ and so on.  … But anyways, to do that [a ground truth based on 
the results of a crowdsourcing task], we first need a dataset with many 
images with dif fer ent contents.”

CL: “Yes, we thought about something like 1,000 image at least, to train 
and evaluate. But it has to be images with dif fer ent objects and  faces 
with dif fer ent sizes.”

GY: “And we have to select the images; good images to run the sur-
vey.  …  We’ll try to propose a paper in [the] spring so it would be good to 
have finished crowdsourcing in January, I guess.”

If the images used to construct the ground truth contained only one or two 
objects and were labeled only by several individuals, no relational values 
among the labeled features could be calculated. From this point, defining 
saliency as a binary prob lem in the manner of Liu et al. (2007) would make 
complete sense. Yet as the Group could afford to launch a social survey that 
asked for many labels on a dataset with complex images containing many 
features, it would become methodologically pos si ble to assign relative impor-
tance values to the dif fer ent labeled features. This was a question of arithme-
tic values: if one feature were manually labeled as salient, the Group could 
only obtain a binary value (foreground and background). But if several fea-
tures were labeled as more or less salient by many workers, the Group could 
obtain a continuous subset of results. In short, for the Group, crowdsourcing 
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once again created a difference by making it pos si ble to create new types 
of targets with relatively continuous values. It was difficult at this point to 
predict if the Group’s algorithm would effectively be able to approach  these 
subtle results. Nevertheless, the ground truth the Group wanted to consti-
tute would enable the development of such an algorithm by providing the 
targets that the model should try to retrieve in the best pos si ble way.

Even though the Group had managed to build on previous works in 
saliency detection and other related fields to reframe the prob lem of saliency, 
it still lacked the ground truth that could numerically establish the terms 
of this new prob lem: both the inputs the desired algorithm should work 
on and the outputs (the “targets”) it should try to retrieve still needed to 
be constructed. In that sense, the Group was only at the beginning of the 
problematization pro cess that may lead to a new computational model: its 
new definition of the saliency prob lem still needed to be equipped (Vinck 
2011) with tangible ele ments (a new set of complex images, a crowdsourcing 
task, continuous values, segmented  faces) to form a referential database that 
would, in turn, constitute the material base of the new computerized method 
of calculation. Borrowing from Michel Callon (1986), we might say that, for 
the members of the Group, the new ground truth appeared as an obliga-
tory passage point that could make them become— perhaps— indispensable 
for the research community in saliency detection. Without a new ground 
truth, saliency- detection models would still operate on unrealistic images; 
they would still be one- off object related; they would still ignore the detec-
tion and segmentation of  faces; and they would still, therefore, be irrel-
evant for real- world applications. With the help of a new ground truth, 
 these shortcomings that the Group attributed to saliency detection may 
be overcome. In a similar vein— this time borrowing from Joan Fujimura 
(1987)—we might say that, at this point, the Group’s saliency prob lem was 
doable only at the level of its laboratory. The Group had indeed been given 
time and money to conduct the proj ect and had insights on how to run 
it. But without any ground truth, the Group had no tangible means to 
articulate this “laboratory level” with both the research communities in 
image pro cessing and the specific tasks required to effectively define a work-
ing model of computation. It is only by constructing a database gathering 
“input- data” and “output- targets” that the Group would be able to propose 
and, eventually, publish an algorithm capable of solving the saliency prob-
lem as the Group reframed it.
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Constructing a New Ground Truth

We have now a better sense of some of the pitfalls that sometimes get in 
the way of computer scientists trying to shape a new algorithm. As we  were 
following the Group in the beginning of its saliency- detection proj ect, we 
realized that the constitution of an image- processing algorithm capable of 
establishing a new research direction goes along with the shaping of a new 
ground truth that should precisely support and equip the constitution of 
the algorithm. Yet for now, we only considered the reasons why the Group 
needed to design a new ground truth. But how did it actually make it?

In addition to working on the coding of the crowdsourcing web 
application, the Group also dedicated November and December 2013 to 
the se lection of images that echo the algorithm’s three expected per for-
mances: (1) detecting and segmenting the contours of salient features, 
including  faces; (2) detecting and segmenting  these salient features in com-
plex images; and (3) evaluating the relative importance of the detected and 
segmented salient features.  These specifications led to several Group meet-
ings specifically or ga nized to discuss the content and distribution of the 
selected images:

Group meeting, the Lab’s cafeteria, November 21, 2013

BJ: “Well, we may avoid this kind of basketball photo  because  these 
players may be famous- like. They are good  because the ball contrasts 
with  faces, but at least I know some of the players. And if I know, we 
include other features like ‘I know this face,’ so I label it.”

CL: “I think maybe if you have somebody that is famous, the impor-
tance of the face increases and then we just want to avoid modeling that 
in our method.”

…

CL: “OK. And the distributions are looking better?”

FJ: “Yes definitely. BJ just showed me what to improve.”

CL: “OK. So what other variables do we consider?”

GY: “Like frontal and so on. But equalizing them is real pain.”

CL: “But we can cover some of them; maybe not equalize. So  there 
should be like the front face with images of just the front of the face and 
then  there is the side face, and a mixture in between.”
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The se lection pro cess took time  because a wide variety of image contents 
(e.g., sport, portraits, side  faces) had to be gathered to cover more natu ral 
situations than the other ground truths. Also, no famous features (e.g., build-
ings, comedians, athletes) that could influence attention pro cesses should be 
part of the content. As we can see, the Group’s anticipated capabilities for the 
algorithm oriented this manual se lection pro cess: similarly to Liu et al. (2007) 
but in a manner that made the Group include more complex “natu ral situa-
tions,” the assembling of a dataset was driven by the algorithm’s  future tasks.16 
By December 2013, eight hundred high- resolution images were gathered— 
mostly from Flickr— and stored in the Lab’s server. Since the Group consid-
ered the inclusion of  faces within saliency detection as the most significant 
contribution of the proj ect, 632 of the selected images included  human  faces.

In parallel to this problem- oriented se lection of images, orga nizational 
work on the selected images had to be defined in order not to be overloaded 
by the increasing number of files and by the huge amount of labeled results to 
be gathered throughout the crowdsourcing task. This kind of orga nizational 
procedure was very close to data management and implied the realization of 
a  whole new database for which information could be easily retrieved and 
anticipated. Moreover, the shaping of the crowdsourcing survey also required 
coordination and adjustments: What question would be asked? How would 
answers be collected and processed in order to fulfill the ambitions of the 
proj ect?  Those were crucial issues as the “raw” labeled answers obtained via 
crowdsourcing could only be rectangles and not precise contours:

Group meeting, the Lab’s cafeteria, December 12, 2013

CL: “But for the database, do we rename the images so that we have a 
consistency?”

BJ: “Hum.  … I  don’t think so  because now we can track the files back to 
the website with their ID. And with Matlab you can like store the jpg files 
in one folder and retrieve all of them automatically”

…

CL: “What do you think, GY? Can we ask  people to select a region of the 
image or to do something like segmenting directly on it?”

GY: “I  don’t think you can get pixel- precision answers with crowdsourc-
ing.  We’ll need to do the pixel- precision [in the Lab]  because if we ask 
them, it’s gonna be a very sloppy job. Or too slow and expensive anyway.”
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CL: “So what do you want?  There is your Matlab code to segment fea-
tures, right?”

GY: “Yes, but that’s low- level stuff, pixel- precision [segmentation]. It’s 
gonna be for  later,  after we collect the coordinates, I guess. I still need to 
finish the scripts [to collect the coordinates] anyway. Real pain. … But what 
I thought was just like ask  people to draw rectangles on the salient  things, 
then collect the coordinates with their ID and then use this information to 
deduce which feature is more salient than the other on each image. Loca-
tion of the salient feature is a  really fuzzy decision, but cutting up the edges 
is not that dependent.  … You know where the tree ends, and that’s what 
we want. Nobody  will come and say ‘No! The tree ends  here!’  There is not 
so many variances between  people I guess in most of the cases.”

CL: “OK, let’s code for rectangles then. If that’s easy for the users, let’s 
just do that.”

The IDs of the selected images allowed the Group to put the images in a 
Matlab database rather easily. But within the images, the salient features 
labeled by the crowdworkers  were more difficult to  handle since GY’s inter-
active tool to get the precise bound aries of image contents was based on 
low- level information. As a consequence, segmenting the bound aries of 
low- contrasted features such as  faces could take several minutes, whereas 
affordable crowdsourcing was about small and quick tasks. The Group could 
not take the risk of  either collecting “sloppy” tasks or spending an infea-
sible amount of money to do so.17 The labeled features would thus have to 
be post- processed within the Lab to obtain precise contours.

Moreover, another potential point of failure of the proj ect resided in the 
development of the crowdsourcing web application. Indeed, asking  people 
to draw rectangles around features, translating  these rectangles into coor-
dinates, and storing them into files to pro cess them statistically required 
nontrivial programming skills. By January  2014, when the crowdsourc-
ing web application was made fully operational, it comprised seven dif-
fer ent scripts (around seven hundred lines of code) written in html, PHP, 
and JavaScript that responded to each other depending on the workers’ 
inputs (see figure 2.7). Yet, if the Lab’s computer scientists were at ease 
with numerical computing and programming languages such as Matlab, C, 
or C++, web designing and social pooling were not competencies for which 
they were necessarily trained.
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Once coded and debugged— a delicate pro cess in its own right (see chap-
ter 4)— the dif fer ent scripts  were stored in one section of the Lab’s server 
whose address was made available in January  2014 to the now- defunct 
com pany ShortTask whose API offered the best- rated contingent workers. 
By February 2014, thirty workers’ tasks qua tens of thousands of rectangles’ 
coordinates  were stored in the Group’s database as .txt files, ready to be pro-
cessed thanks to the previous preparatory steps. At this point, each image of 
the previously collected dataset was linked with many dif fer ent rectangles 
drawn by the workers. By superimposing all the coordinates of the dif fer ent 
rectangles on Matlab, the Group created for each image a “weight map” 
with varying intensities that indicated the relative consensus on salient 
regions (see figure 2.8). The Group then applied to each image a widely 
used threshold taken from Otsu (1979)— part of Matlab’s internal library—
to keep only weighty regions that had been considered salient by the work-
ers. In a third step that took two entire weeks, the Group—in fact, BJ and 
me— manually segmented the contours of the salient ele ments within the 
salient regions to obtain “salient features.” Fi nally, the Group assigned the 
mean value of the salient regions’ map to the corresponding salient features 
to obtain the final targets capable of defining and evaluating new kinds of 
saliency- detection algorithms. This laborious pro cess took place between 
February and March 2014; almost a month was dedicated to the pro cessing 
of the coordinates produced by the workers and then collected by the html- 
JavaScript- PHP scripts and database.

By March 2014, the Group successfully managed to create targets with 
relative saliency values. The selected images and their corresponding targets 
could then be or ga nized as a single database that fi nally constituted the 
ground truth. From this point, one could consider that the Group effec-
tively managed to redefine the terms of the saliency prob lem: the transfor-
mations the desired algorithm should conduct  were— fi nally— numerically 
defined. Thanks to the definition of inputs (the selected images) and the 
definition of outputs (the targets), the Group fi nally possessed a prob lem 
that numerical computing could take care of.

Of course, establishing the terms of a prob lem by means of a new ground 
truth was not enough: to propose an  actual algorithm, the Group also had 
to design and code lists of instructions that could effectively transform 
input- data into output- targets according to the prob lem they had just estab-
lished. To design and code  these lists of instructions, the Group randomly 
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selected two hundred images out of the ground truth to form a training 
set.  After formal analy sis of the relationships between the inputs and the 
targets of this training set, the Group extracted several numerical features 
that expressed— though not completely— these input- target relationships.18 
The  whole pro cess of extracting and verifying numerical features and par-
ameters from the training set and translating them sequentially into Matlab 
programming language took almost a month. But at the end of this pro cess, 
the Group possessed a list of Matlab instructions that was able to transform 
the input values of the training set into values relatively close to  those 
of the targets.

By the end of March 2014, the Group used the remainder of its ground- 
truth database to evaluate the algorithm and compare it with already available 

Figure 2.8
Matlab  table summarizing the dif fer ent steps required for the pro cessing of the coor-
dinates produced by the workers who accomplished the crowdsourcing task. The first 
row shows examples of images and rectangular labels collected from the crowdsourc-
ing task. The second row shows the weight maps obtained from the superposition of 
the labels. The third row shows the salient regions produced by using Otsu’s (1979) 
threshold. The last row pre sents the final targets with relative saliency values. The 
first three steps could be automated, but the last segmentation step had to be done 
manually. At the end of this pro cess, the images (first row, without the labels) and 
their corresponding targets (last row) were gathered in a single database that consti-
tuted the Group’s ground truth.
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saliency- detection algorithms in terms of precision and recall mea sures (see 
figure 2.9). The results of this confrontation being satisfactory, the features 
and per for mances of the Group’s algorithm  were fi nally summarized in a 
draft paper and submitted to an impor tant Eu ro pean Conference on image 
pro cessing.

As  these Group meetings and documents show, the Group’s algorithm 
could only be made operational once the newly defined prob lem of saliency 
had been solved by  human workers and expressed in a ground- truth data-
base. In that sense, the finalization of Matlab lists of instructions capable 
of solving the newly defined prob lem of saliency followed the problemati-
zation pro cess in which the Group was engaged. The theoretical refram-
ing of saliency, the se lection of specific images on Flickr, the coding of a 
web application, the creation of a Matlab database, the pro cessing of the 
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Figure 2.9
Two Matlab- generated graphs comparing the per for mances of the Group’s algorithm 
(“Ours”) with already published ones (“AMC,” “CH,”  etc.). The new ground truth 
enabled both graphs. In the graph on the left, the curves represented the variation of 
precision (“y” axis) and recall (“x” axis) scores for all the images in the ground truth 
when pro cessed by each algorithm. In the graph on the right, histograms measured 
the same data while also including F-Measure values, the weighted average of preci-
sion and recall values. Both graphs indicated that, according to the new ground truth, 
the Group’s algorithm significantly outperformed all state- of- the- art algorithms.
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workers’ coordinates: all  these practices  were required to design the ground 
truth that ended up allowing the extraction of the relevant numerical fea-
tures of the algorithm as well as its evaluation. Of course, the mundane 
work required for the construction of the ground truth was not sufficient to 
complete the complex lists of Matlab instructions that ended up effectively 
pro cessing the pixels of the images: critical certified mathematical claims 
also needed to be articulated and expressed into machine- readable format. 
Yet, by providing the training set to extract the numerical features of the 
algorithm and by providing the evaluation set to mea sure the algorithm’s 
per for mances, the ground truth greatly participated in the completion of 
the algorithm.

The above ele ments are not so trivial, and some deeper reflections are 
required before moving forward. In November 2013, the Group had only 
few ele ments at its disposal. It had desires (e.g., contesting previous papers), 
skills (e.g., mathematical and programming abilities), means (e.g., access to 
academic journals, power ful computers), and hopes (e.g., make a difference 
in the field of image pro cessing). But  these ele ments alone  were not enough 
to effectively shape its new intended algorithm. In November 2013, the 
Group also needed an empirical basis that could serve as a fundamental 
substratum; it needed to ground a material coherence that could establish 
the veridiction of their  future model. This was the  whole benefit of the 
new ground truth— which should rather be called grounded truth—as it was 
now pos si ble to found and bring into existence a set of phenomena ( here, 
saliency differentials) operating as an analytical referential. Once this scrip-
tural fixation was achieved in March 2014, the world the Group inhabited 
was no longer the same: it was enriched and oriented by a set of relations 
materialized in a database. And the algorithm that fi nally came out from 
this database or ga nized, reproduced, and in a sense, consecrated the rela-
tions embedded in it. From a static and par tic u lar ground truth emerged 
an operative algorithm potentially capable of reproducing and promoting 
the orga nizational rules of the ground truth in dif fer ent configurations. By 
rooting the yet- to- be- constructed algorithm, the ground truth as assembled 
by the Group oriented the design of its algorithm in a par tic u lar direction. 
In that sense, the new ground truth was the contingent yet necessary bias 
of the group’s algorithm.19

This propensity of computational models to be bound to and fundamen-
tally biased by manually gathered and pro cessed data is not  limited to the 
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field of digital image pro cessing. For example, as Edwards (2013) showed for 
the case of climatology, the tedious collection, standardization, and com-
pilation of weather data to produce accurate ground truths of the Earth’s 
climate is crucial for both the parametrization and evaluation of General Cir-
culation Models (GCMs).20 Of course, just as in the field of image pro cessing, 
the construction of ground truths by climatologists does not guarantee the 
definition of accurate and effective GCMs: crucial insights in fluid dynam-
ics, statistics, and (parallel) computer programming are also required. Yet, 
without ground truths providing par ameters and evaluations, no efficient 
and trustworthy GCM could come into existence. For the case of machine 
learning algorithms for handwriting recognition or spam filtering, Burrell 
(2016, 5–6) noted the importance of “test data” in setting the learning par-
ameters of  these algorithms as well as in evaluating their per for mances.  Here 
as well, ground truths appear central, defining what is statistically learned 
by algorithms and allowing the evaluation of their learning per for mances.21 
The same seems also to be true of many algorithms for high- frequency trad-
ing: as MacKenzie (2014, 17–31) suggested, detailed analy sis of former finan-
cial transactions as well as the authoritative lit er a ture of financial economics 
work as empirical bases for the shaping and evaluation of “execution” and 
“proprietary trading” algorithms.

Yet, despite growing empirical evidences, algorithms’ tendency to be exis-
tentially linked to ground- truth databases that cannot, obviously, be reduced 
to mere sets of data remains  little discussed in the abundant computer sci-
ence lit er a ture on algorithms. The issue is generally omitted: mathematical 
analy sis and programming techniques, sometimes highly complex, are dis-
cussed  after, or as if, a ground truth has been constructed, accepted, distrib-
uted, and made accessible. The theoretical exploration of what I called in 
chapter 1 the standard conception of algorithms tends to take for granted 
the existence of stable and shared referential repositories. This omission 
may even be what makes such a vision of algorithms pos si ble: considering 
algorithms as tools ensuring the computerized transition from prob lems 
to solutions might imply to suppose already defined prob lems and already 
assessable solutions.

Some sociologists— most of them STS- inspired—do consider the topic 
head on, though. In their critique of predictive algorithmic systems, Baro-
cas and Selbst (2016) warned against the potentially harmful consequences 
of prob lem definition and training sets’ collection. In a similar way, Lehr 
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and Ohm (2017) emphasized on the handcrafted aspect of “playing with 
the data” for the design of statistical learning algorithms. More recently, 
Bechmann and Bowker (2019) built on  these arguments to propose the 
notion of value- accountability- by- design: a call for systemic efforts to make 
arbitrary choices involved in algorithm- related data collection, prepara-
tion, and classification more explicit. In the wake of Ananny and Crawford 
(2018), they thus suggest that, to better appreciate algorithmic be hav ior, ex 
ante focus on ground- truthing pro cesses might be more conclusive than ex 
post audits or source code scrutinization (as it is, for example, proposed in 
Bostrom [2017] and Sandvig et al. [2016]). In a similar way, Grosman and 
Reigeluth (2019) investigated the design of an algorithmic security system 
for the detection of threatening be hav iors. They show that the definition 
of the prob lem that the algorithm  will have to solve— and, therefore, the 
“true positives” it  will have to detect— derive from collective problematiza-
tion pro cesses that include discussions and compromises among sponsors, 
competing interpretations of  legal documents, and on- site simulations of 
threatening and inoffensive be hav iors conducted by the proj ect’s engineers. 
They conclude that the normativity proper to algorithmic systems must 
also be considered in the light of the tensions that contributed to mak-
ing this normativity expressible. In sum, all the above- mentioned authors 
have uncovered pro cesses that resemble the one the Group had just gone 
through. Their investigations also show that what is called an “algorithm” 
often derives from collective pro cesses expressed materially in contingent, 
but necessary, referential repositories.

At this early stage of the pre sent inquiry, it would be unwise to define a 
general property common to all algorithms. Yet based on the preliminary 
insights of this chapter and the growing body of studies that touched on 
similar issues, one can make the reasonable hypothesis that  behind many 
of  these entities we like to call “algorithms” lie ground- truth databases 
that have made designers able to extract relevant numerical features and 
evaluate the accuracy of the automated transformations of inputs- data into 
output- targets. Consequently, as soon as such algorithms— once “in the 
wild,” outside of their production sites— automatically pro cess new data, 
their respective initial ground truths— along with the habits, desires, and 
values that participated in their shaping— are also invoked and, to a cer-
tain extent, promoted. As I  will further develop at the end of this chapter, 
studying the performative effects of such algorithms in the light of the 
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collective pro cesses that constituted the output- targets  these algorithms 
try to retrieve appears a stimulating, yet still underexplored, research topic 
when compared with the growing influence algorithms have on our lives.

Almost Accepted (Yet Rejected)

June 19, 2014: The reviewers rejected the Group’s paper. The Group was 
greatly disappointed to see several months of meticulous work unrewarded 
by a publication that could have launched new research lines and gener-
ated many citations. But the feeling was also one of incomprehension and 
surprise in view of the reasons provided by the three reviewers.

Along with doubts about the usefulness of incorporating face information 
within saliency detection, the reviewers agreed on one seemingly key defi-
ciency of the Group’s paper: the per for mance comparisons of the computa-
tional model  were only made with re spect to the Group’s new ground truth:

Assigned Reviewer 1
The paper does not show that the proposed method also performs better than 
other state- of- the- art methods on public benchmark ground truths.  … The exper-
iment evaluation in this paper is conducted only on the self- collected face images. 
More evaluation datasets  will be more convincing.  … More experiment needs to 
be done to demonstrate the proposed method.

Assigned Reviewer 2
The experiments are tested only on the ground truth created by the authors.  … It 
would be more insightful if experiments on other ground truths  were carried out, 
and results on face images and non- face images  were reported, respectively. This 
way one can more thoroughly evaluate the usefulness of a face- importance map.

Assigned Reviewer 3
The discussion is still too subjective and not sufficient to support its scientific 
insights. Evaluation on existing datasets would be impor tant in this sense.

The reviewers found the technical aspects of the paper to be sound. But they 
questioned  whether the new best saliency- detection model—as the Group 
presented it in the paper— could be confronted only with the ground truth 
used to create it. Indeed, why not confront this new model with the already 
available ground truths for saliency detection? If the model were  really “more 
efficient” than the already published ones, it should also be more efficient 
on the ground truths used to shape and evaluate the per for mances of the 
previously published saliency- detection models. In other words, since the 
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Group presented its model as commensurable with former models, the Group 
should have— according to the reviewers— more thoroughly compared its 
per for mances. But why did the Group stop halfway through its evaluation 
efforts and compare its model only with re spect to the new ground truth?

Discussion with BJ on the terrace of the CSF’s cafeteria, June 19, 2014

FJ: The committee  didn’t like that we created our own ground truth? 22

BJ: No. I mean, it’s just that we tested on this one but we did not test on 
the other ones.

FJ: They wanted you to test on already existing ground truths?

BJ: Yes.

FJ: But why  didn’t you do that?

BJ: Well, that’s the prob lem: Why did we not test it on the  others? We 
have a reason. Our model is about face segmentation and multiple features. 
But in the other datasets, most of them do not have more than ten face 
images.  … In the saliency area, most  people do not work on face detection 
and multiple features. They work on images where  there is a car or a bird in 
the center. You always have a bird or something like this. So it just makes no 
sense to test our model on  these datasets. They just  don’t cover what our 
model does.  … That’s the  thing: if you do classical improvement, you are 
ensured that you  will pre sent something at big conferences. But if you pro-
pose new  things, then somehow  people just misunderstand the concept.

It would not have been technically difficult for the Group to confront its 
model with the previous ground truths; they were freely available on the 
web, and such per for mance evaluations required roughly the same Matlab 
scripts as  those used to produce the results shown in figure 2.9. The main 
reason the Group did not do such comparisons was that the previous models 
deriving from the previous ground truths would certainly have obtained bet-
ter per for mance results. Since the Group’s model was not designed to solve 
the saliency prob lem as defined by the previous ground truths, it would 
certainly have been outperformed by  these ground truths’ “native” models.

Due to a lack of empirical ele ments, I  will not try to interpret the reasons 
why the Group felt obliged to frame the line of argument of its paper around 
issues of quantifiable per for mances.23 Yet, in line with the argument of 
this chapter, I assume that this rejection episode shows again how image- 
processing algorithms can be bound to their ground truths. An algorithm 
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deriving from a ground truth made of images whose targets are centered, 
contrastive objects  will somehow manage to retrieve  these targets. But 
when tested on a ground truth made of images whose targets are multiple 
decentered objects and  faces, the same algorithm may well produce statisti-
cally poor results. Similarly, another algorithm deriving from a ground truth 
made of images whose targets are multiple decentered objects and  faces  will 
somehow manage to retrieve  these targets. But when tested on a ground 
truth made of images whose targets are centered contrastive objects, it may 
well produce statistically poor results. Both such algorithms operate in dif-
fer ent categories; their limits lie in the ground truths used to define their 
range of actions. As BJ suggested in a dramatic way, to a certain extent, we 
get the algorithms of our ground truths. Algorithms can be presented as statisti-
cally more efficient than  others when they derive from the same—or very 
similar— ground truths. As soon as two algorithms derive from two ground 
truths with dif fer ent targets, they can only be presented as dif fer ent. Quali-
tative evaluations of the dif fer ent ground truths in terms of methodology, 
data se lection, statistical rigor, or industrial potentials can be conducted, 
but the two computational models themselves are irreducibly dif fer ent and 
not commensurable. From the point of view of this case study— which may 
differ from the point of view of the reviewers— the Group’s fatal  mistake 
might have been to mix up quantitative improvement of per for mances with 
qualitative refinement of ground truths.

Interestingly, one year  after this rejection episode, the Group submitted 
another paper, this time to a smaller conference in image pro cessing. The 
objects of this paper  were rigorously the same as  those of the paper that was 
previously rejected: the same ground truth and the same computational 
model. Yet instead of highlighting the statistical per for mances of its model, 
the Group emphasized its ground truth and the fact that it allowed the inclu-
sion of face segmentation within saliency detection. In this second paper 
that won the “Best Short Paper Award” of the conference, the computa-
tional model was presented as one example of the application potential of 
the new ground truth.

Prob lem Oriented and/or Axiomatic

This first case study accounted for a small part of a four- month- long proj-
ect in saliency detection run by a group of young computer scientists in 
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the Lab. Is it pos si ble to draw on the observations of this exploratory case 
study? Could we use some of the accounted ele ments to make broader 
propositions and sketch analytical directions for the pre sent book as well 
as for other potential future inquiries into the constitution of algorithms? 
More than just concerning a group of young computer scientists and a 
small prototype for saliency detection, I think indeed that this case study 
fleshes out impor tant insights that deserve to be explored more thoroughly. 
For the remaining part of this chapter then, I  will draw on this empirical 
case to tentatively propose two complementary research directions for the 
so cio log i cal study of algorithms.

I assume that this case study implicitly suggests a new way of seeing 
algorithms that still accepts their standard definition while expanding it 
dramatically. Indeed, we may now still consider an algorithm as being, at 
some point, a set of instructions designed to computationally solve a given 
prob lem. Though as explained at the end of chapter 1, I intentionally did 
not take this standard definition of algorithms as a starting point; at the 
end of the Group’s proj ect, once the numerical features  were extracted 
from the training set and translated into machine- readable language, sev-
eral Matlab files with thousands of lines of instructions constituted just 
such a set. From that point of view, the study of  these sets of instructions 
at a theoretical level—as proposed, for example, by Knuth (1997a, 1997b, 
1998, 2011); Sedgewick and Wayne (2011); Dasgupta, Papadimitriou, and 
Vazirani (2006); and many  others—is wholly relevant to the prob lem at 
hand. How to use mathe matics and machine- readable languages in order to 
propose a solution to a given prob lem in the most efficient way is indeed a 
fascinating question and field of study.

At the same time, however, we saw that the prob lem an algorithm is 
designed to solve does not preexist: it has to be produced during what one 
may call a “problematization process”— a succession of collective practices 
that aim to empirically define the terms of a prob lem to be solved. In our 
case study, the Group first drew on recent claims published in authorita-
tive journals of cognitive biology to reframe the saliency prob lem as being 
face- related and continuous. As we saw, this first step of the Group’s prob-
lematization pro cess implied mundane and problematic practices such as 
the critique of previous research results (what did our opponents miss?) and 
the inclusion of some of the Lab’s recent proj ects (how to pursue our recent 
developments?). The second step of the Group’s problematization pro cess 
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implied the constitution of a ground truth that could operationalize the 
reframed prob lem of saliency. This second step also implied mundane and 
problematic practices such as the collection of a dataset on Flickr (what 
images do we choose?), the organ ization of a database (how do we or ga nize 
our data?), the design of a crowdsourcing task (what question do we ask to 
the workers?), and the pro cessing of the results (how do we get contours of 
features from rectangles?). Only at the very end of this process— once the 
laboriously constructed targets have been associated to the laboriously con-
structed dataset in order to form the final ground- truth database— was the 
Group able to formulate, program, and evaluate the set of Matlab instruc-
tions capable of transforming inputs into outputs by means of numerical 
computing techniques. In short, to design a computerized method of cal-
culation that could solve the new saliency prob lem, the Group first had to 
define the bound aries of this new prob lem.

From  these empirical ele ments, two complementary perspectives on 
the Group’s algorithm seem to emerge. A first perspective might consider 
the Group’s algorithm as a set of instructions designed to computationally 
solve a new prob lem in the best pos si ble way. This first traditional view on 
the Group’s algorithm would, in turn, put the emphasis on the mathemati-
cal choices, formulating practices, and programming procedures the Group 
used to transform the input- data of the new ground truth into their cor-
responding output- targets. How did the Group manipulate its training set 
to extract relevant numerical features for such a task? How did the Group 
translate mathematical operations into lines of code? And did it lead to 
the most efficient result? In short, this take on the Group’s algorithm would 
analyze it in the light of its computational properties. Yet symmetrically, a 
second view on the Group’s algorithm might consider it as a set of instruc-
tions designed to computationally retrieve, in the best pos si ble way, output- 
targets that  were designed during a specific problematization pro cess. This 
second take on the Group’s algorithm would, in turn, put the emphasis 
on the specific situations and practices that led to the definition of the 
terms of the prob lem the algorithm was designed to solve. How was the 
prob lem defined? How was the dataset collected? How was the crowdsourc-
ing task conducted? In short, this second perspective— which this chapter 
endorsed— would analyze the Group’s algorithm vis- à- vis the construction 
pro cess of the ground truth it originally derived from (and by which it was 
biased).
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If we tentatively expand the above propositions, we end up with two 
ways of considering algorithms that both pivot about  these material objects 
called ground truths. What we may call an axiomatic perspective on algo-
rithms would consider algorithms as sets of instructions designed to com-
putationally solve in the best pos si ble way a prob lem defined by a given 
ground truth. A second, and complementary, problem- oriented perspective 
on algorithms would consider algorithms as sets of instructions designed 
to computationally retrieve what has been defined as output- targets during 
specific problematization pro cesses.

While I do think that both axiomatic and problem- oriented perspectives on 
algorithms are complementary and should thus be intimately articulated— 
specific numerical features being suggested by ground truths (and vice 
versa)— I also believe that they lead to dif fer ent analytical efforts. By con-
sidering the terms of the prob lem at hand as given, the axiomatic way of 
considering algorithms facilitates the study of the  actual mathematical and 
programming procedures that effectively end up transforming input sets of 
values into output sets of values in the best pos si ble ways. This may sound 
like an obvious statement, but defining a calculating method requires mini-
mal agreement on the initial terms and prospected results of the method 
(Ritter 1995). It is by assuming that the transformation of the input- data 
into the output- targets is desirable, relevant, and attestable that a step- by- 
step schema describing this transformation might be proposed. In the case 
of computer science, dif fer ent areas of mathe matics with many dif fer ent 
certified rules and theorems can be explored, adapted, and enrolled to 
automate at best the passage from selected input- data to specified output- 
targets; linear algebra in the case of image pro cessing (Klein 2013), proba-
bility theory in the case of data compression (Pu 2005), graph theory in the 
case of data structure (Tarjan 1983), number theory in the case of cryptog-
raphy (Koblitz 2012), or statistics (and probabilities) in the case of the ever- 
popular machine- learning procedures supposedly adaptable to all fields of 
activity (Alpaydin 2016). As we  will see in chapters 5 and 6, the exploration 
and teaching of  these dif fer ent certified mathematical bodies of knowledge 
must therefore be respected for what they are: power ful operators allowing 
the reliable transformative computation of ground- truth’s input- data into 
their corresponding output- targets.

If the problem- oriented perspective on algorithms may not directly focus 
on the formation and computational effectiveness of algorithms, it may 
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contribute to better documenting the pro cesses that configure the terms 
of the prob lems  these algorithms try to solve. Considering algorithms as 
retrieving entities may put the emphasis on the referential databases that 
define what algorithms try to retrieve and reproduce; the biases they build 
on in order to express their veracity. What ground truth defined the terms 
of the prob lem this algorithm tries to solve? How was this ground- truth 
database constituted? And when? And by whom? By pointing at moments 
and locations where outputs to be retrieved  were, or are, being constituted 
within ground-truth databases, this analytical look at algorithms— that 
Bechmann and Bowker (2019) and Grosman and Reigeluth (2019) contrib-
uted to igniting— may suggest new ways of interacting with algorithms and 
 those who design them. This ave nue of research, which is still in its infancy, 
could moreover link its results to  those of the more explic itly critical posi-
tions I mentioned in the introduction. If the investigations by Noble 
(2018) on the racist ste reo types promoted by the search engine Google or 
by O’Neil (2016) on how proxies used by proprietary scoring algorithms 
tend to punish the poorest have effectively acted as warning signs, practi-
cal ways to change the current situation still need to be elaborated. This is 
where the notion of composition, the keystone of this inquiry, comes again 
into play: at the time of (legitimate) indignation, the time of constructive 
confrontation must follow, which itself implies being able to pre sent one-
self realistically. As long as the practical work subtending the constitution 
of algorithms remains abstract and indefinite, modifying the ecol ogy of 
this work  will remain extremely difficult. Changing the biases that root 
algorithms in order to make them promote dif fer ent values may, in that 
sense, be achieved by making the work practices that underlie algorithms’ 
veracities more vis i ble. If more studies could inquire into the ground- truthing 
practices algorithms derive from, then  actual composition potentials may 
slowly be suggested.

* * *

Part I is now coming to an end. Let me then quickly recap the ele ments pre-
sented so far. In chapter 1, I presented the main setting of this inquiry: an 
academic laboratory I de cided to call the “Lab” whose members spend a fair 
amount of time and energy assembling and publishing new image- processing 
algorithms, thus participating—at their own level—in the heterogeneous net-
work of computer science industry. I also considered methodological issues 
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and critically discussed the notion of algorithm as it is generally presented in 
the specialized lit er a ture.

In chapter 2, we dived into the daily work of the Lab and followed a 
group of young computer scientists trying to design a new algorithm for 
an impor tant conference in image pro cessing. Our initial encounter with 
the Group at the Lab’s cafeteria was at first confusing, but  after a quick 
detour via the image- processing lit er a ture on saliency detection, we  were 
able to understand why the Group’s proj ect implied the shaping of a new 
referential database that could define the terms of the prob lem its desired 
algorithm should  later try to solve. As we  were accounting for  these mun-
dane yet crucial ground- truthing practices, we realized something very banal 
for prac ti tion ers of computer science but surprising to many  others: it turns 
out that, to a certain extent, we get the algorithms of our ground truths. As 
the construction of image- processing algorithms implies the formation of 
training sets for formulating the relationships between input- images and 
output- targets as well as the formation of evaluation sets for mea sur ing and 
comparing the per for mances of  these formulated relationships, image- 
processing algorithms— and potentially many  others— must rely, in one 
way or another, on manually constructed ground truths that precisely pro-
vide both sets. This half- discovery further suggested a research agenda that 
two complementary analytical perspectives on algorithms could irrigate. 
First, and in the wake of this chapter 2, a “problem- oriented perspective” 
could explore the collective pro cesses leading to the formation and circula-
tion of ground truths. This unconventional glance on algorithms may con-
tribute to equipping broader topics related to data justice and algorithmic 
fairness. Yet to avoid reducing algorithms to the ground truths from which 
they derive, such studies of algorithms should be intimately articulated 
with an “axiomatic perspective” on algorithms that could further explore 
the formulation and evaluation of computational models from already con-
stituted ground truths.
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It is sometimes difficult to say  things that are quite  simple.

— Hutchins (1995, 356)

If part I led, I hope, to in ter est ing insights, it was nonetheless mundane- 
biased. Although I kept on insisting on the ordinary aspect of ground- 
truthing— criticizing previous papers, selecting data, defining targets, and 
so on— I remained very vague about less common practices that  those who 
are not computer scientists generally expect to see in computer science lab-
oratories. For example, where is the mathe matics? If the Group managed to 
define relationships between input- data and output- targets, it certainly for-
mulated them with the help of mathematical knowledge and inscriptions. 
And where are the cryptic lines of computer code? If the Group managed 
to first design a web application and  later test its computational model on 
the evaluation set, it must have successfully written machine- readable lists 
of instructions. If I  really want to propose a partial yet realistic constitution 
of algorithms, do I not need to account for  these a priori exotic activities 
as well? The practices leading to the definition of mathematical models 
of computation  will be the topic of part III. For now, I need to consider 
computer programming, this crucial activity that never stops being part of 
computer scientists’ daily work.

Let us warm up with some basic assertions. Is it not a platitude to say 
that computer programming is a central activity?  Every digital device that 
takes part in our courses of action required indeed the expert hands of “pro-
grammers” or “developers” who translated desires, plans, and intuitions 
into machine- readable lists of instructions. Banks, scientific laboratories, 
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high- tech companies, museums, spare part manufacturers, novelists, eth-
nographers: all indirectly rely on  people capable of interacting with com-
puters to assem ble files whose content can be executed by pro cessors at 
electronic speed. If by a mysterious black- magic blow all programmers who 
make computers compute in desired ways  were removed from the collec-
tive world, the remaining  people would very soon end up yapping around 
powerless relics like, as Malraux says, crowds of monkeys in Angkor temples. 
The current importance of fast and reliable automated pro cessing for most 
sectors of activity positions computer programming as an obligatory pas-
sage point that cannot be underestimated.

Yet if the courses of action of computer programming are terribly impor-
tant— without them,  there would be no digital tools— their study does not 
always appear relevant. Most of the individuals of the collective world 
rightly have other  things to do than spending time studying what animates 
the digital devices with which they interact. Moreover,  those who study 
 these individuals— for example, sociologists and social scientists— can also 
take programming practices for granted as po liti cal, social, or economic 
pro cesses often appear  after innumerable programming ventures have been 
successfully conducted. For many in ter est ing activities and research topics, 
then, it makes perfectly sense not to look at how computer programs are 
empirically assembled.

In other situations, though, the activity of computer programming is 
more difficult to ignore. Computer scientists and engineers cannot, for 
example, take this activity for granted as it would imply ignoring an impor-
tant and often problematic aspect of their work.1 Unfortunately, as we  shall 
see  later, the methods they use to better understand their own practices 
tend to privilege the evaluation of the results of computer programming 
tasks rather than the practices involved in the production of  these results. 
Programmers’ insights resulting from the analy sis of programming tasks 
thus remain distant from the actions of programming, for which they often 
remain unaccountable.

But programming practices are also difficult to ignore for cognitive scien-
tists who work in artificial intelligence departments: as  human cognition 
is— according to many of them— a  matter of computing, understanding 
how computers become able to compute via the design of programs seems 
indeed to be a fruitful topic. But just like computer scientists and engineers, 
cognitive scientists have difficulties with properly accessing and inquiring 
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into computer programming courses of action. For entangled reasons 
which I  will cover in the following chapter, when cognitivists inquire into 
what makes programs exist, they cannot go beyond the form “program” 
that precisely needs to be accounted for. In a surprisingly vicious circle that 
has to do with the so- called computational meta phor of the mind, cognitiv-
ists end up proposing numerous ( mental) programs to explain the develop-
ment of (computer) programs.

Programming practices therefore appear quite tricky: terribly impor tant 
but at the same time very difficult to effectively study. What makes  these 
courses of action so elusive? Is it even pos si ble to account for them? And 
if it is, what are their associative properties? And what do  these properties 
suggest? The goal of this part II is to tackle some of  these questions. The 
journey  will be long, never straightforward, and sometimes, not developed 
enough. But let the reader forgive me: as you  will hopefully realize, a full 
historical and so cio log i cal understanding of computer programming is a 
life proj ect of its own. So many  things have been said without much being 
shown! The reasons for dizziness are legitimate, the chances of success 
infinitesimal; yet, if we  really care about  these entities we tend to call algo-
rithms, an exploratory attempt to better understand the practices required 
to make them effectively participate in our courses of action might not be, 
I hope, completely senseless.

Part II is or ga nized as follows. In chapter 3, I start by retracing how the 
activity of programming was progressively made invisible before propos-
ing conceptual means to help restore its practicality. I first focus on an 
impor tant document written by John von Neumann in 1945 that presented 
computers as input- output devices capable of operating without the help 
of  humans. This initial setting aside of programming practices from elec-
tronic computing systems further seemed to depict them as self- sufficient 
“electronic brains.” In the second section of the chapter I pre sent academic 
attempts to make sense of the incapacity of “electronic brains” to operate 
meaningfully. As we  shall see, for intricate reasons related to the computa-
tional meta phor of the mind, I assume that researchers conducting  these 
studies did not manage to properly approach computer programming prac-
tices, thus further contributing to their invisibilization. In the last section 
of the chapter where I progressively try to detach myself from almost every-
thing that has been said about the practice of computer programming, I 
draw on con temporary work in the philosophy of perception to propose 
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a definition of cognition as enacted. This enactive conception of cognition 
 will further help us fully consider actions instead of minds. In chapter 4, I 
build on this unconventional conception of cognition as well as several 
other concepts taken from Science and Technology Studies to closely analyze a 
programming episode collected within the Lab. The study of  these empiri-
cal materials makes me tentatively partition programming episodes into 
three intimately related sets of practices: scientific with the alignment of 
inscriptions, technical with the work- arounds of impasses, and affective with 
the shaping of scenarios. The need for constant shifting among  these three 
modes of practices might be a reason why computer programming is a dif-
ficult yet fascinating experience. The last section of chapter 4  will be a brief 
summary.



Many  things have been written regarding computer programming— often, 
I believe, in problematic ways. To avoid getting lost in this abundant lit-
er a ture, it is impor tant to start this chapter with an operational definition 
of computer programming on which I could work and eventually refine 
 later. I  shall then temporally define computer programming as the situated 
activity of inscribing numbered lists of instructions that can be executed by 
computer pro cessors to or ga nize the movement of bits and to modify given 
data in desired ways. This operational definition of computer programming 
puts aside other practices one may sometimes describe as “programming,” 
such as “programming one’s wedding” or “programming the clock of one’s 
micro wave.”

If I place emphasis on the practical and situated aspect of computer pro-
gramming in my operational definition, it is  because impor tant historical 
events have progressively set it aside. In this first section that draws on 
historical works on early electronic computing proj ects, we  will see that 
once computer systems started to be presented as input- output instruments 
controlled by a central unit— following the successful dissemination of the 
so- called von Neumann architecture— the entangled sociotechnical rela-
tionships required to make  these objects operate in meaningful ways had 
begun to be placed in the background. If electronic computing systems 
 were, in practice, intricate and highly problematic sociotechnical pro cesses, 
von Neumann’s modelization made them appear as functional devices 
transforming inputs into outputs. The noninclusion of practices— hence 
their invisibilization—in the accounts of electronic computers further led 
to serious issues that suggested the first academic studies of computer pro-
gramming in the 1950s.

3 Von Neumann’s Draft, Electronic Brains, and Cognition
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A Report and Its Consequences

One cornerstone of what  will progressively be called “von Neumann architec-
ture” is the First Draft of a Report on the EDVAC that John von Neumann wrote 
in a hurry in 1945 to summarize the advancement of an audacious electronic 
computing system initiated during World War II at the Moore School of Elec-
trical Engineering at the University of Pennsylvania. As I believe this report 
has had an impor tant influence on the setting aside of the practical instantia-
tions of computer systems, we first need to look at the history and dissemina-
tion of this document as well as the world it participated in enacting.

World War II: An Increasing Need for the Resolution  
of Differential Equations
An arbitrary point of departure could be President Franklin D. Roo se velt’s 
radio broadcast on December 29, 1940, that publicly presented the United 
States as the main military supplier to the Allied war effort, therefore imply-
ing a significant increase in US military production spending.1  Under the 
jurisdiction of the Army Ordnance Department (AOD), the design and indus-
trial production of long- distance weapons  were obvious topics for this war- 
oriented endeavor. Yet for  every newly developed long- distance weapon, a 
complete and reliable firing  table listing the appropriate elevations and azi-
muths for the reaching of any distant targets had to be calculated, printed, 
and distributed. Indeed, to have a chance to effectively reach targets with a 
minimum of rounds,  every long- distance weapon had to be equipped with 
a booklet containing data for several thousand kinds of curved trajectories.2 
More  battles, more weapons, and more distant shots: along with the mass 
production of weapons and the enrollment of soldiers capable of  handling 
them, the US’s entry into another world war in 1942 further implied an 
increasing need for the resolution of differential equations.

 These practical mathematical operations— which can take the form of 
long iterative equations that require only addition, subtraction, multiplica-
tion, and division— were mainly conducted in the premises of the Ballistic 
Research Laboratory (BRL) at Aberdeen, Mary land, and at the Moore School 
of Electrical Engineering in Philadelphia. Hundreds of “ human comput-
ers” (Grier 2005), mainly  women (Light 1999), along with mechanical desk 
calculators and two costly refined versions of Vannevar Buch’s differential 
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analyzer (Owens 1986)—an analogue machine that could compute math-
ematical equations3— worked intensely to print out ballistic missile firing 
 tables. Assembling all of the assignable  factors that affect the trajectories 
of a projectile shot from the barrel of a gun (gravity; the elevations of the 
gun; the shell’s weight, dia meter, and shape; the densities and temperatures 
of the air; the wind velocities,  etc.)4 and aligning them to define and solve 
messy differential equations5 was a tedious pro cess that involved intense 
training and military chains of command (Polachek 1997). But even this 
unpre ce dented ballistic calculating endeavor could not satisfy the comput-
ing needs of this war time. Too much time was required to produce a com-
plete  table, and the backlog of work rapidly grew as the war intensified. As 
Campbell- Kelly et al. (2013, 68) put it:

The lack of an effective calculating technology was thus a major bottleneck to the 
effective deployment of the multitude of newly developed weapons.

In 1942, drawing on the differential analyzer and on the pioneering work of 
John Vincent Atanasoff and Clifford Berry on electronic computing (Akera 
2008, 82–102; Burks and Burks 1989) as well as on his own research on 
delay- line storage systems,6 John Mauchly—an assistant professor at the 
Moore School— submitted a memorandum to the AOD that presented the 
construction of an electronic computer as a potential resource for faster and 
more reliable computation of ballistic equations (Mauchly [1942] 1982).7 
The memorandum first went unnoticed. But one year  later, thanks to the 
lobbying of Herman Goldstine— a mathematician and influential member 
of the BRL— a meeting regarding the potential funding of an eighteen- 
thousand- vacuum- tube electronic computer was or ga nized with the BRL’s 
director. And despite the skepticism of influent members of the National 
Defense Research Committee (NDRC),8 a $400,000 research contract was 
signed on April 9, 1943.9 At this point, the construction of a computing 
system that could potentially solve large iterative equations at electronic 
speed and therefore accelerate the printing out of the firing  tables required 
for long- distance weapons could begin. This proj ect, initially called “Proj ect 
PX,” took the name of ENIAC for Electronic Numerical Integrator and Computer.

The need to quickly demonstrate technical feasibility forced Mauchly 
and John Presper Eckert— the chief engineer of the proj ect—to make irre-
versible design decisions that soon appeared problematic (Campbell- Kelly 
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et al. 2013, 65–87). The biggest shortcoming was related to the new com-
puting capabilities of the system: If delay- line storage could potentially 
make the system add, subtract, multiply, and divide electric translations 
of numbers at electronic speed, such storage prevented the system from 
being instructed via punched cards or paper tape. This common way of 
both temporally storing data and describing the logico- arithmetic opera-
tions that would compute them was well adapted for electromechanical 
devices, such as the Harvard Mark I that proceeded at three operations per 
second.10 But an electronic machine such as the ENIAC that was supposed 
to perform five thousand operations per second could not possibly  handle 
this kind of paper material. The solution that Eckert and Mauchly proposed 
was then to set up both data and instructions manually on the device by 
means of wires, mechanical switches, and dials. This choice led to two 
related impasses. First, it constrained the writable electronic storage of the 
device; more storage would have indeed required even bigger machinery, 
entangled wires, and unreliable vacuum tubes. Second, the work required 
to set up all the circuitry and controllers and start an iterative ballistic equa-
tion was extremely tedious; once the data and the instructions  were labori-
ously defined and checked, the  whole operating team needed to be briefed 
and synchronized to set up the messy circuitry (Campbell- Kelly et al. 2013, 
73). Moreover, the passage from diagrams provided by the top engineers 
to the  actual setup of the system by lower- ranked employees was by no 
means a smooth process— the diagrams  were tedious to produce, hard to 
read, and error-prone, and the number of switches, wires, and resistors was 
quite confusing.11

Two impor tant events made an alternative appear. The first is Eckert’s 
work on mercury delay- line storage, which built upon his previous work on 
radar technology. By 1944, he became convinced that  these items could be 
adapted to provide more compact, faster, and cheaper computing storage 
(Haigh, Priestley, and Rope 2016, 130–132). The second event is one of the 
most popu lar anecdotes of the history of computing: the visit of John von 
Neumann at the BRL in the summer of 1944. Contrary to Eckert, Mauchly, 
and even Goldstine, von Neumann was already an impor tant scientific fig-
ure in 1944. Since the 1930s, he was at the forefront of mathematical logic, 
the branch of mathe matics that focuses on formal systems and their abili-
ties to evaluate the consistencies of statements. He was well aware of the 
works on computability by Alonzo Church and Alan Turing, with whom 
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he collaborated at Prince ton.12 As such, he was one of the few mathema-
ticians who had a formal understanding of computation. Moreover, by 
1944, he had already established the foundations of quantum mechanics 
as well as game theory. Compared with him and despite their breathtaking 
insights on electronic computing, Eckert and Mauchly  were still provincial 
engineers. Von Neumann was part of another category: he was a scientific 
superstar of physics, logics, and mathe matics, and he worked as a consul-
tant on many classified scientific proj ects, with the more notable one cer-
tainly being the Manhattan Proj ect.

Von Neumann’s visit was part of a routine consulting trip to the BRL and 
therefore was not specifically related to the ENIAC proj ect. In fact, as many 
members of the NDRC expressed defiance  toward the ENIAC, von Neu-
mann was not even aware of its existence. But when Goldstine mentioned 
the ENIAC proj ect, von Neumann quickly showed interest:

It is the summer of 1944. Herman Goldstine, standing on the platform of the rail-
road station at Aberdeen, recognizes John von Neumann. Goldstine approaches 
the  great man and soon mentions the computer proj ect that is underway in Phila-
delphia. Von Neumann, who is at this point deeply immersed in the Manhattan 
Proj ect and is only too well aware of the urgent need of many war time proj ects 
of rapid computations, makes a quick transition from polite chat to intense inter-
est. Goldstine soon brings his new friend to see the proj ect. (Haigh, Priestley, and 
Rope 2016, 132)

By the summer of 1944, it was accepted among Manhattan Proj ect’s scien-
tific man ag ers that a uniform contraction of two plutonium hemi spheres 
could make the material volume reach critical mass and create, in turn, a 
nuclear explosion. Yet if von Neumann and his colleagues knew that the 
mathe matics of this implosion would involve huge systems of partial differ-
ential equations, they  were still struggling to find a way of defining them. 
And for several months, von Neumann had been seriously considering elec-
tronic computing for this specific prospect (Aspray 1990, 28–34; Goldstine 
[1972] 1980, 170–182).

 After his first visit to the ENIAC, von Neumann quickly realized that 
even though the ENIAC was by far the most promising computing system 
he had seen so far, its  limited storage capacity could by no means help 
define and solve the very complex partial differential equations related to 
the Manhattan Proj ect.13 Convinced that a new machine could overcome 
this impasse— notably by using Eckert’s insights about mercury delay- line 
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storage— von Neumann helped design a new proposal for the construction 
of a post- ENIAC system. He moreover attended a crucial BRL board meeting 
where the new proj ect was evaluated. His presence definitely helped with 
attaining the final approval of the proj ect and its new funding of $105,000 
by August 1944. The new hy po thet i cal machine— whose design and con-
struction would fall  under the management of Eckert and Mauchly— was 
initially called “Proj ect PY” before being renamed EDVAC for Electronic Dis-
crete Variable Automatic Computer.

Dif fer ent Layers of Involvement
The period between September 1944 and June 1945 is crucial for my adven-
turous story of the setting aside of computer programming practices. It 
was indeed during this short period of time that von Neumann proposed 
considering computer programs as input lists of instructions, hence sur-
reptitiously invisibilizing the practices required to shape  these lists. As this 
formal conception of electronic computing systems was not unanimously 
shared among the participants of both ENIAC and EDVAC proj ects, it is 
impor tant at this point to understand the dif fer ent layers of involvements 
in  these two proj ects that  were intimately overlapping. One could sche-
matically divide them into three layers: the engineering staff, the operating 
team, and von Neumann himself.

The first layer of involvement included the engineering staff— headed 
by Mauchly, Eckert, Goldstine,  and Arthur W. Burks—that was responsible 
for the logical, electronic, and electromechanical architectures and imple-
mentations of both the ENIAC and the EDVAC. The split of the ENIAC 
into dif fer ent units, the functioning of its accumulators— crucial parts for 
making the system compute electric pulses— and the development and test-
ing of mercury delay- line storage for the  future EDVAC  were part of the 
prerogatives of the engineering staff. It is difficult to see now the blurriness 
of this endeavor that was swimming in the unpre ce dented. But besides the 
systems’ abilities to compute more or less complex differential equations, 
one crucial ele ment the engineering staff had to conceive and make happen 
was a way to instruct  these messy systems. In parallel to the enormous sci-
entific and engineering prob lems of the dif fer ent parts of the systems, the 
shaping of readable documents that could describe the operations required 
to make  these systems do something was a real challenge: How, in the end, 
could an equation be put into an incredibly messy electronic system? In 
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the case of the ENIAC, the engineering staff—in fact, mostly Burks (Haigh, 
Priestley, and Rope 2016, 35–83)— progressively designed a workflow that 
could be summarized as such: assuming ballistic data and assignable  factors 
had been adequately gathered and translated into a differential equation— 
which was already a problematic endeavor— the ENIAC’s engineering staff 
would first have to transform this equation into a logical diagram; then into 
an electronic diagram that took into account the dif fer ent unit as blocks; 
and then into another, bigger, diagram that took into account the inner 
constituents of each block. The end result of this tedious process— the final 
“panel diagram” drawn on large sheets of paper (Haigh, Priestley, and Rope 
2016, 42)— was an incredible, yet necessary, mess.

This leads us to another layer that included the so- called operators—
mainly  women computers— who tried to make sense, correct, and even-
tually implement  these diagrams into workable arrangements of switches, 
wires, and dials. Contrary to what the top engineers had initially thought, 
translating large panel diagrams into a workable configuration of switches 
and wires was not a trivial task. Errors in both the diagrams and the con-
figurations of switches  were frequent— without mentioning the fragility of 
the resistors— and this empirical “programming” pro cess implied constant 
exchanges between high- level design in the office and low- level implemen-
tations in the  hangar (Light 1999, 472; Haigh, Priestley, and Rope 2016, 
74–83). Both engineers and operators  were engaged in a laborious pro cess 
to have ENIAC and, to a lesser extent, EDVAC produce meaningful results, 
and these computing systems  were considered heterogeneous pro cesses that 
indistinctly mixed problematic technical components, interpersonal rela-
tionships, mathematical modeling, and transformative practices.

Next to  these two layers of involvement was von Neumann who cer-
tainly constituted a layer on his own. First, contrary to Mauchly, Eckert, 
Burks, and even Goldstine, he was well aware of recent works in math-
ematical logic and, in that sense, was prone to formalizing models of 
computation. Second, von Neumann was very interested in mathematical 
neurology and was well aware of the analogy between logical calculus and 
the brain as proposed by McCulloch and Pitts in 1943 (more on this  later). 
This further made him consider computing systems as electronic brains 
that could more or less intelligently transform inputs into outputs (Haigh, 
Priestley, and Rope 2016, 141–142; von Neumann 2012). Third, if he was 
truly involved in the early design of the EDVAC, his point of view was that 
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of a con sul tant, constantly on the move from one laboratory to another. 
He attended meetings— the famous “Meetings with von Neumann” (Stern 
1981, 74)— and read reports and letters from the top man ag ers of the ENIAC 
and EDVAC but was not part of the mundane tedious practices at the Moore 
School (Stern 1981, 70–80; Haigh, Priestley, and Rope 2016, 132–140). He 
was thus parallel to, but not wholly a part of, the everyday practices in the 
 hangars of the Moore School. Fi nally, being deemed one of the greatest sci-
entific figures of the time— which he certainly was— his visits  were real  trials 
that required preparation and cleaning efforts. If he visited the  hangars of 
the Moore School several times, he mainly saw the results of messy setup 
pro cesses, not the pro cesses themselves. A lot was indeed at stake: at that 
time, the electronic computing proj ects of the Moore School  were not con-
sidered serious endeavors among many impor tant applied mathematicians 
at MIT, Harvard, or Bell Labs— notably Vannevar Buch, Howard Aiken, and 
George Stibitz (Stern 1981). Taking care of von Neumann’s support was 
crucial as he gave legitimacy to the EDVAC proj ect and even to the  whole 
school.

All of  these ele ments certainly contributed to shaping von Neumann’s 
par tic u lar view on the EDVAC. In the spring of 1945, while the engineering 
and operating layers had to consider this post- ENIAC computing system 
as a set of problematic relations encompassing the definition of equations, 
the adequate design of fragile electromechanical units, and back- and- forth 
movements between  hangars and offices, von Neumann could consider 
it as a more or less functional object whose inner relationships could be 
modeled.

Despite many feuds over the paternity of what has  later been fallaciously 
called “the notion of stored program,”14 it is clear now for historians of tech-
nology that the intricate relationships among  these three layers of involve-
ment in the EDVAC proj ect collectively led to the design decision of storing 
both data and instructions as pulses in mercury delay lines (Campbell- Kelly 
et al. 2013, 72–87; Haigh, Priestley, and Rope 2016, 129–152).  After several 
board meetings between September 1944 and March 1945, the top engi-
neers and von Neumann agreed that, if or ga nized correctly, the new storage 
capabilities of mercury delay lines could be used to temporally conserve not 
only numerical data but also the description of in- built arithmetical and 
logical operations that  will  later compute them. This initial characteristic 
of the  future EDVAC further suggested, to varying degrees, the possibility 
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of paper or magnetic- tape documents whose contents could be loaded, read, 
and pro cessed at electronic speed by the device, without the intervention 
of a  human being.

For the engineers and operators deeply involved in the ENIAC- EDVAC 
proj ects, the notion of lists of instructions that could automatically instruct 
the system was rather disconnected from their daily experiences of unread-
able panel diagrams, electronic circuitry, and messy setup pro cesses of 
switches and wires. To them, the differentiation between the computing 
system and its instructions hardly made sense: in practice, an electronic 
computing system was part of a broader sociotechnical pro cess encompass-
ing the definition of equations, the writing of diagrams, the adequate design 
of fragile electromechanical units, back- and- forth movements between 
 hangars and offices,  etc. To paraphrase Michel Callon (1999) when he talked 
about Air France, for  these two layers of involvement, it was not an elec-
tronic calculator that could eventually compute an equation but a  whole 
arrangement of engineers, operators, and artifacts in constant relationship.

The vision von Neumann had for both the ENIAC and EDVAC proj ects 
was very dif fer ent: as he was constantly on the move, attending meetings 
and reading reports, he had a rather disembodied view of  these systems. 
This pro cess of disembodiment that often affects top man ag ers was well 
described by Katherine Hayles (1999) when she compared the points of 
view of Warren McCulloch— the famous neurologist— and Miss Freed— his 
secretary—on the notion of “information”:

Thinking of her [Miss Freed], I am reminded of Dorothy Smith’s suggestion that 
men of a certain class are prone to decontextualization and reification  because 
they are in a position to command the  labors of  others. “Take a letter, Miss Freed,” 
the man says. Miss Freed comes in. She gets a lovely smile. The man speaks, and 
she writes on her stenography pad (or perhaps on her stenography typewriter). 
The man leaves. He has a plane to catch, a meeting to attend. When he returns, 
the letter is on his desk, awaiting his signature. From his point of view, what has 
happened? He speaks, giving commands or dictating words, and  things happen. 
A  woman comes in, marks are inscribed onto paper, letters appear, conferences 
are arranged, books are published. Taken out of context, his words fly, by them-
selves, into books. The full burden of the  labor that makes  these  things happen is 
for him only an abstraction, a resource diverted from other pos si ble uses,  because 
he is not the one performing the  labor. (Hayles 1999, 82–83)

Hayles’s power ful proposition is extendable to the case that interests us  here: 
contrary to Eckert, Mauchly, Burks, and the operating team, von Neumann 
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was not the one performing the  labor. Whereas the engineering and operat-
ing teams  were entangled in the headache of making the ENIAC and EDVAC 
do meaningful  things, von Neumann was entangled in the dif fer ent head-
ache of providing relevant insights— notably in terms of formalization—to 
military proj ects located all around the United States. To a certain extent, this 
position, alongside his interest in con temporary neurology and his excep-
tional logical and mathematical insights, certainly helped von Neumann 
write a document about the implications of storing both data and instruc-
tions as pulses in mercury delay lines. Provided as a summary of the discus-
sions among the EDVAC team between the summer of 1944 and the spring 
of 1945, he wrote the First Draft of a Report on the EDVAC ([1945] 1993) that, 
for the first time, modeled the logical architecture of a hy po thet i cal machine 
that would store both the data and the instructions required to compute 
them. Unaware of, and not concerned with, its laborious instantiations 
within the Moore School, von Neumann presented the EDVAC as a system 
of interacting “organs” whose relationships could by themselves transform 
inputs into outputs. And despite the skepticism of Eckert and Mauchly about 
presenting their proj ect with floating terms, such as “neurons,” “memory,” 
“inputs,” and “outputs”— and eventually their fierce resentment to see that 
their names  were never mentioned in the document15— thirty- one copies of 
the report  were printed and distributed among the US computing- related 
war proj ects in June 1945.

Proofs of Concept and the Circulation of the Input- Output Model
The many lawsuits and patent- related issues around the First Draft are not 
impor tant for my story. What  matters at this point is the surreptitious shift 
that occurred and per sis tently stayed within the computing community: 
Whereas computing systems  were, in practice, sociotechnical pro cesses that 
could ultimately— perhaps— produce meaningful results, the formalism of 
the First Draft surreptitiously presented them as brain- like objects that could 
automatically transform inputs into outputs. And if  these high- level insights 
 were surely important to sum up the confidential work that had been under-
taken at the Moore School during the war and share it with other laboratories, 
they also contributed to separating computing systems from the practices 
required to make them operate. The First Draft presented the architecture of 
a functioning computing machine and thus put aside the actions required 
to make this machine function. The translation operations from equations 
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to logical diagrams, the specific configurations of electric circuitry and logic 
gates, the corrections of the diagrams from inaccurate electronic circulation 
of pulses; all of  these sociotechnical operations  were taken for granted in 
the First Draft to formalize the EDVAC at the logical level. Layers of involve-
ment  were relative layers of silence (Star and Strauss 1999); by expressing the 
point of view of the con sul tant who built on the results of intricate endeav-
ors, the “list of the  orders” (the programs) and the “device” (the computer) 
started to be considered two dif fer ent entities instead of one entangled 
pro cess.

But  were the instructions  really absent from the computing system as 
presented in the First Draft? Yes and no. The story is more intricate than 
that. In fact, the First Draft defined for the first time a quite complete set of 
instructions that, according to the formal definition of the system, could 
make the hy po thet i cal machine compute  every prob lem expressible in its 
formalism (von Neumann [1943] 1993, 39–43). But similarly to Turing’s 
seminal paper on computable numbers (Turing 1937), von Neumann’s set 
of instructions was integrally part of his formal system: the system consti-
tuted the set of all sets of instructions it could potentially compute. The 
benefits of this formalization  were huge as it allowed the existence of all the 
infinite combinations of instructions. Yet, the surreptitious drawback was 
to consider  these combinations as nonproblematic realizations of potenti-
alities instead of costly actualizations of collective heterogeneous pro cesses. 
While making a universal machine do something in par tic u lar was, and is, 
very dif fer ent from formalizing such a universal machine, both practices 
 were progressively considered equivalent.16

The diffusion of von Neumann’s architecture as presented in the First 
Draft was not immediate. At the end of the war, several computing systems 
coexisted in an environment of mutual ignorance— most proj ects  were clas-
sified during the war— and per sis tent suspicion— the Nazi threat was soon 
replaced with the communist (or cap i tal ist) threat. During the conferences 
and workshops of the Moore School Series that took place in summer 1946, 
the logical design of the EDVAC was, for example, very  little discussed as 
it was still classified. Nonetheless, several copies of the First Draft progres-
sively started to circulate outside of the US defense ser vices and laborato-
ries, notably in Britain, where a small postwar research community could 
build on massive, yet extremely secret, code- breaking computing proj ects 
(Abbate 2012, 34–35; Campbell- Kelly et al. 2013, 83–84).
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Contrary to Cold War– oriented American research proj ects, postwar Brit-
ish proj ects had no impor tant funding as most of the UK government’s 
money was being invested in the reconstruction of the devastated infra-
structures. This forced British scientific man ag ers to design rather small 
prototypes that could quickly show promising results. In June 1948, inspired 
by von Neumann’s architecture as presented in the First Draft, Max New-
man and Frederic Williams from the University of Manchester provided a 
first minimal proof of concept that the cathode- ray tube storage system 
could indeed be used to store instructions and data for computation at elec-
tronic speed in a desired, yet fastidious, way. One year  later, Maurice Wil-
kes from the University of Cambridge— who also obtained a version of the 
First Draft and participated in the Moore School Series in 1946— successfully 
led the construction of an electronic digital computer with a mercury delay- 
line storage that he called the EDSAC for Electronic Delay Storage Automatic 
Calculator. Largely due to the programming efforts of Wilkes’s PhD student 
David Wheeler (Richards 2005), the EDSAC could load data and instructions 
punched on a ribbon of paper and print the squares of the first one hundred 
positive integers.  These two successful experiences participated in rendering 
electromechanical relays and differential analyzers obsolete in the emerg-
ing field of computer science research. But more importantly for the pre-
sent story,  these two successful experiments also participated in the diffusion 
of von Neumann’s functional definition of electronic computing systems as 
input- output devices controlled by a central organ. As it ended up working, 
the model, and its encapsulated meta phors,  were considered accurate.

At the beginning of 1950s, when IBM started to redefine computers as 
data- processing systems for businesses and administrations, von Neumann’s 
definition of computing system further expanded. As cited in Haigh, Priest-
ley, and Rope (2016, 240), an IBM paper written by Walker Thomas asserts, 
for example, that “all stored- program digital computers have four basic ele-
ments: the memory or storage ele ment, the arithmetic ele ment, the control 
ele ment, and the terminal equipment or input- output ele ment” (Thomas 
1953, 1245). More generally, the broader inclusion of computing systems 
within commercial arrangements (Callon 2017) participated in the dissemi-
nation of their functional definition. It seems indeed that, to create new 
markets, intricate and very costly computing systems had better be pre-
sented as devices that automatically transform inputs into outputs rather 
than artefacts requiring a  whole infrastructure to operate adequately. The 
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noninclusion of the sociotechnical interactions and practices required to 
make computers compute seems, then, to have participated in their expan-
sions in commercial, scientific, and military spheres (Campbell- Kelly et al. 
2013, 97–117). But the putting aside of programming practices from the 
definition of computers further led to numerous issues related to the ad hoc 
 labor required to make them function.

The Psy chol ogy of Programming (And Its Limits)

The prob lem with practice is that it is necessary to do  things: essence is 
existence and existence is action (Deleuze 1995). And as soon as electronic 
computing systems started to be presented as input- output functional devices 
controlled by a central organ, the efforts required to make them function in 
desired ways quickly stood out: it was extremely tedious to make the devices 
do meaningful  things.  These intelligent electronic brains  were, in practice, 
dull as dishwater. But rather than casting doubts on the input- output frame-
work of the First Draft and considering it formally brilliant but empirically 
inaccurate, the blame was soon casted on the individuals responsible for 
the design of computer’s inputs. In short, if one could not make electronic 
brains operate, it was  because one did not manage to give them the inputs 
they deserved. What was soon called the “psy chol ogy of programming” 
tried, and tries, to understand why individuals interact so laboriously with 
electronic computers.

This emphasis on the individual first led to aptitude tests in the 1950s that 
aimed at selecting the appropriate candidates for programming jobs in a 
time of workforce scarcity. By the late 1970s, entangled dynamics that made 
Western software industry shift from scientific craft to gender- connoted 
engineering supported the launching of behavioral studies that typically 
consisted of programming tests whose relative results  were attributed to 
controlled par ameters. A de cade  later, the contested results of  these behav-
ioral tests as well as theoretical debates within the discipline of psy chol ogy 
led to cognitive studies of programming. Cognitive scientists put aside the 
notion of par ameters as proposed by behaviorists to focus on the  mental 
models that programmers should develop to construct efficient programs. 
As we  shall see,  these research endeavors framed programming in ways that 
prevented them from inquiring into what programmers do, thus perpetuat-
ing the invisibilization of their day- to- day work.
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Personnel Se lection and Aptitude Tests
By the end of the 1940s, simultaneous to the completion of the first elec-
tronic computing systems that the von Neumann architecture inspired, the 
prob lem of the  actual  handling of  these systems arose:  these automatons 
appeared to be highly heteronomous. This practical issue quickly arose in 
the universities hosting the first electronic computers. As Maurice Wilkes 
wrote in his memoirs about the EDSAC:

By June 1949  people had begun to realize that it was not so easy to get programs 
right as at one time appeared. I well remember when this realization first came on 
me with full force. The EDSAC was on the top floor of the building and the tape- 
punching and editing equipment one floor below on a gallery that ran round the 
room in which the differential analyzer was installed. I was trying to get work-
ing my first non- trivial program, which was one for the numerical integration 
of Airy’s differential equation. It was on one of my journeys between the EDSAC 
room and the punching equipment that “hesitating at the  angles of stairs” the 
realization came over me with full force that a good part of the remainder of my 
life was  going to be spent in finding errors in my own programs. (Wilkes 1985, 145)

Although the EDSAC theoretically included all pos si ble programs, the actu-
alization of  these programs within specific situations was the main practical 
issue. And this became obvious to Wilke once he was directly involved in 
trying to make the functional device function.

In the industry, the heteronomous aspect of electronic computing sys-
tems also quickly stood up. A first example is the controversies surrounding 
the UNIVAC—an abbreviation for Universal Automatic Computer—an elec-
tronic computing system that Eckert and Mauchly developed  after they left 
the Moore School in 1946 to launch their own com pany (which Remington 
Rand soon acquired). The potential of the UNIVAC gained a general audi-
ence when a  whole programming team— which John Mauchly headed— 
made it run a statistical program that accurately predicted the results of 
1952 American presidential election. This marketing move, whose costs 
 were carefully unmentioned, further expanded the image of a functional 
electronic brain receiving inputs and producing clever outputs. But when 
General Electric acquired a UNIVAC computer in 1954, it quickly realized 
the gap between the pre sen ta tion of the system and its  actual enactment: it 
was simply impossible to make this functional system function. And it was 
only  after two years and the hiring of a  whole new programming team that 
a basic set of accounting applications could start producing some meaningful 



Von Neumann’s Draft, Electronic Brains, and Cognition 107

results (Campbell- Kelly 2003, 25–30). IBM faced similar prob lems with its 
computing system 701. The promises of smooth automation quickly faced 
the down- to- earth real ity of practice: the first users of IBM 701— notably 
Boeing, General Motors, and the National Security Agency (Smith 1983)— 
had to hire  whole teams specifically dedicated to making the system do 
useful  things.17

US defense agencies  were confronted with the same issue.  After the 
explosion of the first Soviet atomic bomb in August 1949, the United States 
appeared dangerously vulnerable; the existing air defense system and its 
slow manual gathering and pro cessing of radar data could by no means 
detect nuclear bombers early enough to or ga nize  counter operations of 
interceptor aircrafts. This threat— and many other entangled ele ments 
that are far beyond the scope of this chapter— led to the development of a 
prototype computer- based system capable of pro cessing radar data in real 
time.18 The promising results of the prototype further suggested in 1954 the 
realization of a nationwide defense system of high- speed data- processing 
systems— called Semi- Automatic Ground Environment (SAGE).19 The US Air 
Force contacted many contractors to industrially develop this system of sys-
tems, with IBM being awarded the development of the 250 tons AN/FSQ-7 
electronic computers.20 But none of  these renowned institutions— among 
them IBM, General Electric, Bell Labs, and MIT— accepted the develop-
ment of the lists of instructions that would make such power ful computers 
usable. Almost by default, the $20 million contract was awarded to the 
RAND Corporation, a nonprofit (but nonphilanthropic) governmental 
organ ization created in 1948 that operated as a research division for the US 
Air Force. RAND had already been involved in the previous development of 
the SAGE proj ect, but its team of twenty- five programmers was obviously 
far too small for the new programming task. So by 1956, RAND started an 
impor tant recruiting campaign all around the country to find individuals 
who could successfully pursue the task of programming.

In this early Cold War period, the challenge for RAND was then to recruit 
a lot of programming staff in a short period of time. And to equip this 
massive personnel se lection imperative, psychologists from RAND’s Sys-
tem Development Division started to develop tests whose quantitative results 
could positively correlate with  future programming aptitudes. Largely 
inspired by the Thurstone Primary  Mental Abilities Test,21  these aptitude 
tests— although criticized within RAND itself (Rowan 1956)— soon became 
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the main basis for the se lection of new programmers as they allowed cru-
cial time savings while being based on the statistically driven discipline of 
psychometrics. The intensive use of aptitude tests helped RAND to rapidly 
increase its pool of programmers, so much so that its System Development 
Division was soon incorporated into a separate organ ization, the System 
Development Corporation (SDC). As early as 1959, the SDC had “more than 
700 programmers working on SAGE, and more than 1,400  people support-
ing them.  … This was reckoned to be half of the entire programming man-
power of the United States” (Campbell- Kelly 2003, 39). But besides enabling 
RAND/SDC to engage more confidently in the SAGE proj ect, aptitude tests 
also had an impor tant effect on the very conception of programming work. 
Although the main goal of  these tests was to support a quick and nation-
wide personnel se lection, they also contributed to framing programming as 
a set of abstract intellectual operations that can be mea sured using proxies.

The regime of aptitude testing as initiated by the SDC quickly spread 
throughout the industry, notably prompting IBM to develop its own ques-
tionnaire in 1959 to support its similarly impor tant recruitment needs. Well 
in line with the computer- brain parallel inherited from the seminal period 
of electronic computing, the IBM Programming Aptitude Test (PAT) typi-
cally asked job candidates to figure out analogies between forms, continue 
lists of numbers, and solve arithmetic prob lems (see figure 3.1). Though 
the correlation between candidates’ scores to aptitude tests and their  future 
work per for mances was a  matter of debate, aptitude tests quickly became 
mainstream recruiting tools for companies and administrations that pur-
chased electronic computers during the 1960s. As Ensmenger (2012, 64) 
noted: “By 1962, an estimated 80  percent of all businesses used some form 
of aptitude test when hiring programmers, and half of  these used IBM PAT.” 
The massive distribution and use of  these tests among the emerging com-
puting industry further constricted the framing of programming practices 
as mea sur able innate intellectual abilities.

Supposed Crisis and Behavioral Studies
By framing programming as an activity requiring personal intuitive quali-
ties, aptitude tests have somewhat worked against gendered discrimina-
tions related to unequal access to university degrees. As Abbate (2012, 52) 
noted: “A  woman who had never had the chance to earn a college degree—
or who had been steered into a nontechnical major— could walk into a job 
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PART III (Cont’d)

13. During his first three years, a salesman sold 90%, 105%, and 120%, respectively,
of his yearly sales quota which remained the same each year. If his sales totaled 
$252,000 for the three years, how much were his sales below quota during his first 
year?

(a) $800 (b) $2,400 (c) $8,000
(d) $12,000 (e) $16,000

14. In a large office, 2/3 of the staff can neither type nor take shorthand. However, 1/4
of the staff can type and 1/6 can take shorthand. What proportion of people in the 
office can do both?

(a) 1/12 (b) 5/36 (c) 1/4
(d) 5/12 (e) 7/12

15. A company invests $80,000 of its employee pension fund in 4% and 5% bonds and 
receives $3,360 in interest for the first year. What amount did the company have 
invested in 5% bonds?

(a) $12,800 (b) $16,000 (c) $32,000
(d) $64,000 (e) $67,200

16. A company made a net profit of 15% of sales. Total operating expense were 
$488,000. What was the total amount of sales?

(a) $361,250 (b) $440,000 (c) $450,000
(d) $488,750 (e) $500,000

17. An IBM Sorting Machine processes 1,000 cards per minute. However, 20% is 
deducted to allow for card handling time by the operator. A given job requires 
5,000 cards to be put through the machine 5 times and 9,000 cards to be put 
through 7 times. How long will it take?

(a) 1 hr. 10 min. (b) 1 hr. 28 min. (c) 1 hr. 45 min.
(d) 1 hr. 50 min. (e) 2 hrs. 10 min.

Figure 3.1
Sample of the 1959 IBM Programmer Aptitude Test. In this part of the test, the par-
ticipant is asked to answer prob lems in arithmetic reasoning. Source: Reproduced by 
the author from a scanned 1959 IBM Programmer Aptitude Test by J. L. Hughes and 
W. J. McNamara. Courtesy of IBM.



110 Chapter 3

interview, take a test, and instantly acquire credibility as a  future program-
mer.” From its inception, computer programming, unlike the vast majority 
of skilled technical professions in the United States, has involved  women 
workers, some of whom had already taken part to computing proj ects dur-
ing the war.

However, like most Western professional environments in the late 1950s, 
the nascent computing industry was fueled by pervasive ste reo types, often 
preventing  women programmers from occupying upper managerial posi-
tions and encouraging them to do relational customer care work.  These 
gender dynamics should not be overlooked as they help to understand 
the rapid, and often underappreciated, development of ingenious software 
equipment. Due to their unique position within the computer- related profes-
sional worlds— both expert prac ti tion ers and, often, representatives  toward 
clients— women, given their rather small percentage within the industry, 
actively contributed to innovations aimed at making programming eas-
ier for experts and novices alike. The most notorious example is certainly 
Grace Murray Hopper, head of programming for UNIVAC, who developed 
the first compiler— a program that translates other programs into machine 
code22—in 1951 before designing the business programming language B-0 
(renamed FLOW- MATIC) in 1955. But many other  women actively took 
part to software innovations throughout the 1950s and 1960s, though often 
in the shadow of more vis i ble male man ag ers. Among  these impor tant fig-
ures are Adele Mildred Koss and Nora Moser who developed widely used 
code for data editing in the mid-1950s; Lois Haibt who was responsible for 
flow analy sis of the FORTRAN high- level programming language; and Mary 
Hawes, Jean Sammet, and Gertrude Tierney who  were at the forefront of 
the common business- oriented language (COBOL) proj ect in the late 1950s 
(Abbate 2012, 79–81).

From the mid-1960s onward, refinements over compilers and high- level 
programming languages, which had often come from  women,  were added 
to the impressive tenfold increase in computing power (Mody 2017, 47–77). 
This combination of new promising software and hardware infrastructures 
prompted large iconic computer manufacturers to start building increas-
ingly complex programs, such as operating systems and massive business 
applications. The resounding failures of some of  these highly vis i ble proj-
ects, like the IBM proj ect System 360,23 soon gave rise to a sense of uncer-
tainty among commentators at the time, some of whom used the evocative 
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expression of “software crisis” (Naur and Randell 1969, 70–73). Historians 
of computing have expressed doubts about the real ity of this software crisis 
as precise inquiries have shown that, apart from some highly vis i ble and 
nonstandard proj ects, software production in the late 1960s was generally 
on time and on bud get (Campbell- Kelly 2003, 94). But the crisis rhe toric, 
which also fed on an exaggerated but popu lar discourse on software produc-
tion costs,24 nonetheless had tangible effects on the industry to the point of 
changing its overall direction and identity.

When compared with the related discipline of microelectronics, pro-
gramming has long suffered from a lack of credibility and prestige. Despite 
significant advances throughout the 1950s and the 1960s, actors taking 
part to software production  were often accorded a lower status within West-
ern computing research and industry. This was true for  women program-
mers since they  were working in a technical environment. But it was also 
true for men programmers since they  were working in a field that included 
 women.  Under this lens, the crisis rhe toric that took hold at the end of the 
1960s— feeding on iconic failures that  were not representative of the state of 
the industry— provided an opportunity to reinvent programming as some-
thing more valuable according to the criteria of the time (Ensmenger 2010, 
195–222). This may be one of the reasons why the positively connoted term 
“engineering” started to spread and operate as a line of sight, notably via 
the efforts of the 1968 North Atlantic Treaty Organ ization (NATO) confer-
ences entitled “Software Engineering” and the setting up of professional 
organ izations and academic journals such as the Institute of Electrical and 
Electronics Engineers’ IEEE Transactions on Software Engineering (1975) and 
the Association for Computing Machinery’s ACM Software Engineering Notes 
(1976). Though contested by eminent figures who considered that software 
production was already rigorous and systematic, this complex pro cess of 
disciplinary relabeling was supported by many programmers— women and 
men— who saw the title of engineer as an opportunity to improve their work 
conditions. However, as Abbate (2012, 104) pointed out: “An unintended 
consequence of this move may have been to make programming and com-
puter science less inviting to  women, helping to explain the historical puzzle 
of why  women took a leading role in the first wave of software improve-
ments but become much less vis i ble in the software engineering era.”

This stated desire to make software production take the path of 
engineering— considered the solution to a supposed crisis that itself built on 
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a gendered undervaluation of programming work— has rubbed off on the aca-
demic analy sis of programming. Parallel to this disciplinary re orientation, 
a line of positivist research claiming behaviorist tradition began to take 
an interest in programming work in the early 1970s. For  these research-
ers, the analytical focus should shift: instead of defining the inherent skills 
required for programming and design aptitude tests, scholars should rather 
try to extract the par ameters that induce the best programming per for mances 
and propose ways to improve software production. The introduction and 
dissemination of high- level programming languages as well as the multi-
plication of academic curricula in computer science highly participated in 
establishing this new line of inquiry. With programming languages such as 
FORTRAN or COBOL that did not depend on the specificities and brands of 
computers, behavioral psychologists along with computer scientists became 
able to design programming tests in controlled environments. Moreover, 
the multiplication of academic curricula in computer science provided rel-
atively diverse populations (e.g., undergrads, gradu ates, faculty members) 
that could pass  these programming tests.  These two ele ments made pos si-
ble the design of experiments that ranked dif fer ent sets of par ameters (age, 
experience, design aids) according to the results they assumedly produced 
(see figure 3.2).

This framework led to numerous tests on debugging per for mances (e.g., 
Bloom 1980; Denelesky and McKee 1974; Sackman, Erikson, and Grant 
1968; Weinberg 1971, 122–189; Wolfe 1971), design aid per for mances (e.g., 
Blaiwes 1974; Brooke and Duncan, 1980a, 1980b; Kammann 1975; Mayer 
1976; Shneiderman et al. 1977; Weinberg 1971, 205–281; Wright and Reid 
1973), and logical statement per for mances25 (e.g., Dunsmore and Gannon 
1979; Gannon 1976; Green 1977; Lucas and Kaplan 1976; Sime, Green, 
and Guest 1973; Sime, Arblaster, and Green 1977; Sime, Green, and Guest 
1977; Sheppard et al. 1979; Weissman 1974). But despite their systematic 
aspect,  these studies suffered from the obviousness of their results, for as 
explained by Curtis (1988), without formally being engaged in behavioral 
experiments, software contractors  were already aware that, for example, 
experienced programmers produced better results than inexperienced ones 
did, or that design aids such as flowcharts or documentation  were help-
ful tools for the practice of programming.  These general and redundant 
facts did not help programmers to better design lists of instructions. By 
the 1980s, the increasingly power ful computing systems remained terribly 
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difficult to operate, be they instructed by software engineers working in 
more and more malely connoted environments.

The Cognitive Turn
By the end of the 1970s, the behavioral standpoint began to be criticized 
from inside the psychological field. To more and more cognitive psychologists, 
sometimes working in artificial intelligence departments, it seemed that the 
obviousness of behavioral studies’ results was function of a methodologi-
cal flaw, with many of the ranked sets of par ameters gathering impor tant 
individual variations of results. According to several cognitive researchers, 
the unit of analy sis of behavioral studies was erroneous; since many results’ 
disparities existed within the same sets of par ameters, the ranking of  these 
sets was simply senseless (Brooks 1977, 1980; Curtis 1981; Curtis et al. 1989; 
Moher and Schneider 1981). The solution that these cognitivists proposed 
to account for what they called “individual differences” was then to dive 
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Figure 3.2
Schematic of behavioral studies of computer programming. Let us assume a program-
ming test T, the test’s best answers A, and five sets of par ameters SP1,…,5. SP1 could, 
for example, gather the par ameters “unexperimented, male, with flowcharts”; SP2 
could, for example, gather the par ameters “experienced, female, without flowcharts,” 
and so on. Once all SPs have passed T, the results Rs of each SP allow the ranking of 
all SPs from best to worst. In this example, R3 (the results of SP3) made SP3 be considered 
the best set of par ameters. Inversely, R4 (the results of SP4) made SP4 be considered the 
worst set of par ameters.
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inside the individuals’ head to better understand the cognitive pro cesses and 
 mental models under lying the formation of computer programs.

The strong relationships between the notions of “program” and “cog-
nition” also participated in making the study of computer programming 
attractive to cognitive scientists. As Ormerod (1990, 63–64) put it:

The fields of cognition and programming are related in three main ways. First, cog-
nitive psy chol ogy is based on a “computational meta phor,” in which the  human 
mind is seen as a kind of information pro cessor similar to a computer. Secondly, 
cognitive psy chol ogy offers methods for examining the pro cesses under lying per-
for mance in computing tasks. Thirdly, programming is a well- defined task, and 
 there are an increasing number of programmers, which makes it an ideal task in 
which to study cognitive pro cess in a real- world domain.

 These three ele ments— the assumed- fundamental similarity between cog-
nition and computer programs, the growing population of programmers, 
and the available methods that could be used to study this population— 
greatly contributed to making cognitive scientists consider computer pro-
gramming as a fruitful topic of inquiry. Moreover, investing in a topic that 
behaviorists failed to understand was also seen as an opportunity to dem-
onstrate the superiority of cognitivist approaches. To a certain extent, the 
aim was also to show that be hav iors  were a function of  mental pro cesses:

[Behaviorists] attempt to establish the validity of vari ous par ameters for describ-
ing programming be hav ior, rather than attempting to specify underlining pro-
cesses which determine  these par ameters. (Brooks 1977, 740)

The ambition was then to describe the  mental pro cesses that lead to good 
programming per for mances and eventually use  these  mental pro cesses to 
train or select better programmers. The methodology of cognitive studies 
was, most of the time, not radically dif fer ent from that of behavioral stud-
ies on programming, though. Specific programming tests  were proposed to 
dif fer ent individuals, often computer science students or faculty members. 
The responses, comments (oral or written), and metadata (number of key 
strokes, time spent on the prob lem,  etc.) of the individuals  were then ana-
lyzed according to the rights answers of the test as well as based on general 
cognitive models of  human understanding that the computational meta-
phor of the mind has inspired (especially the models of Newell and Simon 
[1972] and,  later, Anderson [1983]). From this confrontation among results, 
comments, and general models of cognition, dif fer ent  mental models specific 
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to the task of computer programming  were inferred, classified, and ranked 
according to their per for mances (see figure 3.3).

This research pattern on computer programming led to numerous stud-
ies proposing  mental models for solving abstract prob lems (e.g., Adelson 
1981; Brooks 1977; Carroll, Thomas, and Malhotra 1980; Jeffries et al. 1981; 
Pennington 1987; Shneiderman and Mayer 1979) and developing program-
ming competencies (e.g., Barfield 1986; Coombs, Gibson, and Alty 1982; 
McKeithen et al. 1981; Soloway 1986; Vessey 1989; Wiedenbeck 1985). Due, 
in part, to their mitigated results—as admitted by Draper (1992), the numer-
ous  mental models proposed by cognitivists did not significantly contribute 
to better programming performances— cognitive studies have  later rein-
tegrated behaviorist considerations (e.g., controlled sets of par ameters) to 
acquire the hybrid and management- centered form they have  today (Cap-
retz 2014; Ahmed, Capretz, and Campbell 2012; Ahmed et al. 2012; Cruz, da 
Silva, and Capretz 2015).

Limits
From the 1950s up to  today, computer scientists, engineers, and psycholo-
gists have deployed impor tant efforts in the study of computer program-
ming. From aptitude tests to cognitive studies,  these scholars have spent 
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Figure 3.3
Schematic of cognitive studies of computer programming. Let us assume a program-
ming test T, the test’s best answers A, five individuals I1,….,5, and a general model of 
cognition GM. Once all Is have passed T, the corresponding results Rs and metadata 
MD (for example, comments from I on T) are gathered together to form five R&MDs. 
All R&MDs are then evaluated and compared according to A and GM. At the end of 
this confrontation, specific  mental models (SMMs) are proposed and ranked from best 
to worst according to their assumed ability to produce the best programming results.
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a fair amount of time and energy trying to understand what is  going on 
when someone is programming. They certainly did their best, as we all do. 
Yet I think one can nonetheless express some critiques of, or at least reser-
vations about, some of their methods and conceptual habits regarding the 
study of programming activity.

Aptitude tests certainly constituted useful recruiting tools in the confus-
ing days of early electronic computing. In this sense, they surely helped 
counterbalance the unkeepable promises of electronic brains, themselves 
deriving— I suggest— from the dissemination of von Neumann’s functional 
depiction of electronic computers and its setting aside of programming 
practices. Moreover, the weight of aptitude tests’ results has also constituted 
resources for  women wishing to pursue  careers in programming, and some 
of  these  women have devised crucial software innovations. Yet as central as 
they might have been for the development of computing, aptitude tests suf-
fer from a flaw that prevents them from properly analyzing the actions tak-
ing part in computer programming: they test candidates on what electronic 
computers should supposedly do (e.g., sorting numbers, solving equations) 
but not on the skills required to make computers do  these  things. They mix 
up premises and consequences: if the results of computer programming can 
potentially be evaluated in terms of computing and sorting capabilities, the 
way in which  these results are achieved may require other units of analy sis.

Behavioral studies suffer from a similar flaw that keeps them away from 
computer programming actions. By analyzing the relationships between 
sets of par ameters and programming per for mances, behaviorist studies put 
the practices of programming into a black box. In  these studies, the prac-
tices of programmers do not  matter: only the practices’ conditions (reduced 
to contextual par ameters) and consequences (reduced to quantities of errors) 
are considered. One may object that this nonconsideration of practices is 
precisely what defines behaviorism as a scientific paradigm, its goal being 
to predict consequences (be hav iors) from initial conditions (Watson 1930), 
an aim that well echoed the engineerization of software production in the 
1970s. It is true that this way of looking at  things can be very power ful, espe-
cially for the study of complex pro cesses that include many entities, such as 
traffic flows (Daganzo 1995, 2002), migrations (Jennions and Møller 2003), 
or cells’ be hav iors (Collins et al. 2005). But inscribing numbered lists of sym-
bols is a pro cess that does not need any drastic reduction: a programming 
situation involves only one, two, perhaps three individuals whose actions 
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can be accounted for without any insurmountable difficulties. For the study 
of such a pro cess that engages few entities whose actions are slow enough 
to be accounted for, no need a priori exists to ignore what is happening in 
situation.

For cognitive studies, the story is more intricate. They are certainly right 
to criticize behavioral studies for putting into black boxes what precisely 
needs to be accounted for. Yet the solution cognitivists propose to better 
understand computer programming leads to an impasse we now need to 
consider.

As Ormerod (1990, 63) put it, “cognitive psy chol ogy is based on a ‘com-
putational meta phor’ in which the  human mind is seen as a kind of infor-
mation pro cessor similar to a computer.” From this theoretical standpoint, 
cognition refers to the reasoning and planning models the mind uses to 
transform emotional and perceptual input information into outputs that 
take the form of thoughts or bodily movements. Similarly to a computer—
or rather, similarly to one specific and problematic image of computers— the 
 human mind “runs”  mental models on inputs to produce outputs. The sys-
tematic study of the complex  mental models that the mind uses to trans-
form inputs into outputs is the very purpose of cognitive studies. Scientific 
methods of investigation, such as the one presented in figure 3.3, can be 
used for this specific prospect.

When cognitive science deals with topics such as lit er a ture (Zunshine 
2015), religion (Barrett 2007), or even chimpanzees’ preferences for cooked 
foods (Warneken and Rosati 2015), its foundations usually hold on: com-
plex  mental models describing how the mind pro cesses input information 
in terms of logical and arithmetic statements to produce physical or  mental 
be hav iors can be proposed and compared without obvious contradictions. 
But as soon as cognitive science deals with computer programming, a short 
cir cuit appears that challenges the  whole edifice: the cognitive explanation 
of the constitution of computer programs is tautological as the very notion 
of cognition already requires constituted computer programs.

To better understand this tricky prob lem, let us consider once again the 
computational meta phor of the mind. According to this meta phor, the 
mind “runs” models—or programs—on inputs to produce outputs. In that 
sense, the mind looks like a computer as described by von Neumann in 
the First Draft: input data are stored in memory where lists of logical and 
arithmetic instructions transform them into output. But as we saw in the 
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previous sections, von Neumann’s pre sen ta tion of computers was functional 
in the sense that it did not take into consideration the ele ments required 
to make a computer function. In this image of the computer that reflects 
von Neumann’s very specific position and status, the ele ments required 
to assem ble the  actual transformative lists of instructions—or programs— 
that command the functioning of an electronic computer’s circuitry have 
already been gathered.

From  here, an impor tant flaw of cognitive studies on computer program-
ming starts to appear: as the studies rely on an image of the computer that 
already includes constituted computer programs,  these cognitive studies are 
not in a position to inquire into what constitutes computer programs. In 
fact, the cognitive studies are in a situation where they can mainly propose 
circular explanations of programming: if  there are (computer) programs, 
it is  because  there are ( mental) programs. Programs explain programs: a 
perfect tautology.

As long as cognitive science stays away from the study of computer pro-
gramming, its foundations hold on:  mental programs can serve as explica-
tive tools for observed be hav iors. But as soon as cognitive science considers 
computer programming, its limits appear: cognition and programs are of 
the same kind. Thunder in the night! Cognition, as inspired by the compu-
tational meta phor of the mind, works as a stumbling stone to the analy sis 
of computer programming practices as its fundamental units of analy sis 
are assembled programs. In such a constricted epistemic culture (Knorr- 
Cetina 1999), the in situ analy sis of courses of action cannot but be omit-
ted, despite their active participation in the constitution of the collective 
computerized world. This is an unfortunate situation that even the bravest 
propositions in human- computer interaction (HCI) have not been able to 
modify substantially (e.g., Flor and Hutchins 1991; Hollan, Hutchins, and 
Kirsh 2000). Is  there a way to conceptually dis- constrict the empirical study 
of computer programming?

Putting Cognition Back to Its Place

Most academic attempts to better understand computer programming seem 
to have annoying flaws: aptitude tests mix up premises and consequences, 
behavioral studies put actions into black boxes, and cognitive studies are stuck 
in tautological explanations. If we want to consider computer programming 
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as accountable practices, it seems that we need to distance ourselves from 
 these brave but problematic endeavors.

Yet, provided that our critics are relevant, we are at this point still unable 
to propose any alternative. Do the actions of programmers not have a cogni-
tive aspect? Do programmers not use their minds to computationally solve 
complex prob lems? The confusion between cognition and computer pro-
grams may well derive from a misleading history of computers—as I tried 
to suggest— its capacity to establish itself as a generalized habit commands 
re spect. How can we not pre sent empirical studies of computer programming 
practices as silly reductions? How can we justify the desire to account for, 
and thus make vis i ble, the courses of action of computer programming,  these 
practices that are obligatory passage points of any computerization proj ect?

Fortunately, con temporary work in philosophy has managed to fill in the 
gap that has separated cognition from practices, intelligent minds from dull 
actions. It is thanks to  these inspiring studies that we  will become able to 
consider programming as a practice without totally turning our back on the 
notion of cognition. To do so, I  will first need to quickly reconsider the idea 
that computers  were designed in the image of the  human brain and mind. 
As we already saw— though partially— this idea is relevant only in retrospect: 
what has concretely happened is far more intricate. I  will then reconsider 
the philosophical frame that encloses cognition as a computational pro cess. 
Fi nally, following con temporary works in the philosophy of perception, I  will 
examine a definition of cognition that preserves impor tant aspects of how 
we make sense of the  things that surround us while reconnecting it to prac-
tices and actions. By positing the centrality of agency in cognitive pro cesses, 
this enactive conception of cognition  will further help us empirically consider 
what is happening during computer programming episodes.

A Reduction Pro cess
The computational meta phor of the mind forces cognitivists to use pro-
grams to explain the formation of programs. The results of programming 
processes— programs— are thus used to explain programming pro cesses. It 
is not easy to find another example of such an explicative error: it is like 
explaining rain with  water, chicken poultry with the chicken dance … But 
how did  things end up this way? How did programs end up constituting the 
fundamental base of cognition, thus participating in the invisibilization of 
computer programming practices?
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The main argument that justifies the computational meta phor of the 
mind is that “computers  were designed in the image of the  human” (Simon 
and Kaplan 1989, quoted in Hutchins 1995, 356). According to this view 
that spread in the 1960s in reaction to the behavioral paradigm (Fodor 
1975, 1987; Putnam [1961] 1980), how the  human brain works inspired 
the design of computers, and this can, in turn, provide a clearer view on 
how we think. Turing is generally considered the  father of this argument, 
with the Universal Machine he  imagined in his 1937 paper “On Comput-
able Numbers” being able to simulate any mechanism describable in its 
formalism. According to this line of thought, it was Turing’s self- conscious 
introspection that allowed him to define a device capable of any compu-
tation as he was looking “at what a mathematician does in the course of 
solving mathematical prob lems and distilling this pro cess to its essentials” 
(Pylyshyn 1989, 54). Turing’s demonstration would then lead to the first 
electronic computers, such as the ENIAC and the EDVAC, whose depiction 
as  giant brains appears legitimate as how we think inspired  these computers 
in the first place.

In line with the recent work of Simon Penny (2017), I assume that this 
conception of the origins of computers is incorrect. As soon as one consid-
ers si mul ta neously the pro cess by which Turing’s thought experiment was 
reduced to an image of the brain and the pro cess by which the EDVAC was 
reduced to an input/output device controlled by a central organ, one real-
izes that the relationship between computers and the  human brain points 
to the other direction: the  human brain was designed in a very specific 
image of the computer that already included all pos si ble programs.

Let us start with Turing as he is often considered the  father of the com-
putational meta phor of the mind. It is true that Turing compared “a man 
in the pro cess of computing a real number” with a “machine which is only 
capable of a finite number of conditions” (Turing 1937, 231). Yet his image 
of  human computation was not  limited to what is happening inside the 
head: it also included hands, eyes, paper, notes, and sets of rules defined 
by  others in dif fer ent times and locations. As Hutchins put it: “The math-
ematician or logician was [for Turing] materially interacting with a material 
world” (Hutchins 1995, 361). By modeling the properties of this socio-
material arrangement into an abstract machine, Turing could distinguish 
between computable and noncomputable numbers, hence showing that 
Hilbert’s Entscheidungsproblem was not solvable. His results had an im mense 
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impact on the mathe matics of his time as they suggested a class of num-
bers calculable by finite means. But the theoretical machine he in ven ted to 
define this class of numbers was by no means designed only in the image of 
the  human brain; it was a theoretical device that expressed the sociomate-
rial pro cess enabling the computation of real numbers.

What participated in reducing Turing’s theoretical device to an expres-
sion of a  mental pro cess was the work of McCulloch and Pitts on neurons. 
In their 1943 paper entitled “A logical Calculus of the Ideas Immanent in 
Ner vous Activity,” McCulloch and Pitts built upon Carnap’s (1937) prop-
ositional logic and a simplified conception of neurons as all- or- none fir-
ing entities to propose a formal model of mind and brain. In their paper, 
neurons are considered units that pro cess input signals sent from sensory 
organs or from other neurons. In turn, the outputs of this neural pro cessing 
feed other neurons or are sent back to sensory organs. The novelty of 
McCulloch and Pitts’s approach is that, thanks to their simplified concep-
tion of neurons, the input signals that are pro cessed by neurons can be re- 
presented as propositions or, as Gödel (1931) previously demonstrated, as 
numbers.26 From that point, their model could consider configurations of 
neural networks as logical operators pro cessing input signals from sensory 
organs and outputting dif fer ent signals back to sensory organs. This way to 
consider the brain as a huge network of neural networks able to express the 
laws of propositional calculus on binary signals allowed McCulloch and 
Pitts to hypothetically consider the brain as a Turing machine capable of 
computing numerical propositions (McCulloch and Pitts [1943] 1990, 113). 
Even though they did not mathematically prove their claim and recognized 
that their model was computationally less power ful than Turing’s model, 
they nonetheless infused the conception of mind as the result of the brain’s 
computational pro cesses (Piccinini 2004).

At first, McCulloch and Pitts’s paper remained unnoticed (Lettvin 
1989, 17). It was only when von Neumann used some of their proposi-
tions in his 1945 First Draft (von Neumann [1945] 1993, 5–11) that the 
equivalence between computers and the  human mind started to take off. 
As we saw  earlier, von Neumann had a very specific view on the EDVAC: 
his position as a famous con sul tant who mainly sees the clean results of 
laborious material pro cesses allowed him to reduce the EDVAC as an input- 
output device. Once separated from its instantiation within the  hangars of 
the Moore School of Electric Engineering, the EDVAC, and especially the 
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ENIAC, effectively looked like a brain as conceived by McCulloch and Pitts. 
From that point, the reduction pro cess could go on: von Neumann could 
use McCulloch and Pitts’ reductions of neurons and of the Turing machine 
to pre sent his own reductive view on the EDVAC. However, it is impor tant 
to remember that von Neumann’s goal was by no means to pre sent the 
EDVAC in a realistic way: the main goal of the First Draft was to formalize 
a model for an electronic computing system that could inspire other labo-
ratories without revealing too many classified ele ments about the EDVAC 
proj ect. All of  these intricate reasons (von Neumann’s position, war time, 
von Neumann’s interest in mathematical biology) made the EDVAC appear 
in the First Draft as an input- output device controlled by a central organ 
whose configuration of networks of neurons could express the laws of prop-
ositional calculus.

As we saw  earlier,  after World War II, the First Draft and the modeliza-
tion of electronic computers it encapsulates began to circulate in academic 
spheres. In parallel, this conception of computers as  giant electronic brains 
fitted well with their broader inclusion in commercial arrangements:  these 
very costly systems had better be presented as functional brains automati-
cally transforming inputs into outputs rather than intricate artifacts requir-
ing  great care, maintenance, and an entire dedicated infrastructure. Hence 
 there  were issues related to their operationalization as the buyers of the 
first electronic computers— the Air Force, Boeing, General Motors (Smith 
1983)— had to select, hire, and train and eventually fire, reselect, rehire, 
and retrain  whole operating teams. But despite  these initial failures, the 
conception of computers as electronic brains held on, well supported, to 
be fair, by Turing’s (1950) paper “Computing Machinery and Intelligence,” 
the 1953 inaugural conferences on artificial intelligence at Dartmouth Col-
lege (Crevier 1993), Ashby’s book on the neural origin of be hav ior (Ashby 
1952), and von Neumann’s posthumous book The Computer and the Brain 
([1958] 2012). Instead of crumbling, the conception of computers as elec-
tronic brains started to concretize to the point that it even supported a 
radical critique of behaviorism in the field of psy chol ogy. Progressively, the 
mind became the product of the brain’s computation of ner vous inputs. 
The argument appeared indeed indubitable: as  human be hav iors are the 
results of (computational) cognitive pro cesses, psy chol ogy should rather 
describe the composition of  these cognitive processes— a real tour de force 
whose consequences we still experience  today.
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But this colossus of the computational meta phor of the mind has feet 
of clay. As soon as one inquires sociohistorically into the pro cess by which 
brains and computers have been put into equivalence, one sees that the 
foundations of the argument are shaky; a cascade of reductions, as well 
as their distribution, surreptitiously ended up presenting the computer as 
an image of the brain. Historically, it was first the reduction of the Turing 
machine as an expression of  mental pro cesses, then the reduction of neu-
rons as on/off entities, then the reduction of the EDVAC as an input- output 
device controlled by a central organ, then the distribution of this view 
through academic networks and commercial arrangements that allowed 
computers to be considered as deriving from the brain. It is the collusion of 
all of  these translations (Latour 2005), along with many  others, that made 
computers appear as the consequences of the brain’s structure.

Impor tant authors have finely documented how computer- brain equiva-
lences contributed, for better or worse, to structuring Western subjectivi-
ties throughout the Cold War period (e.g., Dupuy 1994; Edwards 1996; 
Mirowski 2002). For what interests me  here, the main prob lem of the con-
ception of computers as an image of the brain is that its correlated concep-
tion of cognition as computation contributed to further invisibilizing the 
courses of actions taking part in computer programming. According to the 
computational meta phor of the mind, the brain is the set of all the com-
binations of neural networks—or logic cir cuits27— that allow the computa-
tion of signals. The brain may choose one specific combination of neural 
networks for the computation of each signal, but the combination itself is 
already assembled. As a consequence, the study of how combinations of 
neural networks are assembled and put together to compute specific sig-
nals—as it is the case when someone is programming— cannot occur as it 
would imply to go beyond what constitutes the brain. Cognitive studies 
may involve inquiring about which program the brain uses for the compu-
tation of a specific input, but the way this program was assembled remains 
out of reach: it was already  there, ready to be applied to the task at hand. 
In short, similarly to von Neumann’s view on the EDVAC but with far less 
engineering applications, the brain as conceived by the computational 
meta phor of the mind selects the appropriate  mental program from the infinite 
library of all pos si ble programs. But as this library is precisely what constitutes 
the brain, it soon becomes senseless to inquire into how each program was 
concretely assembled.
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The cognitivist view on computers as designed in the image of the brain 
seems then to be the product of at least three reductions: (1) neurons as on/
off firing entities, (2) the Turing machine as an expression of  mental events, 
and (3) the EDVAC as an input/output device controlled by a central organ. 
The further distribution of this view on computers through academic, com-
mercial, and cultural networks further legitimatized the conception of cog-
nition as computation. But this cognitive computation was a holistic one 
that implied the possibility of all specific computations: the brain progres-
sively appeared as the set of all potential instruction sets, hence preventing 
inquiries into the constitution of  actual instruction sets. The tautological 
impasse of cognitive science when it deals with computer programming 
seems, then, to be deriving from a delusive history of the computer. The 
ones who inherit from a nonempirical history of electronic computers 
might consider cognition as computation and programming as a  mental 
pro cess. Yet the ones who inherit from an empirical history of the constitu-
tion of electronic computing systems and who pay attention to translation 
pro cesses and distributive networks have no other choice but to consider 
cognition differently. But how?

The Classical Sandwich and Its Consequences
We now have a clearer— yet still sketchy— idea of the formation of the 
computational meta phor of the mind. An oriented “double- click” history 
(Latour 2013, 93) of electronic computers that did not pay attention to the 
small translations that occurred at the beginning of the electronic com-
puting area enabled cognitive scientists— among  others—to retroactively 
consider computers as deriving from the very structure of the brain. But 
historically, what has happened is far more intricate: McCulloch and Pitts’s 
work on neurons and von Neumann’s view on the EDVAC echoed each 
other to progressively form a power ful yet problematic depiction of com-
puters as  giant electronic brains. This depiction further legitimized the 
computational meta phor of the mind— also coined computationalism— that 
yet para lyzed the analy sis of the constitution of  actual computer programs 
since the set of all potential programs constituted the brain’s fundamental 
structure. At this point of the chapter, then, to definitively turn our back 
on computationalism and propose an alternative definition of cognition 
that could enable us to consider the task of computer programming as a 



Von Neumann’s Draft, Electronic Brains, and Cognition 125

practical activity, we need to look more precisely at the metaphysics of this 
computational standpoint.

If computationalism in cognitive science derives from a quite recent 
nonempirical history of computers, its metaphysics surely belongs to a 
philosophical lineage that goes back at least to Aristotle (Dreyfus 1992). 
Susan Hurley (2002) usefully coined the term “classical sandwich” to sum-
marize the metaphysics of this lineage— also referred to as “cognitivism”— 
that considers perception, cognition, and agency as distinct capacities. For 
the supporters of the classical sandwich,  human perception first grasps an 
input from the “real” world and translates it to the mind (or brain). In the 
case of computationalism, this perceptual input takes the shape of ner vous 
pulses that can be expressed as numerical values. Cognition, then, “works 
with this perceptual input, uses it to form a repre sen ta tion of how  things 
are in the subject’s environment and, through reasoning and planning that 
is appropriately informed by the subject’s proj ects and desires, arrives at a 
specification of what the subject should do with or in her current environ-
ment” (Ward and Stapleton 2012, 94). In the case of computationalism, the 
cognitive step implies the se lection and application of a  mental model—or 
 mental program— that outputs a dif fer ent numerical value to the ner vous 
system. Fi nally, agency is considered the output of both perception and 
cognition pro cesses and takes the form of bodily movements instructed by 
ner vous pulses.

This conception of cognition as “stuck” in between perception and action 
as meat in a sandwich has many consequences. It first establishes a sharp 
distinction between the mind and the world. Two realms are then created: 
the realm of “extended  things” that are said to be material and the realm 
of “thinking  things” that are said to be abstract and immaterial.28 If  matter 
thrones in the realm of “extended  things” by allowing substance and quan-
tities, mind thrones in the realm of “thinking  things” by allowing thoughts 
and knowledge.

Despite the ontological abyss between them, the realms of “thinking 
 things” and “extended  things” need to interact:  after all, we, as individuals, 
are part of the world and need to deal with it. But a sheet of paper cannot go 
through the mind, a mountain is too big to be thought, a spoken sentence 
has no  matter: some transformation has to occur to make  these  things pos-
si ble for the mind to pro cess. How, then, can we connect both “extended” 
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and “thinking” realms? The notions of repre sen ta tion (without hyphen) and 
symbols have progressively been introduced to keep the model  viable. For 
the mind to keep in touch with the world of “real  things,” it needs to work 
with repre sen ta tions of real  things.  Because  these repre sen ta tions happen in 
the head and refer to extended  things, they are usually called  mental repre-
sen ta tions of  things.

 Mental repre sen ta tions of  things need to have at least two properties. 
They first need a form on which the mind could operate. This form may 
vary according to dif fer ent theories among cognitivism. For the computa-
tional metaphor of the mind, this form takes, for example, the shape of elec-
tric ner vous pulses that the senses acquire and that are then routed to the 
brain. The second property that  mental repre sen ta tions of  things require is 
meaning; that is, the distinctive trace of what repre sen ta tions refer to in the 
real world. Both properties depend on each other: a form has a meaning, 
and a meaning needs a form. The notion of symbol is often used to gather 
both the half- material and semantic aspects of the  mental repre sen ta tions 
of  things. In this re spect, cognition, as considered by the proponents of 
the classical sandwich, pro cesses symbolic repre sen ta tions of  things that 
the senses offer in their interactions with the real world. The result of this 
pro cessing is, then, another repre sen ta tion of  things— a statement about 
 things— that further instructs bodily movements and be hav iors.

The pro cessing of symbolic repre sen ta tions of  things does not always 
lead to accurate statements about  things. Some malfunctions can happen 
 either at the level of the senses that badly translate real  things or at the level 
of the mind that fails to interpret the symbols. In both cases, the  whole pro-
cess would lead to an inaccurate, or wrong, statement about  things.  These 
errors are not desirable as they would instruct inadequate be hav iors at the 
end of the cognitive pro cess. It is therefore extremely impor tant for cogni-
tion to make true statements. If cognition does not manage to establish 
adequate correspondences between our minds and the world, our be hav iors 
 will be badly instructed. Conversely, by properly acquiring knowledge about 
the real world, cognition can make us behave adequately.

I assume that the symbolic repre sen ta tional thesis that derives from cog-
nition as considered by the classical sandwich leads to two related issues. 
The first issue deals with the amalgam between knowledge and real ity it cre-
ates, hence refusing giving any ontological weight to entities whose tra-
jectories are dif fer ent from scientific facts. The second issue deals with the 
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thesis’s incapacity to consider practices in the wild, with most of the models 
that take symbolic repre sen ta tional thesis to the letter failing the test of 
ecological validation.

Let us start with the first issue, certainly the most difficult. We saw that, 
according to cognitivism, the adaequatio rei et intellectus serves as the mea-
sure of valid statements and be hav iors. For example, if I say “the sun is ris-
ing,” I make an invalid statement and thus behave wrongly  because what 
I say does not refer adequately to the real event. Within my cognitive pro-
cess, something went wrong: in this case, my senses that made me believe 
that the sun was moving in the sky prob ably deceived me. In real ity, thanks 
to other  mental pro cesses that are better than mine, we know as a  matter of 
fact that it is the earth that rotates around the sun; some “scientific minds”—
in this case, Copernicus and Galileo, among  others— managed indeed to 
adequately pro cess symbolic repre sen ta tions to provide a true statement 
about the relations between the sun and the earth, a relation that the laws 
of Reason can demonstrate. My statement and be hav ior can still be con-
sidered a joke or some form of sloppy habit: what I say/do is not true and 
therefore does not  really count.

The prob lem of this line of thought that only gives credit to scientific 
facts is that it is grounded on a very unempirical conception of science. 
Indeed, as STS authors have demonstrated for almost fifty years, many mate-
rial networks are required to construct scientific facts (Knorr- Cetina 1981; 
Lynch 1985; Latour and Woolgar 1986; Collins 1992). Laboratories, experi-
ments, equipment, colleagues, funding, skills, academic papers: all of  these 
ele ments are necessary to laboriously construct the “chains of reference” 
that give access to remote entities (Latour 1999b). In order to know, we 
need equipment and collaboration. Moreover, as soon as one inquires into 
science in the making instead of ready- made science, one sees that both the 
knowing mind and the known  thing start to exist only at the very end of 
practical scientific pro cesses. When every thing is in place, when the chains 
of reference are strong enough, when  there are no more controversies, I 
am becoming able to look at the majestic Californian sunrise and meditate 
about the power of habits that makes me go against the most rigorous fact: 
the earth is rotating. Thanks to numerous scientific networks that  were 
put in place during the sixteenth and seventeenth centuries, I gain access 
to such— poor— meditation. Symmetrically, when every thing is in place, 
when the chains of reference are strong enough, the sun gains its status of 
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known  thing as one part of its existence— its relative immobility—is indeed 
being captured through scientific work and the maintenance of chains 
of reference. In short, what  others have done and made durable enables 
me to think directly about the objective qualities of the sun. As soon as I 
can follow solidified scientific networks that gather observations, instru-
ments, experiments, academic papers, conferences, and educational books, 
I become a knowing mind, and the sun becomes a known object. Cognitiv-
ism started at the wrong end: the possibility of scientific knowledge starts 
with practices and ends with known objects and knowing minds. As Latour 
(2013, 80) summarized it:

A knowing mind and a known  thing are not at all what would be linked through 
a mysterious viaduct by the activity of knowledge; they are the progressive result 
of the extension of chains of reference.

One result of this relocalization of scientific truth within the networks 
allowing its production, diffusion, and maintenance is that real ity is not 
the sole province of scientific knowledge anymore: other entities that go 
through dif fer ent paths to come into existence can also be considered real. 
 Legal decisions (McGee 2015), technical artifacts (Simondon 2017), fictional 
characters (Greimas 1983), emotions (Nathan and Zajde 2012), or religious 
icons (Cobb 2006): even though  these entities do not require the same type 
of networks as scientific facts in order to emerge, they can also be consid-
ered real since the world is no longer reduced to sole facts. As soon as the 
dichotomy between knowledge and mind is considered one consequence of 
chains of reference, as soon as what is happening is distinguished from what 
is known,  there is space for many va ri e ties of existents. By disamalgamating 
real ity and knowledge, the universe of the real world can be replaced with 
the multiverse of performative beings (James 1909)—an ontological feast, a 
breath of fresh air.

Besides its problematic propensity to posit correspondence between 
 things and minds as the supreme judge of what counts as real, another 
prob lem of cognitivism—or computationalism, or computational meta phor 
of the mind; at this point, all of  these terms are equivalent—is its mitigated 
results when it comes to support so- called expert systems (Star 1989; For-
sythe 2002).

A first example concerns what Haugeland (1989) called “Good Old Fash-
ioned Artificial Intelligence” (GOFAI), an impor tant research paradigm in 
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artificial intelligence that endeavored to design intelligent digital systems 
from the mid-1950s to the late 1980s. Although the complex algorithms 
implied in GOFAI’s computational conception of the mind soon appeared 
very effective for the design of computer programs capable of complex tasks, 
such as playing chess or checkers,  these algorithms symmetrically appeared 
very problematic for tasks as  simple as finding a way outside a room without 
 running into its wall (Malafouris 2004). The extreme difficulty for expert sys-
tems to reproduce very basic  human tasks started to cast doubts on computa-
tionalism, especially since cybernetics—an cousin view on intelligence that 
emphasizes “negative feedback” (Bowker 1993; Pickering 2011)— effectively 
managed to reproduce such tasks without any reference to symbolic repre-
sen ta tion. As Malafouris (2004, 54–55) put it:

When the first such autonomous devices (machina speculatrix)  were constructed 
by Grey Walter, they had nothing to do with complex algorithms and repre sen-
ta tional inputs. Their kinship was with W. Ross Ashby’ Homeostat and Norbert 
Wiener’s cybernetic feedback … On the basis of a very  simple electromechanical 
circuitry, the so- called ‘turtles’  were capable of producing emergent properties 
and be hav ior patterns that could not be determined by any of their system com-
ponents, effecting in practice a cybernetic transgression of the mind- body divide.

Another practical limit of computationalism when applied to computer 
systems is the so- called frame prob lem (Dennet 1984; Pylyshyn 1987). The 
frame prob lem is “the prob lem of generating behaviour that is appropri-
ately and selectively geared to the most contextually relevant aspects of 
their situation, and ignoring the multitude of irrelevant information that 
might be counterproductively transduced, pro cessed and factored into the 
planning and guidance of behaviour” (Ward and Stapleton 2012, 95). How 
could a brain—or a computer— adequately select the inputs relevant for 
the situation at hand, pro cess them, and then instruct adequate be hav iors? 
Sports is, in this re spect, an illuminating example: within the mess of a 
cricket stadium, how could a batter pro cess the right input in a very short 
amount of time and behave adequately (Sutton 2007)? By what magic is a 
tennis player’s brain capable of selecting the con spic u ous input, pro cessing 
it, and— eventually— instructing adequate be hav iors on the fly (Iacoboni 
2001)? To date, the only satisfactory computational answer to the frame 
prob lem, at least with regard to perceptual search tasks, is to consider it NP- 
complete, thus recognizing it should be addressed by using heuristics and 
approximations (Tsotsos 1988, 1990).29
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Fi nally, the entire field of HCI can be considered an expression of the 
limits of computationalism as it is precisely  because  human cognition is 
not equivalent to computers’ cognition that innovative interfaces need to 
be  imagined and designed (Card, Moran, and Newell 1986). One famous 
example came from Suchman (1987) when she inquired into how users 
interacted with Xerox 8200 copier: as the design of Xerox’s artifact included 
an equivalence between computers’ cognition and  human cognition, inter-
acting with the artifact was a highly counterintuitive experience, even for 
 those who designed it. Computationalism made Xerox designers forget about 
impor tant features of  human cognition, such as the importance of action 
and “situatedness” for many sense- making endeavors (Suchman 2006, 15). 
Besides refusing giving any ontological weight to nonscientific entities, com-
putationalism thus also appears to restrain the development of intelligent 
computational systems intended to interact with  humans.

Enactive Cognition
Despite its impressive stranglehold on Western thought, cognitivism has 
been fiercely criticized for quite a long time.30 For the sake of this part II— 
whose main goal is, remember, to document the practices of computer 
programming  because they are nowadays central to the constitution of 
algorithms— I  will deal only with one line of criticisms recently labeled 
“enactive conception of cognition” (Ward and Stapleton 2012). This refram-
ing of  human cognition as a local attempt to engage with the world is  here 
crucial as it  will— fi nally!— enable us to consider programming in the light 
of situated experiences.

Broadly speaking, proponents of enactive cognition consider that agency 
drives cognition (Varela, Thompson, and Rosch 1991). Whereas cognitiv-
ism considers action as the output of the internal pro cessing of symbolic 
repre sen ta tions about the “real world,” enactivism considers action as a 
relational co- constituent of the world (Thompson 2005). The shift in per-
spective is thus total: it is as if one  were speaking two dif fer ent languages. 
Whereas cognitivism deals with an ideal world that is being accessed indi-
rectly via repre sen ta tions that, in turn, instruct agency, enactivism deals 
with a becoming environment of transformative actions (Di Paolo 2005). 
Whereas cognitivism considers cognition as computation, enactivism con-
siders cognition as adaptive interactions with the environment whose prop-
erties are offered to and modified through the actions of the cognizer. For 
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enactivism, the features of the environment with which we try to  couple 
are then not fixed nor in de pen dent: they are continuously provided as well 
as specified based on our ability to attune with the environment.

With enactivism, the cognitivist separations among perception, cogni-
tion, and agency are blurred. Perception is no longer separated from cog-
nition  because cognizing is precisely about perceiving the takes that the 
environment provides: “The affordances of the environment are what it 
offers the animal, what it provides or furnishes, for  either good or ill” (Gibson 
1986, cited in Ward and Stapleton 2012, 93). Moreover, cognition does not 
need to be stuck in between perception and agency, pro cessing inputs on 
repre sen ta tions to instructively define actions: for enactivism, the cognizer’s 
effective actions both participate in, and are functions of, the takes that the 
sensible situation provides (Noë 2004; Ward, Roberts, and Clark 2011). Fi nally, 
agency cannot be considered the final product of a well or badly informed 
cognition pro cess  because direct perception itself is also part of agency: the 
way we perceive grips also depends on our capacities to grasp them. But the 
environment does not structure our capacity to perceive  either; actions also 
modify the environment’s properties and affordances, thus allowing a new 
and always surprising “dance of agency” (Pickering 1995). Perceptions sug-
gest actions that, in turn, suggest new perceptions. From take to take, as far 
as we can perceive: this is what enactive cognition is all about.

This very minimal view on cognition that considers it “simply” as our 
capability to grasp the affordances of local environments has many conse-
quences. First, enactivism implies that cognition (and therefore, to a certain 
extent, perception) is embodied in the sense that “the categories about the 
kind and structure of perception and cognition are constrained and  shaped 
by facts about the kind of bodily agents we are” (Ward and Stapleton 2012, 
98). Notions such as “up,” “down,” “left,” and “right” are not anymore nec-
essarily features of a “real” extended world: they are contingent effects of 
our bodily features that suggest a spatially arrayed environment. We experi-
ence the world through a body system that supports our perceptual appa-
ratus (Clark 1998; Gallagher 2005; Haugeland 2000). Cognition is therefore 
multiple: to a certain extent, each body cognizes in its own way by engag-
ing itself differently with its environment.

Second, enactivism implies that cognition is affective in the sense that 
“the form of openness to the world characteristic of cognition essentially 
depends on a grasp of the affordances and impediments the environment 



132 Chapter 3

offers to the cognizer with re spect to the cognizer’s goal, interest and proj-
ects” (Ward and Stapleton 2012, 99). Evaluation and desires thus appear 
crucial for a cognitive pro cess to occur: no affects, no intelligence (Ratcliffe 
2009, 2010). “Care” is something we take; what “shows up” concerns us. 
Again, it does not mean that our inner desires structure what we may per-
ceive and grasp; our cognitive efforts also suggest desires to grasp the takes 
our environment suggests.

Third, enactivism considers that cognition can sometimes be extended: 
nonbiological ele ments, if properly embodied, can surely modify the bound-
aries of affective perceptions (Clark and Chal mers 1998). It does not mean 
that  every nonbiological item would increase our capability to grasp affor-
dances: some artifacts are, of course, constraining ongoing desires (hence 
suggesting new ones). But at any rate, the combinations of  human and non-
human apparatus, the association of biological and nonbiological substrates 
fully participate in the cognitive pro cess and should therefore also be taken 
into account.

The fourth consequence of enactivism is the sudden disappearance of the 
frame prob lem. Indeed, although this prob lem constitutes a serious draw-
back for cognitivism by preventing it from understanding— and thus from 
implementing— the initial se lection of the relevant input for the task at 
hand, enactive cognition avoids it by positing framing as part of cognition. 
Inputs are not thrown at cognizers anymore; their embodied, affective, and, 
eventually, extended perception tries to grasp the takes that the situations 
at hand propose. Cricket batters are trained, equipped, and concerned with 
the ball they want to hit; tennis players inhabit the ball they are about to 
smash. In short, whereas cognitivism deals with procedural classifications, 
enactivism deals with bodily and affective intuitions (Dreyfus 1998).

The fifth consequence is the capacity to consider a wide variety of exis-
tents. This consequence is as subtle as it is impor tant. We saw that one del-
eterious propensity of cognitivism was to amalgamate truth (or knowledge) 
and real ity: what counts as real for cognitivism is a be hav ior that derives 
from a true statement about the real world. Cognition is, then, considered 
the pro cess by which we know the world and— hopefully— act accord-
ingly. The picture is very dif fer ent for enactivism. As enactive cognition is 
about interacting with the surrounding environment, grasping the takes it 
offers and therefore participating in its reconfiguration, knowledge can be 
considered as an eventual, very specific, and very delightful by- product of 
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cognitive pro cesses. Cognition surely helps scientists to align inscriptions 
and construct chains of reference according to the veridiction mode of the 
scientific institution; however, cognition also helps writers to create fictional 
characters,  lawyers to define  legal means, or devout followers to be altered 
via renewed yet faithful messages. In short, by distinguishing knowledge 
and cognition— cognizers do not know the world but interact with it, hence 
participating in its reconfiguration— enactivism places the emphasis on our 
local attempts to  couple with what surrounds us and reconfigure it, hence 
sometimes creating new existing entities.

Fi nally, enactivism makes the notions of symbols and repre sen ta tions 
useless for cognitive activities. Indeed, since the world is now a local envi-
ronment whose properties are constantly modified by our attempts to 
 couple with it, no need exists to posit an extra step of  mental repre sen-
ta tions supported by symbols. For enactivism,  there may be symbols—in 
the sense that a take offered by the environment may create a connection 
with many takes situated elsewhere or co- constructed at another time— but 
agency is always first. When I see the hammer and sickle on a red flag on a 
street of Vientiane, Laos, I surely grasp a symbol but only by virtue of the 
connections this take is making with many other takes I was able to grasp 
in past situations: TV documentaries about the Soviet revolution, school 
manuals, movies, and so on. In that sense, a symbol becomes a network 
of many solidified takes. Similarly, some takes may re- present other takes, 
but  these re- presentations are always takes in the first place. For example, 
I may grasp a romantic re- presentation of a landscape at the second floor 
of Zürich’s Kunsthaus, but this re- presentation is a take that the museum 
environment has suggested in the first place. This take may derive from 
another take— a pastoral view from some country hill in the late eigh teenth 
 century— but, at least at the cognitive level, it is a take I am grasping at the 
museum in the first place.

To sum up, enactive cognition starts with agency; affective and embod-
ied actions are considered our way of engaging with the surrounding envi-
ronment. This environment is not considered a preexisting realm; it is a 
collection of situations offering takes we may grasp to configure other take- 
offering situations. From this minimal standpoint, cognition infiltrates 
 every situation without constituting the only ingredient of what exists. 
Scientists surely need to cognize to conduct experiments in their laborato-
ries;  lawyers for sure need to cognize to define  legal means in their offices; 
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programmers surely need to cognize to produce numbered lists of instruc-
tions capable of making computers compute in desired ways; yet facts,  legal 
decision, or programs cannot be reduced to cognitive activities as they end 
up constituting existents that populate the world. With enactive cognition, 
the emphasis is made on the interactions among local situations, bodies, 
and capabilities that, in turn, participate in the formation of what is exist-
ing, computer programs included. Cognition, then, appears crucial as it 
provides grips but also remains very  limited as it is constantly overflowed: 
 there is always something more than cognition. May computer program-
ming be considered as part of this more. This could make it fi nally appear 
in all its subtleties.



The journey was convoluted, but we are now fi nally in a position to consider 
computer programming as a practical, situated activity. In chapter 3, I first 
questioned von Neumann’s architecture; for fundamental yet contingent 
reasons, its definition of computers as functional devices took for granted the 
situated practices required to make them function. If this unempirical pre-
sen ta tion of electronic systems was certainly useful at the beginning of the 
computer area by sharing classified work and proposing a research agenda, 
it nonetheless misled the understanding of what makes computers actually 
compute. I then distanced myself from the dif fer ent academic answers to 
the nonfunctional aspects of electronic computers as functionally defined by 
von Neumann. Aptitude tests for the se lection of programmers started at the 
wrong end as they tried to select  people without inquiring into the require-
ments for such tasks. Behavioral studies aiming to isolate the right par ameters 
for efficient programming implied looking at the results of actions and not at 
the actions themselves. Fi nally, I tried to show how the cognitivist response 
to behavioral studies had, and has, problematic limitations: as mainstream 
cognitivism relies on the computational meta phor of the mind that itself 
needs already assembled programs, many cognitivists cannot go beyond the 
form “program” that ends up explaining itself. A pro cess is being explained 
by its own result; programs need programs, a perfect tautology. Yet in the 
last section of chapter 3, I suggested that the very notion of cognition, once 
freed from the throes of computationalism, could still be a useful concept for 
rediscovering experience. Once cognition is considered an enactive pro cess of 
grasping the affordances of local environments, the emphasis is placed on 
specific situations, places, bodies, desires, and capabilities.

From this point, we are ready to grasp programming in all of its materi-
ality without being obtruded by the notions of “repre sen ta tions” (without 

4 A Second Case Study
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hyphen), “ mental models,” or “computation.” All of  these  things— and 
more generally von Neumann’s functional pre sen ta tion of computers— are 
the results of the situations we want to account for. To a certain extent, 
we are back in 1943 at the Moore School of Electrical Engineering: no 
 mental models, no internal cognition, no von Neumann architecture, no 
programs; only actions, desires, and artifacts that interactively try to make 
meaningful electronic computations occur. Even though the following case 
study is based on data collected in the Lab between 2015 and 2016, I  will 
try to study them as if the unempirical conceptions of electronic comput-
ing did not occur.

Pre sen ta tion of the Empirical Materials

The development of an image- processing algorithm intended for academic 
publication is a pro cess that involves many dif fer ent activities and situa-
tions. But along the gathering of relevant data; the construction of ground 
truths; the formulation of transformative relationships between input- data 
and output- targets; and the numerous Group meetings, informal discus-
sions, seminars, and coffee breaks that help all  these  things to happen, 
 there are more or less long computer programming episodes when numbered 
lists of instructions have to be written in order to make an electronic device 
adequately compute digital data. It is  these courses of action that have a 
beginning and an end that I  will try to account for in this case study.

The prob lem that quickly stood out during my ethnographic endeavor 
within the Lab was how to document  these courses of action. First, as the 
code being written during programming episodes was very cryptic, it was 
in the beginning difficult to have a grip on what was  going on. Second, the 
configurations of  these cryptic signs on the screens  were constantly chang-
ing; new characters  were added, other erased, other corrected, and so on. 
Third,  these situations appeared quite engaging for the  people involved, 
which prevented me from asking them questions about what they  were 
 doing. During  these moments that looked particularly intense, I was clearly 
out of place.

To palliate  these methodological issues, I designed my own image- 
processing proj ect with the help of the Lab’s members.  After several Lab 
meetings, we collectively de cided that I should try to design a prepro cessing 
model that could sort images whose pixel configurations would fit further 
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specific segmentation pro cesses that  were  under development within the 
Lab. This modest proj ect was explic itly designed to force me learn the basics 
of several computer programming languages and become more familiar 
with image pro cessing in general. Importantly, the proj ect also included a 
“helping clause” that allowed me to ask members of the Lab for help when 
I was stuck in a programming impasse. This somewhat unusual method 
turned out im mensely fruitful. It first made me become more comfort-
able with several programming languages;1  little by  little, all  these cryptic 
signs started to make more sense. It also made the members of the Lab 
more comfortable during the programming episodes I tried to document 
and account for. As the proj ect had been designed collectively and could 
potentially be used for  future proj ects, the members of the Lab found it 
somewhat relevant. And as the so- called helping sessions did not directly 
concern their own proj ects, they also felt more at ease with me taking notes 
and asking questions while they  were programming. Fi nally— and perhaps 
more importantly— this method allowed me to better equip and document 
programming episodes: along with notes describing the movements and 
gestures of the one who was programming next to me, I could video rec-
ord my monitors and audio rec ord the discussions. For the eight helping 
sessions I needed for this proj ect, I then ended up with descriptions, screen 
recordings, and audio recordings I could thoroughly analyze.

Though insightful in many re spects, the materials collected during  these 
helping sessions nonetheless had limitations. As the small programs result-
ing from  these sessions  were primarily intended for my own specific use, 
they  were not directly designed to circulate within a professional commu-
nity of programmers as it is typically the case in corporate software settings. 
In this sense, impor tant topics such as program reading for the in situ shap-
ing of intelligibility, as considered by Button and Sharrock (1995) in their 
paper on computer programming practices, could not be specifically inves-
tigated. Nevertheless, as we  will see  later in the chapter, some of my analyti-
cal propositions may well be related to Button and Sharrock’s conclusions.

The following materials are taken from one helping session during 
which DF— a PhD student of the Lab— wrote a small program that I  will 
from now on call PROG that dealt with data I had previously collected via 
a crowdsourcing task. The crowdsourcing task was divided into ten rounds. 
For each round, twenty to thirty unknown workers  were shown fifty “natu-
ral pictures” of landscapes,  faces, birds, buildings, and so on. The content 
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of  these pictures was extremely varied. For each image, each worker was 
asked to draw one or several rectangles around the parts of the image that 
first attracted their attention. Before switching to the next image, each 
worker also had to grade from one to seven how straightforward it had been 
for them to choose what specific parts of the image to label.  After the ten 
rounds of this crowdsourcing task, 254 dif fer ent workers each labeled fifty 
images for a total of five hundred images. The data collected from the activity 
of the workers (the IDs of the images they pro cessed, the coordinates of the 
rectangles they drew, and the grades they gave for each labeling task) via a 
web application  were gathered in .txt files or ga nized as in figure 4.1. The 
content of  these .txt files along with the natu ral images used for the crowd-
sourcing task  were the data on which PROG had to work.

If this small proj ect was explic itly designed to better document program-
ming practices, it also had an image- processing goal. This secondary goal 
was to find correspondences between the contents of the natu ral images—
in terms of arrangement of numerical pixel-values— and both the rectangles 
and grades provided by the workers. In short, the assumption was that for 

16714267603_cd60601b7f_b.jpg  1 startX: 25px startY: 32px width: 450px height: 361px 
16705290404_d8de298f0e_b.jpg  5 startX: 430px startY: 76px width: 260px height: 414px
 startX: 234px startY: 227px width: 189px height: 216px

Figure 4.1
Excerpt of a .txt file named “worker_05Waldave56jm9815.txt” as provided by the 
web application at the end of each session of the crowdsourcing task. The name 
of the file (“worker_05Waldave56jm9815.txt”) corresponds to the ID given to the 
worker by the web application. Only two rows of the file are presented  here. The first 
ele ment of each row is a string of text that ends with “.jpg”; it corresponds to the 
ID of the image that had been pro cessed by the worker. The second ele ment of each 
row corresponds to the numeral grade given to the labeling task by the worker. The 
subsequent ele ments of each row correspond to the coordinates of the rectangle(s) 
drawn by the worker.  Every rectangle is defined by four values part of the coordi-
nate space of the image that was being pro cessed. The first value of each rectangle 
(“startX: npx”) corresponds to the horizontal coordinate of the picture. The second 
value (“startY: npx”) corresponds to the vertical coordinate of the picture. The third 
value (“width: npx”) corresponds to the pixel width of the drawn rectangle. The 
fourth value (“height: npx”) corresponds to the pixel height of the drawn rectangle. 
Altogether,  these four values allow to reconstruct— later— the rectangle(s) drawn by 
the user. Moreover, as indicated by the second row of the excerpt, the workers could 
draw several rectangles.
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images with high grades and very dispersed rectangles, it may not make sense 
to divide their content into smaller parts. Symmetrically, for images with low 
grades and very compact rectangles, it may eventually make sense to divide 
their content into smaller parts (see figure 4.2). Being able to automatically 
sort pictures whose contents may or may not be divided into smaller parts 
could be useful for further lossy compression schema based on segmentation 
pro cesses. In that sense, the computational method I tried to define could 
eventually serve as a prepro cessing step for further, more complex, segmenta-
tion/compression methods that members of the Lab  were developing at that 
time. But at any rate, to propose such a prepro cessing method, many inter-
mediary programs— including PROG— had to be assembled.

The design of the web application that enabled the crowdsourcing task 
and the gathering of data as shown in figure 4.2 required the completion of 
many dif fer ent programs. First, a Python web- scrapping program had to be 
designed in order to browse and download heterogeneous, high- definition, 
and Creative- Commons- licenced images made available by the API of the 
Flickr website. The design of this small yet not- so- trivial program first 
required a “helping session” with a member of the Lab. Second, several pro-
grams using html, JavaScript, and PHP computer programming languages 

Figure 4.2
Two views on the data collected during the crowdsourcing task. Both views  were 
made pos si ble by a Matlab program that parsed the data of the .txt files and related 
them to the corresponding .jpg images. On the left, workers roughly labeled the same 
part of the image and gave a very low grade to this labeling task (average of 1.16). 
One may then assume that it would make sense to divide the content of this image 
into smaller parts (in this case, the bird and the rest). On the right, the opposite situ-
ation: the workers labeled the image almost randomly and gave a high grade to this 
labeling task (average 5.25). One may them assume that it would make  little sense to 
divide the content of this image into smaller parts.
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had to be designed to allow workers to interact with a specific number of 
images and store their IDs, labels, and grades within .txt files. The design of 
this web application required two “helping sessions” with members of the 
Lab. Third, a first Matlab program was required in order to read the tex-
tual and numerical contents of all the .txt files and reor ga nize them within 
Matlab software environment.  Because of its agility to design prob lems of 
linear algebra— all integers being considered scalars— Matlab is widely used 
for research and industrial purposes in computer science, electrical engi-
neering, and economics. Yet if Matlab programming language is known 
for being well adapted for the computation of matrices and arrays, it is 
also known for being badly adapted for the reor ga ni za tion of .txt data into 
matrices and arrays. This reor ga ni za tion of data into matrices and arrays 
was generally called “parsing” by the members of the Lab. Again, a fourth 
helping session was required to help me assem ble parsing programs that 
further enabled views such as  those presented in figure 4.2.

The program whose formation we are about to follow— PROG— dealt 
with the analy sis of the data as reor ga nized by previous parsing programs. 
The shaping of PROG required a fifth “helping session” with DF. The speci-
fications of PROG can be summarized as such: for reasons we  will cover 
at length in the next sections, PROG should be able to transform each 
labeled digital image as presented in figure 4.2 into another less complex 
digital image as presented in figure 4.3. The value of the pixels of each 

Figure 4.3
Two views on the results of PROG. Both simplified matrices are translations of the 
labeled images of figure 4.2. PROG was intended to select one part of the parsed data 
in order to transform the labeled images of figure 4.2 into much less complex matrices. 
 These matrices allowed further analy sis, notably in terms of histograms and frequencies.
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less complex image should correspond to the number of rectangles each 
pixel is part of. For example, if a given pixel is part of zero rectangle, PROG 
should attribute the value zero to this pixel. But if another given pixel 
is part of, say, six rectangles, PROG should attribute the value six to this 
pixel. PROG was thus intended to gather together dif fer ent values (dimen-
sions of the natu ral image, dimensions of each rectangle drawn by the 
participants of the crowdsourcing task, incrementing values of each pixel) 
in order to create new images or, as usually coined in image pro cessing, 
new matrices.

At this point, it is not necessary to fully understand the goals and specifi-
cations of PROG as we  will closely consider them in the next sections. What 
is more impor tant for now is to understand that PROG was designed in the 
Matlab software environment. Like other popu lar high- level programming 
languages, such as Python or C, Matlab is generally used in conjunction 
with an integrated development environment (IDE) that includes visualization 
and file organ ization functionalities (see figure 4.4). But unlike Python, C, 
and some of their compatible IDEs (e.g., PyCharm, Eclipse), Matlab—as 
a programming language in its own right and as an IDE—is owned and 
maintained by MathWorks Inc. and is distributed on a license basis. At the 
time of this inquiry, Matlab’s proprietary feature was criticized by a grow-
ing number of Lab members who tended to prefer Python, which is open- 
source and supported by an active community of developers. However, 
notably  because of its internal organ ization natively designed for matrix 
pro cessing, Matlab was and still is frequently used. For reasons of readabil-
ity, my follow-up of the practical formation of PROG  will only focus on the 
Editor and the Command Win dow of the Matlab IDE. In the next sections, 
the content of figure 4.4  will then be presented as in figure 4.5.

Even if PROG was by far the smallest program of the proj ect, I will not 
be able to account for its entire formation pro cess. Instead of accounting for 
the  whole programming episode that established PROG, I  will only focus 
on specific sequences that are particularly instructive. My follow-up of the 
programming sequences is chronological, starting at Time 0 (T0) and end-
ing at Time n. Yet the sampling of each T does not follow a fixed period of 
time but rather the modifications of both the Editor and the Command 
Win dow. Let us assume, for example, that figure 4.5 is the first expression of 
PROG during the programming sequence we are following (T0). As soon as 
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Figure 4.4
Screenshot of the Matlab IDE. The far- right win dow is called the Workspace. It gath-
ers all the variables the programmer creates during their session. To the left of the 
Workspace, the Variables Win dow allows the programmer to visualize in spread-
sheets the variables she created. In this screenshot, the variable “images[1,1]” is being 
visualized. Below it, to the left of the Workspace,  there is the Command Win dow 
that shows the results of the operations conducted by the programmer. In this 
screenshot, the Command Win dow shows the answer “[ ]”. The long win dow in the 
 middle of the screenshot is the Current Folder Win dow that shows the content of 
the folder currently accessed by the software. On the left, the Editor is the win dow 
that allows the programmer to write Matlab programs— also called scripts— that is, 
numbered lists of instructions written in the Matlab programming language. When 
the programmer clicks on the Run icon (on the top  middle of the Editor) or uses an 
equivalent personalizable shortcut key, the results of the script are printed in the 
Command Win dow. In this screenshot, the  running of the script made “[ ]” appear in 
the Command Win dow. The spatial arrangements of  these dif fer ent win dows can be 
modified according to the programmer’s preferences.
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the programmer makes changes in both the Editor and the Command Win-
dow,  these changes  will be documented and highlighted as in figure 4.6.

In between the dif fer ent Ts, the sayings and actions of the programmer 
(DF) and me (FJ)  will be transcribed. To keep  things readable, I may omit 
some small actions, such as quick mistypes or hesitation disfluencies. Fol-
lowing T1 (figure 4.6), the programming sequence would, for example, go 
on like this:

DF: “Hum, it  doesn’t work anymore.”

FJ: “Apparently.  …”

DF: “Tssssss.”

[at line 14, DF deletes “{1}”]
[DF runs the script]
[figure 4.7— T2]

DF: “OK. But why are  there only two of them? I  don’t get it. Difficult 
 today!”

[laughs]

1. f = fopen(‘user_05Waldave56jm9815.txt’);
2.

3. images = cell(1);
4. images{1} = cell(1);
5. line = fgetl(f)
6. while ischar(line)
7. elements = strsplit(line);
8. rating = elements(2);
9. images{1}{1,2} = sscanf(rating{1}, ‘%1’);
10. rect = elements(4:2:10)
11. cords = [];
12. for I = size(rect)
13. c = rect{i}
14. %coords = [cords sscanf(c{1}, ‘%ipx’)];
15. end
16. images{1}{1,3} = coords;
17.

18. line = fgetl(f);
19. end 
20. %
21. %images{1}{3}

ans = 

[]

Figure 4.5
Simplified Matlab IDE as it  will be presented for the remainder of the analy sis. To 
make the follow-up of programming sequences more readable, only the content of 
the Editor and the Command Win dow  will be displayed.  Here, the figure expresses 
(part of) the content of figure 4.4.
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1. f = fopen(‘user_ 05Waldave56jm9815.txt’);
2.

3. images = cell(1);
4. images{1} = cell(1);
5. line = fgetl(f)
6. while ischar(line)
7. elements = strsplit(line);
8. rating = elements(2);
9. images{1}{1,2} = sscanf(rating{1}, ‘%1’);
10. rect = elements(4:2:10)
11. cords = [];
12. for I = size(rect)
13. c = rect{i}
14. coords = [cords sscanf(c. ., ‘%ipx’)];
15. end
16. images{1}{1,3} = coords;
17.

18. line = fgetl(f);
19. end 
20. %
21. %images{1}{3}

ans = 

83  74

14. {1}

Figure 4.7
Editor and Command Win dow at T2.

1. f = fopen(‘user_ 05Waldave56jm9815.txt’);
2.

3. images = cell(1);
4. images{1} = cell(1);
5. line = fgetl(f)
6. while ischar(line)
7. elements = strsplit(line);
8. rating = elements(2);
9. images{1}{1,2} = sscanf(rating{1}, ‘%1’);
10. rect = elements(4:2:10)
11. cords = [];
12. for I = size(rect)
13. c = rect{i}
14. .coords = [cords sscanf(c{1}, ‘%ipx’)];
15. end
16. images{1}{1,3} = coords;
17.

18. line = fgetl(f);
19. end 
20. %
21. %images{1}{3}

>> parse

Cell contents 

reference from a non-

cell array object

Error in parse(line 

14)

coords = [coords 

sscanf(c{1}, ‘%ipx’)]

14. %

Figure 4.6
The Editor and the Command Win dow at T1, when modified by the programmer. In 
the caption’s title, the term “T1” indicates that it is the first change of the program-
ming sequence being followed. The instructions that have been removed or added in 
the Editor are highlighted in gray. The content of the Command Win dow is updated. 
Fi nally, the instructions that have been deleted are indicated as strikeout text in the 
bottom cell. The line numbers of the deleted instructions are  those of Tn-1 ( here T0).
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 Here and then, I  will also intervene to clarify  things and analyze what is 
happening. Before we start with the first sequence, it is impor tant to keep 
in mind that one does not need to understand every thing that is said in the 
transcriptions nor all the ele ments within each T. What is impor tant in this 
close analy sis of computer programming practices is what is happening in 
between each T. It is by focusing on the relative differences between each T 
that we  will manage to understand some of the issues at stake during  these 
unconventional courses of actions.

I need to mention one last  thing before we dive into the practices of com-
puter programming. One may easily object that the following case study and 
its subsequent tentative propositions are not representative of programming 
practices in general. To this, I answer that representativeness is simply not at 
stake  here. Representativeness is indeed a power ful and impor tant concept 
but only when the bound aries of a population are clearly defined. Inhabit-
ants of a town, cells of a tissue, words of a book: all can be related to a very 
costly and equipped set— the administrative and geo graph i cal limits of a 
towns, the physical limits of a sample, the hardcover of a book— that sub-
sequently defines a territory and a population. In  these specific— but very 
rare and often controversial— cases, the concept of representativeness can 
be used to extract statistically meaningful results. But when  there is no ter-
ritory, no set, the very notion of representativeness loses its raison d’être. 
What is programming? Who are programmers when they program? We do 
not know as  there  were very few studies of computer programming prac-
tices. This is typically where ethnography can be useful: the exploration of 
nondefined—or problematically defined— territories may provide takes for 
the design of subsequent bound aries to be explored statistically. And while 
I do think that the young street artist in Leipzig who is writing a small Java-
Script program to animate the menus of her personal website, the engineer 
of Boeing who is working on the last Ada’s update for cabin pressurization 
modules, or the computer scientist who tries to parse .txt files with the Mat-
lab IDE differ in many ways— they have dif fer ent prob lems, affects, environ-
ments, equipment— I also think that (almost) none of  these situations have 
yet been accounted for ethnographically. We still have to start somewhere. 
The following case study is then one of the very first steps into, I hope, more 
systematic studies of programming courses of action; hence the exploratory 
aspect of its propositions.
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Aligning Inscriptions

Let us focus on PROG. Building on what I presented in the last section, 
I  will document a very short programming sequence that took less than 
five minutes in real time. I  will stay as close as pos si ble to the formatted- 
yet- empirical material, using the pre sen ta tion method I introduced above 
as well as several concepts developed in STS in the course of the analy sis. 
My hope is to show that one set of practices that are terribly impor tant for 
programmers deal with the proliferation and alignment of inscriptions in 
order to pave out an access to a remote entity and, si mul ta neously, identify a 

1. I = imread(images{1});
2. R = zeros(size(I));
3. users = images {1,2};
4. for i = 1:size(users), 1)
5. j = 0;
6. while 1
7. rect = users{i,j+3};
8. if size(rect,2) == 0
9. break
10. end
11. j = j+1;
12. x = rect(1):rect(1)+rect(3);
13. y = rect(2):rect(2)+rect(4);
14. R(y,x) = R(y,x) + 1; 
15. end
16. end

>>

Figure 4.8
Editor and Command Win dow at T0.

1. I = imread(images{1});
2. R = zeros(size(I));
3. users = images {1,2};
4. for i = 1:size(users), 1)
5. j = 0;
6. while 1
7. rect = users{i,j+3};
8. if size(rect,2) == 0
9. break
10. end
11. j = j+1;
12. x = rect(1):rect(1)+rect(3);
13. y = rect(2):rect(2)+rect(4);
14. R(y,x) = R(y,x) + 1; 
15. end
16. end

Index exceeds matrix 
dimensions

Figure 4.9
Editor and Command Win dow at T1.
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location. Hopefully, this odd proposition  will become clearer as the chapter 
goes on. For the moment, let us start in medias res with figures 4.8 and 4.9:

[figure 4.8— T0]
[DF runs the script]
[figure 4.9— T1]

DF: “OK. So it tells me it  doesn’t work.”

FJ: “Apparently.”

What is happening between T0 and T1?  After DF runs the script, a red 
( here, gray) inscription appears in the Command Win dow, indicating that 
“Index exceeds matrix dimensions.” Where does this text come from? 
Who wrote it? To better understand the origin of this cryptic notification, I 
have to introduce an impor tant participant to the sequence: the interpreter 
(INT). For the sixteen lines of code in the Editor to generate electric pulses 
that would further allow the hardware of the computer to effectively com-
pute the data of the .txt files, many steps have to be taken. Fortunately, for 
the case that interests us  here, only the very first step is impor tant. This first 
step consists in translating  every line of code into something else—in this 
case, subroutines compiled into machine code— that would, in turn, gen-
erate electric pulses and the effective computation of the data. One of the 
entities responsible for this complex translation is INT.  Every time DF runs 
the script, INT is surreptitiously triggered to translate the content of the 
Editor, byte by byte. We do not need to know exactly what INT does during 
its translating pro cesses: even for DF, the very functioning of INT remains 
obscure. In fact, we just need to understand four characteristics of INT:

1. INT has its own trajectory that is fully understood by almost nobody: 
highly specialized teams employed by the com pany MathWorks, editors 
of Matlab,  were required to shape it and are still currently maintaining 
it. In that sense—at least from the point of view of DF— INT can be con-
sidered a being that takes the risk of existence (James [1912] 2003; Latour 
2013), just as a cat or an elephant seal.

2. INT translates one line of the Editor  after the other.2

3. As soon as INT successfully translates a line, if this line instructs the print-
ing of an inscription, INT prints this inscription in the Command Win dow.

4. As soon as INT cannot translate one line, it stops and prints a red ( here, 
gray) inscription in the Command Win dow.
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This leads us to the impor tant notion of inscription that we have already 
encountered in the introduction where I emphasized the world- generative 
capabilities of  these durable, mobile, and re- presentable entities.  There are, 
of course, many dif fer ent types of inscriptions: books, WhatsApp messages, 
shopping lists, or even tattooed bodies can be considered inscriptions, 
some being more durable, mobile, and re- presentable than  others (Gitel-
man 2014). But in any case, inscriptions are translated manifestations of 
more or less attributable events and thus constitute, at least potentially, 
takes offered by the environment in specific situations.  These inscriptions 
are not repre sen ta tions (without hyphen) of “real  things” that feed  mental 
computations. They are formatted re- presentations of events that may be 
grasped and, in turn, configure other world- generative takes. This is why I 
needed to tediously introduce enactive cognition at the end of chapter 3: as 
we are now aware that agency precedes cognition, documents and inscrip-
tions can be considered no more but also no less than takes that may sug-
gest other actions— from take to take, as far as we can perceive and make 
sense (Penny 2017).

Inscriptions- takes are sometimes grasped by cognizing individuals; other 
times, they are not. In our case, the inscription “Index exceeds matrix 
dimensions” is indeed grasped by DF. In fact, as DF ran the script, he 
expected an inscription to appear in the Command Win dow. Moreover, as 
DF is well aware— just as we are now— that any red inscription in the Com-
mand Win dow manifests that INT could not translate all the lines of the 
script, DF knows that the inscription “Index exceeds matrix dimensions” 
is the trace of an event related to INT.

From this point, we are able to better understand what the first inscription 
does to DF. At T1, the inscription “Index exceeds matrix dimensions” is a 
take grasped by DF that manifests that something— but what?—is affecting 
the trajectory of INT: it tells me it  doesn’t work.

Let us continue:

DF: “It  doesn’t go through. I’ll just check the size of the image.”

[DF creates a new line at 2 in the Editor; types “size(I)”]

INT has a prob lem: it  doesn’t go through the script. But what part of PROG 
is affecting INT? At this point, it is difficult to know exactly. In fact, under-
standing what is happening to INT is, from now on, necessary to the real-
ization of PROG.
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For DF, the initial red inscription indicates— though quite vaguely— that 
INT is affected by the size of something. The terms “exceeds” and “dimen-
sions” of the red inscription attest for such a size- related prob lem. In order 
to have a better grip on what size- related prob lem is affecting the trajectory 
of INT, DF starts by examining the size of the image. To do this, DF adds the 
small line of code “size(I)” at the second line of the script and then runs 
it, thus triggering INT (figure 4.10— T2).

By adding the line of code “size(I)” at line 2 and then triggering INT, 
DF makes a new inscription appear in the Command Win dow:

ans =

Columns I through 2

1024 712

Column 3

3

This new inscription printed by INT in the Command Win dow is not red 
and can therefore be considered an  actual translation of the code. This is 
taken for granted: de cades of engineering developments allow DF to be 
certain that this new inscription is an unproblematic expression of INT. But 
still, is this inscription expressing the dimension of the right image? If not, 
the  whole script should be reconsidered. To verify that INT is indeed failing 
to pro cess the right image, DF uses the second non- red inscription to create 
a third one, this time emanating from me:

1. I = imread(images{1});
2. size(I)
3. R = zeros(size(I));
4. users = images {1,2};
5. for i = 1:size(users), 1)
6. j = 0;
7. while 1
8. rect = users{i,j+3};
9. if size(rect,2) == 0
10. break
11. end
12. j = j+1;
13. x = rect(1):rect(1)+rect(3);
14. y = rect(2):rect(2)+rect(4);
15. R(y,x) = R(y,x) + 1; 
16. end
17. end

ans =
Columns 1 through 2
1024   712

Column 3
3

Index exceeds matrix 
dimensions

Figure 4.10
Editor and Command Win dow at T2.
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DF: “OK, so the size is 1024 × 712. Does that sound right to you?”

FJ: “Yes, it is correct for this image.”

DF: “Ok. So it’s happening  after.”

The oral statement “Yes, it is correct for this image”— itself deriving from 
inscriptions I had previously produced and encountered during a former 
unsuccessful programming attempt— allows DF to consider that the non- 
red inscription refers adequately to the image INT is failing to pro cess. 
The certitude emanating from the articulation of the non- red inscription 
and the inscription- derived oral statement further allows DF to infer that 
“it’s happening  after.” The “ after” is  here crucial. Indeed, since the second 
inscription is not red and appears above the red inscription in the Com-
mand Win dow, DF can conclude that what ever is affecting the trajectory 
of INT, it lies somewhere  after the instruction “size(I)” he has just added 
at line 2. By adding and articulating two new inscriptions— the non- red 
inscription and the inscription relayed by my confirmatory oral state-
ment— DF already gets a clearer view on INT: what is affecting its trajectory 
lies  after the second line of the script.

Let us continue:

[DF examines the Command Win dow of figure 4.10— T2]

DF: “Ah, but it indicates also the colors! Typical Matlab.”

[DF puts the cursor on “Column 3” in T2 Command Win dow]

DF: “See? [to FJ] We should take only the first two values for “R.” Other-
wise, it blocks.”

FJ: “ Because now ‘R’ has three values?”

DF: “I guess so.”

[DF deletes line 2; at the end of “new” line 2, he types “.1), size(I,2”]

By pursuing his inspection of the non- red inscription in the Command 
Win dow at T2, DF notices that the size of the image INT fails to pro cess is 
expressed by three values: “1024,” “712,” and “3.” Where does this “3” come 
from? Difficult to say. It may come from Matlab systematic consideration of 
the data that structure a digital color image. Indeed,  these specific matrices are 
bound to a width, a height, and three layers of RGB values. Most high- level 
programming languages do not take into consideration this third value as it 
generally does not express useful information about the  actual dimensions 
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of an image. But Matlab—in its fussy fashion— apparently expresses it, and 
this may be, according to DF, the source of the prob lem affecting INT.

At this point, DF believes that the documentation he gathered about 
INT’s trajectory through the piling up and alignment of three inscriptions— 
the red inscription, the non- red inscription, and the auditory statement 
(itself being a translation of written inscriptions considered in the past)—is 
accurate enough to complete the script; according to DF, based on the evi-
dences he produced, collected, and aligned, INT does not support the third 
value of “size(I).” This information about INT that points  toward line 3 
may, in turn, allow the modification of the script and smooth the trajectory 
of INT. DF also deletes “size(I)” at line 2 that mainly served for him as an 
instrument for the probing of INT. Then, in line with his insight about the 
provenance of the problematic phenomenon that affects the trajectory of 
INT, he types “,1),size(I,2” in the Editor in order to define “R” according 
to only two values: “1024” and “712,” for the case of the first image of the 
ground truth. He then runs the script:

[DF runs the script]
[figure 4.11— T3]

DF: “Ah no. It’s not  here, apparently.”

Unfortunately for DF,  these modifications do not change the state of INT. 
As we can see in the Command Win dow at T3 (figure  4.11), DF’s new 

1. I = imread(images{1}); 
2. R = zeros(size(I,1), size(I,2));
3. users = images {1,2};
4. for i = 1:size(users), 1)
5. j = 0;
6. while 1
7. rect = users{i,j+3};
8. if size(rect,2) == 0
9. break
10. end
11. j = j+1;
12. x = rect(1):rect(1)+rect(3);
13. y = rect(2):rect(2)+rect(4);
14. R(y,x) = R(y,x) + 1; 
15. end
16. end

Index exceeds matrix 
dimensions

2. size(I)

Figure 4.11
Editor and Command Win dow at T3.
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triggering of INT does not lead to the disappearance of the red inscription: 
something is still affecting INT, and it was not the image size defined by 
three values instead of only two.3 Using a scientific expression, we can say 
that “INT- being- affected- by- the- third- value- of- size(I)” was an artifact: it 
does not participate in the phenomenon that affects INT’s trajectory. In 
turn, the problematic location is not line 2; it is somewhere  else. More experi-
ments are therefore needed; more inscriptions have to be produced, com-
pared, and aligned.

The artifact “INT- being- affected- by- the- third- value- of- size(I)” was 
not totally worthless for DF, though. Thanks to it, DF is now certain that 
INT is being affected by a size- related prob lem that occurs  after line 2. But 
this certainty about INT is for the moment too thin; it does not allow DF 
to precisely identify what is affecting INT and therefore modify the code 
accordingly.

Let us continue:

DF: “OK. Well,  we’ll print the rectangle then. And just compare.”

 [DF deletes “;” at the end of line 8; he creates a new line at 3 in the Edi-
tor; he types “size(R)” at line 3]

PROG deals with natu ral images on which rectangles have been previously 
drawn by workers during a crowdsourcing task. As we saw in the previous 
section that presented the empirical materials of this chapter, the drawn rect-
angles are not strictly speaking on the images: they are stored as coordinates 
within .txt files. The script we are now examining is intended to use the 
width and height values of each natu ral image as well as its rectangles in 
order to create a new image that is less complex and easier to analyse.  These 
new simplified images— that I  will from now on call matrices— should only 
express the number and the position of the rectangles that the workers drew 
on the initial color images. In this re spect, the workflow of the script is quite 
straightforward: first, an empty matrix is created using the width and height 
values of the initial natu ral image, then a rectangle is created using the work-
ers’ data in the .txt file related to this image, then the rectangle is added 
to the empty matrix. Progressively, as more and more rectangles are added to 
the matrix, the matrix acquires more values. In the field of image pro cessing, 
we say that the matrix is incremented. Figure 4.3 provides two examples of 
PROG’s final outputs; that is, matrices that have been incremented according 
to the coordinates of the rectangles related to their IDs in .txt files. But we 
are not  there yet; at this point of the programming episode, INT— this lively 
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entity on which it is difficult to have a grip, at least for biped mammals—is 
affected by something that prevents it from translating the code adequately.

What is affecting INT is not clear. But the previous inscriptions DF man-
aged to  handle and align have made him see that INT’s prob lem has to do 
with some size and dimension. Moreover, DF is also aware of the general 
workflow of the script since he mostly designed it (more on this  later). In this 
re spect, what if the first rectangle that is added to the first matrix exceeds 
the bound aries of the matrix? It would be very problematic as it would sig-
nify that some .txt data are corrupted. But as the rectangle is indexed to .txt 
data, this would satisfy the red inscription “Index exceeds matrix dimen-
sion.” But how could DF be certain of that? Just as before, by producing 
more inscriptions and compare them.

To print the size of the first rectangle, DF deletes “;” at the end of line 8.4 
In order to print the dimension of the first image of the dataset, he writes 
“size(R)” on line 3. He then runs the script:

[DF runs the script]
[figure 4.12— T4]
[DF examines the Command Win dow of figure 4.12— T4]

DF: “So, 197 and 323. Makes less than 1024, obviously. And same for 
height. Alright. It’s strange  because it  doesn’t exceed.”

Two new non- red, and thus a priori nonproblematic, inscriptions appear in 
the Command Win dow at T4 (figure 4.12). The first one “ans = 1024 712” 

1. I = imread(images{1}); 
2. R = zeros(size(I,1), size(I,2));
3. size(R)
4. users = images {1,2};
5. for i = 1:size(users), 1)
6. j = 0;
7. while 1
8. rect = users{i,j+3}.
9. if size(rect,2) == 0
10. break
11. end
12. j = j+1;
13. x = rect(1):rect(1)+rect(3); 
14. y = rect(2):rect(2)+rect(4);
15. R(y,x) = R(y,x) + 1; 
16. end
17. end

ans =
1024   712

rect=
197  91  323  371

Index exceeds matrix  
dimensions

8. ;

Figure 4.12
Editor and Command Win dow at T4.
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describes the dimension of the first image of the collection. The second one 
“rect = 197 91 323 371” describes the dimensions of the first rectangle 
drawn by the first worker as well as the location of this rectangle within the 
first image. The first value of rect, “197,” refers to its horizontal coordinate 
within the image, and the second value, “91,” refers to its vertical coordi-
nate.  These two numbers therefore indicate that the rectangle starts at pixel 
[197:91] of the image. The third value of rect, “323,” expresses the width of 
the rectangle and the fourth value, “371,” expresses its height.  These two 
last numbers therefore indicate that the width of the rectangle is 323 pixels 
and that its height is 371 pixels.

At T4, DF is already aware of what all  these values refer to; before 
this programming episode, I explained to him the conventions I used to 
structure the data of the .txt files. But once  these values are printed and 
compared with the width and height of the image, basic yet terribly impor-
tant arithmetic evaluations can be undertaken: “197 + 323 < 1024” and 
“91 + 371 < 712.”  These are crucial clues as they do not corroborate the red 
inscription of the Command Win dow; the rectangle  doesn’t exceed the 
dimensions of the image. The size and position of the rectangle is not what 
is affecting INT. Something  else is disrupting INT in its relation with PROG. 
But what? And where is it? More inscriptions are required to better docu-
ment what affects INT and modify the script accordingly.

What we see at T4 is a perfect example of the pro cess I’m  here trying to 
highlight: by printing the size of the image and the coordinates of the rect-
angle, DF acquires a better grip on the pro cess at hand. He can articulate  these 
two new inscriptions and align them to the previous ones. In that sense, he is 
enactively paving out some access to INT and its red inscription. Even though 
this production and alignment of inscriptions do not work as DF hoped— the 
dimensions of the rectangle do not exceed the dimensions of the image— this 
gives him another clue about the phenomenon  under scrutiny: what is affect-
ing INT lies somewhere  else. This practice of grasping, producing, and aligning 
inscriptions in order to identify the origin of a problematic phenomenon is, 
I believe, central to programming. As we  will see, it is not the only type of 
practices that are deployed during computer programming sequences. But in 
some specific situations, when an impor tant entity is blocked in its trajec-
tory, thus preventing the computation of data by means of electric pulses, 
the  handling and aligning of inscriptions remains crucial. In  these situations 
when a problematic location has to be found, the design of experiments and 
the articulation of their results appear necessary to pave a very specific path, 



A Second Case Study 155

itself providing very specific information about some small, scattered, and very 
swift entities we may call “interpreters,” “compilers,” or even “pro cessors” in 
the case of microcode. I  will come back to this proposition at the end of this 
programming sequence. But already at this point, it is impor tant to note that 
the mundane addition and alignment of inscriptions DF is currently making 
might be central to the very activity of computer programming.

With  these preliminary ele ments in mind, let us continue:

DF: “I’ll just try something  else.  We’ll see if the rectangle corresponds.”

 [DF creates a new line at 13  in the Editor; on this new line, he types 
“imshow(I(y,x,:))”]

DF needs a new inscription: if the relationship between the rectangle and 
the image is not problematic for INT, something  else must be. But what? 
As is often during programming episodes, the situation starts to be con-
fusing. To be sure that the rectangle expressed in the Command Win dow 
at T4 is the right one and not some sort of not- yet- identified artifact, DF 
needs to see this first rectangle when superimposed over the first image. To 
do so, he creates a new line in the Editor and types the small instruction 
“imshow(I(y,x,:)).” He then runs the script:

[DF runs the script]
[figure 4.13— T5]
[figure 4.14]
[DF examines figure 4.14]

1. I = imread(images{1}); 
2. R = zeros(size(I,1), size(I,2));
3. size(R)
4. users = images {1,2};
5. for i = 1:size(users), 1)
6. j = 0;
7. while 1
8. rect = users{i,j+3}
9. if size(rect,2) == 0
10. break
11. end
12. j = j+1;
13. imshow(I(y,x,:))
14. x = rect(1):rect(1)+rect(3);
15. y = rect(2):rect(2)+rect(4);
16. R(y,x) = R(y,x) + 1; 
17. end
18. end

ans =
1024   712

rect=
197  91  323  371

Index exceeds matrix 
dimensions

Figure 4.13
Editor and Command Win dow at T5.
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DF: “OK. So theoretically, this should be the first rectangle labeled by 
the first worker.”

The new inscription triggered by DF at T5 (figure 4.14) is this time a  little 
dif fer ent. Instead of text, it is a part of an image. More precisely, it is the 
expression of the first rectangle the first worker drew on the first image. 
And just like between T2 and T3, this new inscription allows DF to create 
another inscription, this is time emanating from me:

DF: “Does it correspond?”

FJ: “Yes, yes, it does.”

DF: “OK good. So it definitely blocks somewhere  else. Maybe it  can’t 
define the second rectangle.”

Having worked on the data of the ground truth for a  couple days, I am a 
trustworthy reference: at least for the first image, I know quite well the 
position of the dif fer ent rectangles. Once again, the articulation and align-
ment of two inscriptions— the first rectangle over the first image and my 
own verification (informed by inscriptions I had previously encountered)— 
allow DF to pursue his inquiry into the problematic phenomenon engaging 
INT. If the first rectangle and the part of the code responsible for defining 
it are not what is affecting INT, the prob lem should lie somewhere  else. 
Perhaps in the second rectangle and, more generally, the part of the code 
responsible for defining it? Once again, new inscriptions are required:

Figure 4.14
Output of PROG at T5.
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DF: “It might be when we define the empty matrix.”

[DF deletes “imshow(I(y,x,:))” on line 13; on line 2, he selects the 
function “zeros,” right clicks on it, and selects “help on se lection”]
[figure 4.15]

The new inscription (figure  4.15) is again a  little dif fer ent from  those 
appearing in the Command Win dow. It turns out indeed that the Matlab 
IDE provides access to a “Help on Selection” database that, if connected 
to the internet, displays the correct syntax for each selected function. This 
pop-up win dow being aligned with the suspect function at line 2, DF can 
use the mouse cursor to compare the correct syntax of the help menu with 
what is written in the Editor:

DF: “No, no, we did it right. It is somewhere  else.”

[DF closes the “help on se lection” win dow]

The comparison between the help menu and the script allows DF to be cer-
tain that INT is not affected by this line of code; the syntax is right, so INT 
is able to understand it. The prob lem lies somewhere  else:

[DF runs the script]
[figure 4.16— T6]

Figure 4.15
Screenshot of “help on se lection” as triggered by DF at T5.
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DF: “Huh, I  don’t get it  …  There’s only the empty matrix.”

At T6 (figure 4.16), DF is getting a  little lost. The new inscription he has just 
produced is difficult to grasp; how does it relate to the previous ones? The 
zeros only refer to the empty matrix “R” that, by definition, cannot become 
too big. This inscription is “not eligible” as one says in law; no relationship 
between this inscription and the previous ones can be established. Some-
thing  else has to be tried:

DF: “It’s so stupid. Sorry, I’m a bit rusty  … I’ll just try another way.”

[at the end of line 15, DF types “= R(y,x) + ones(numel(y), numel(x));”]

DF: “So basically [to FJ], I do a 1 × 1 matrix that contains one and then I 
repeat it according to the size of the region. It’s very stupid, but at least 
I’m sure it  will work.  We’ll see if it changes anything.”

[DF runs the script]
[figure 4.17— T7]

DF: “Well, at least it  doesn’t change anything. It  doesn’t block  here  either.”

The experiment of DF is conclusive. At T6 (figure 4.16), he was not totally 
convinced by the instruction at line 15. At T7 (figure 4.17), he tries another 
equivalent “stupid” way to express it. We do not need to dig too far into this 

1. I = imread(images{1}); 
2. R = zeros(size(I,1), size(I,2));
3. size(R)
4. users = images {1,2};
5. for i = 1:size(users), 1)
6. j = 0;
7. while 1
8. rect = users{i,j+3};
9. if size(rect,2) == 0
10. break
11. end
12. j = j+1;

. .

13. x = rect(1):rect(1)+rect(3);
14. y = rect(2):rect(2)+rect(4);
15. R(y,x) . .
16. end
17. end

0   0   0   0
0   0   0   0
0   0   0   0
0   0   0   0
0   0   0   0
0   0   0   0
0   0   0   0
0   0   0   0
0   0   0   0
0   0   0   0
0   0   0   0
0   0   0   0
0   0   0   0
0   0   0   0
0   0   0   0

Index exceeds matrix 
dimensions

13. imshow(I(x,y,:))
16. =R(y,x) + 1;

Figure 4.16
Editor and Command Win dow at T6.
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affective aspect of code since we are  going to consider it  later on in the chap-
ter. At this point, what is more impor tant is that DF used an instruction he 
was certain INT could translate. The solidity of this fact, certainly consolidated 
during his previous experiences with Matlab programming language, allows 
him to equip a new experiment. Once again, when articulated with the previ-
ous inscriptions, the two new inscriptions “ans = 1024 712” and “rect = 197 
91 323 371” are instructive; as they are similar to the ones that appeared at 
T4, DF can conclude that the problematic phenomenon engaging INT does 
not derive from the line 15 of the script. It has to be somewhere  else, again:

DF: “OK, I’ll do something very, very stupid but I just want to see if it’s 
 here.”

[DF creates a new line at 7; types “1”; creates a new line at 10; types “2”]
[DF runs the script]
[figure 4.18— T8]
[DF examines the Command Win dow of figure 4.18— T8]

DF: “OK. It’s  here [at line 9 of figure 4.18— T8]. See? [DF puts the cur-
sor on line 9] It gives ‘1,’ then ‘rect,’ then ‘2,’ then ‘1,’ then stops. It’s 
this ‘j+3’ that becomes too big  after the first rectangle. It takes the first 
rectangle, and if the second rectangle is bigger, it just  can’t increment.”

At T8 (figure 4.18), the stupid  thing pays off: the new inscription successfully 
identifies the source of the problematic phenomenon engaging INT. At 

1. I = imread(images{1}); 
2. R = zeros(size(I,1), size(I,2));
3. size(R)
4. users = images {1,2};
5. for i = 1:size(users), 1)
6. j = 0;
7. while 1
8. rect = users{i,j+3};
9. if size(rect,2) == 0
10. break
11. end
12. j = j+1;
13. x = rect(1):rect(1)+rect(3);
14. y = rect(2):rect(2)+rect(4);
15. R(y,x) = R(y,x) + ones(numel(y),

numel(x));
16. end
17. end

ans =
1024   712

rect=
197  91  323  371

Index exceeds matrix 
dimensions

Figure 4.17
Editor and Command Win dow at T7.
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line 9, “j+3” becomes too big  after the first rectangle, thus disrupting INT in its 
translation efforts. But how does DF make this inference? How does he con-
fidently attribute to line 9 the responsibility of disrupting INT? If we look 
attentively at the Command Win dow of T8, just as DF does, we see that its 
first series of numbers— “1024” and “712”— expresses the size of “R” as line 
3 of the script in the Editor instructs it. If we continue our examination, 
we see that the subsequent number “1” expresses the instruction “1” as line 
8 instructs it. Then we see that the third series of numbers— “197,” “91,” 
“323,” and “371”— expresses the size of the first rectangle as line 9 instructs 
it. Then the fourth number in the Command Win dow— “2”— expresses the 
instruction “2” as instructed at line 10. The fifth number— “1”— expresses, 
again, the instruction “1” on line 8. This ele ment is crucial  because it shows 
that, at this specific moment, INT is about to deal with the second rectangle. 
And as the last ele ment of the Command Win dow indicates, as soon as INT 
tries to translate line 9 for the second time, it blocks and prints a red error. 
By sequentially examining the Command Win dow, what is affecting INT 
becomes for us—as for DF— identifiable: at the second round of the script, 
INT is not able to translate line 9. This last inscription allows DF to attribute 
the origin of the INT- related phenomenon to one specific location.

At this point, it is impor tant to remember that this last inscription— even 
though crucial— did not allow by itself the constitution of a connection 

1. I = imread(images{1}); 
2. R = zeros(size(I,1), size(I,2));
3. size(R)
4. users = images {1,2};
5. for i = 1:size(users), 1)
6. j = 0;
7. while 1
8. 1;
9. rect = users{i,j+3};
10. 2
11. if size(rect,2) == 0
12. break
13. end
14. j = j+1;
15. x = rect(1):rect(1)+rect(3); 
16. y = rect(2):rect(2)+rect(4);
17. R(y,x) = R(y,x) + ones(numel(y),               

numel(x)); 
18. end
19. end

ans =
1024   712

ans =
1 

rect =
197  91  323  371

ans =
2

ans =
1

Index exceeds matrix  
dimensions

Figure 4.18
Editor and Command Win dow at T8.
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between INT’s red inscription and line 9. It is the addition and the align-
ment of all the previous inscriptions that progressively led to the definition 
of this last inscription. The  whole aligning pro cess allowed DF to pinpoint 
the provenance of the phenomenon affecting INT: it cannot translate “j+3” 
at line 9 for the second time.

As some readers may have noticed, in order to account for this small 
programming sequence I used several notions that have been developed in 
the STS lit er a ture to describe an a priori very dif fer ent pro cess: experimental 
practices in scientific laboratories. I now need to discuss this connection 
between laboratory practices and computer programming practices I have 
surreptitiously drawn.

For the last fifty years, many studies of scientific work have underlined 
the centrality of textual documents (Latour and Woolgar 1986), diagrams 
(Netz 2003), graphs (Dennis 1989; Gooday 1990), and notes (Lynch 1985; 
Garfinkel 1981) that I gather  here— following Latour (2013)— under the 
umbrella term “inscriptions.” Other impor tant studies also showed the cen-
trality of the instruments and experiments required to produce, confront, 
and articulate  these inscriptions (Hacking 1983; Knorr- Cetina and Mulkay 
1983; Collins 1975; Dear 1987; Gooding, Pinch, and Schaffer 1989). And 
still other studies further emphasized the importance of the manipulation 
and circulation of  these inscriptions (Latour 1987; Knorr- Cetina 1999) that, 
through comparison, confrontation, alignment—in short, articulation— 
sometimes end up forming what Latour (1999a) calls “chains of reference”: 
more or less solidified paths that document, when every thing is in place, 
the be hav ior of some remote entity (e.g., a planet, a virus, a particle).  These 
impor tant studies pre sent certified knowledge as being produced and objec-
tive at the same time: thanks to scientific practices— and scientific institu-
tions that support the expression of  these practices— knowledge is objective.5

As this short programming sequence seems to indicate, programming 
practices may sometimes— not always— resemble some of the practices 
required for the construction of certified knowledge. Indeed, the production 
of inscriptions— via experiments and instruments— and their comparison 
and alignment in order to produce even more inscriptions echo well with 
what has been observed in scientific laboratories.  Little by  little, through the 
manipulations, comparisons, and alignments of inscriptions, some access is 
paved out that may allow the characterization of a phenomenon engaging 
a remote entity. In the case of computer programming, this remote entity 
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may vary: it can be, for example, a Matlab interpreter, a C compiler, or an 
Intel micropro cessor. At any rate, the common characteristic of  these dif-
fer ent entities is the incredible swiftness of their constitutive relationships. 
Indeed, how is it pos si ble to have a grip on an interpreter, a compiler or— 
worst— a pro cessor that executes billions of operations per second? Once 
assembled,  these entities are very difficult to grasp; hence the relevance 
of the scientific mode of veridiction to better understand what is affecting 
them. Moreover, I assume that the adoption of laboratory practices during 
computer programming episodes is not a result of the miniaturization of 
electronic components that followed the development of planar pro cess at 
the end of the 1950s (Lécuyer, Brock, and Last 2010). As shown by historical 
studies of early electronic computers made of two- meter- high accumulators 
and multipliers— themselves made of hundreds of resistors connected with 
wires and soldered joints— every short cir cuit, carry errors, or divider fault 
that occurred during computation episodes had to be identified and located 
through the tedious formation of error reports, inscriptions, and experi-
ments (Haigh, Priestley, and Rope 2014; 2016, 60–83). In  these early days of 
electronic computing, programmers also had to align inscriptions to pave 
out an access to the affected component of the system.

Another similarity between scientific practices and the practices of com-
puter programming is a common tendency to forget about the instruments 
that enabled the characterization of the phenomenon  under scrutiny. In both 
cases, when the source of a phenomenon has been identified thanks to a 
specific laboratory setting, the practices, instruments, and experiments that 
allowed the formation of the chain of reference are generally put aside (Latour 
and Woolgar 1986, 105–155). This characteristic of science can make its his-
tory difficult to conduct. As established facts are purified from the scaffoldings 
that allowed them to be assembled and solidified in the first place,  great may 
be the temptation to start from established facts and extrapolate backward 
(Collins 1975). To empirically grasp the practice of science, it is therefore cru-
cial to consider facts as consequences of specific pro cesses rather than  causes 
of prior events (Bloor 1981). To a lesser extent, the same is true for computer 
programming. When the phenomenon engaging the remote entity is charac-
terized; when the problematic location in the script is identified, most of the 
instruments (small bits of code, questions to FJ, “stupid  things”) are put aside 
and soon forgotten. At the end of the programming episode, when the script 
is functional and performs as desired, most of  these intermediary objects (Vinck 
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2011) are generally left  behind. Consequently, if one takes completed scripts 
or programs as starting points for the study of programming, the greater is the 
risk to miss what has been necessary to complete  these scripts or programs.6

For the case of computer programming, one may imagine dif fer ent expres-
sions of the alignment practices I have documented above. Even though I 
conjecture that  these expressions still consist in forming chains of reference 
in order to access remote entities and point at specific locations within num-
bered lists of inscriptions, they may not necessary deploy themselves in a 
spatio- temporal landmark that is similar to the one of DF. If we consider for 
example “program testing”—an impor tant industrial pro cess that consists 
in detecting and documenting errors in order to modify lines of code— this 
work can be highly distributed in space and time (Parrington and Roper 1989; 
Myers, Sandler, and Badgett 2011).7 The “bug reports” we often encounter 
when one of our software programs crash for mysterious reasons are other 
expressions of this necessity to align inscriptions  because they consist pre-
cisely in documenting at what time and following what actions the program 
fatally affected the interpreter, compiler, or pro cessor.  These reports serve as 
first inscriptions that  will, in turn, be articulated with another one, and then 
another one,  until eventually it indicates one origin of the phenomenon 
within the source code of the program. Moreover, alignment practices can 
also be automated and integrated within the programming languages them-
selves. This is typically the case when an interpreter or compiler indicates 
by itself its breakpoint, the line of the script that negatively affects its tra-
jectory. But if  these error reports appear automatic to the programmer, it 
should not be forgotten that they are the product of heteromatic pro cesses 
as the programming teams involved in the maintenance and enhancement 
of programming languages have to cope with alignment of inscriptions in 
order to establish what type of errors should be indexed in the first place.8 
While dif fer ent in terms of extension and  labor involved,  these pro cesses of 
program testing, bug reporting, and programming language design are also, 
possibly, about aligning inscriptions and producing chains of reference.

The practice of aligning inscriptions to identify locations within num-
bered lists of written symbols may also explain, at least in part, the obses-
sion of professional programmers with program intelligibility.9 This topic 
has been well documented by Button and Sharrock (1995) in their admira-
ble, yet solitary, study of computer programming practices. As they showed, 
making a program intelligible to other programmers involves conventional 
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naming of variables and functions to make its structure readable as an or ga-
nized and referenced document. It also involves formatting and laying out 
the dif fer ent functions and par ameters of the code to make it easily brows-
able from its visual organ ization. This also typically includes commenting on 
the program by means of small explicative sentences whose initial symbols 
(“%” for the case of Matlab) allow them to be ignored by interpreters or 
compilers. If the programming sequence we have just been following does 
not directly deal with formatting, laying out, and commenting, it none-
theless specifies what  these practices are striving  toward. In view of the 
ele ments presented above, naming, formatting, and commenting all point 
to  future moments when they can operate as landmarks directly enrollable 
in the constitution of chains of reference.  These marks may thus form an 
additional referential infrastructure capable of accelerating alignment work 
in the event of a  future negative affection of an interpreter or a compiler 
(which is likely to happen in corporate settings where complex programs 
have to be maintained and enhanced).

But are the alignment practices of computer programming equivalent to 
the laboratory practices in the sciences? Of course not, and it is now time 
to pre sent an impor tant difference between them. Whereas the alignment 
practices of programming lead to the identification of a location within a 
script, scientific laboratory practices generally lead to the definition of new 
objects whose properties and contours are  later presented in academic papers 
and discussed among peers. We  will come back to this crucial aspect of the 
formation of scientific knowledge when we will consider mathe matics in 
chapters 5 and 6. For now, suffice it to say that whereas both impetuses 
and outcomes of alignment practices in computer programming mainly 
concern programmers who try to complete adequate scripts, alignment 
practices in scientific laboratories are turned  toward the completion of per-
suasive written claims. Scientific laboratories are always counter- laboratories 
(Latour 1987, 79–100): they are also to be understood as a means to publish 
stronger claims than their competitors. The agonistic aspect of laboratory 
practices in the sciences that constantly try to establish what should count 
as natu ral must then be demarcated from the self- referential aspect of labo-
ratory practices in computer programming: While scientists try to make 
a case for the objective real ity of the phenomena they practically make 
appear, programmers try to follow a scenario they are attached to (more 
on this  later). In short, the networks in which scientists and programmers 
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participate are, I believe, quite dissimilar. Whereas alignment of inscrip-
tions in the sciences support the publication of claims, alignment practices 
in computer programming support the completion of a technical artifact 
that yet needs to be intelligible in corporate settings.

The analogy between scientific and programming practices therefore has 
its limits. Yet I also believe that both practices share some crucial— and 
quite surprising— similarities, both allowing the formation of chains of ref-
erence and access to remote beings. And just like scientific work, computer 
programming cannot be reduced to this specific type of practice. Indeed, 
once the remote entity has been reached, once the problematic location has 
been localized, many operations still need to be conducted. In this re spect, 
aligning inscriptions is only a small part of the activity of programming.

Technical Detours

We saw in the previous section that sometimes, during programming epi-
sodes, when a small, swift, and difficult- to- grasp entity (e.g., an interpreter, 
a compiler, a micropro cessor) is affected in its trajectory to the point of not 
being able to trigger electric pulses for the computation of data anymore, 
programmers need to multiply inscriptions, align them, and pile them up 
 until the inscriptions constitute some access to the entity— access that, in 
turn, indicates a location within the script. But what happens next?

In this section, we  will focus on another set of practices deployed dur-
ing programming episodes. While this set of practices surely goes along 
the alignment of inscriptions, it has dif fer ent implications. Whereas the 
scientific aspect of programming involves the addition and alignment of 
inscriptions (experiments, confirmations, “stupid  things”) in order to reach 
a remote entity, what I  shall call the technical aspect of programming involves 
the inclusion and substitution of entities to get around impasses. Once 
again, this odd sentence  will hopefully become clearer as the chapter goes 
on. For now, we  shall continue to follow PROG, starting exactly when the 
previous sequence ended:

[DF examines the Command Win dow of figure 4.18— T8]

DF: “It is this ‘j+3’ that becomes too big  after the first rectangle. It takes 
the first rectangle and if the second rectangle is bigger, it just  can’t incre-
ment. So I’ll just put in some order.”
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[DF deletes lines 3, 8 and 10; deletes “;” at the end of line 9]
[DF runs the script]
[figure 4.19— T9]

DF: “OK, we just need to change a few  things.”

As we saw in the previous section, DF managed to localize the line of the 
script that is badly affecting INT. Several inscriptions had to be produced 
and aligned in order to establish this certified knowledge. But  these inscrip-
tions are now useless; they  were only relevant as part of DF’s quasi- scientific 
inquiry into INT. It is now time for DF to  really change a few  things in the 
script. To do so, he starts by putting in some order and deleting the instruc-
tions that  were used to him as experimental instruments (figure 4.19).

At this point of the chapter, to account for what happens next, I need 
to introduce a complementary notation that  will allow us to have a better 
grip on the technical innovations DF is about to conduct. Following results 
of historical and so cio log i cal studies of technical proj ects, the notation I 
 will draw on has been proposed during the 1990s as an attempt to illustrate 
the evolution of technical proj ects without using the traditional and prob-
lematic distinction between nature and society (Latour, Mauguin, and Teil 

1. I = imread(images{1}); 
2. R = zeros(size(I,1), size(I,2));

.

3. users = images {1,2};
4. for i = 1:size(users), 1)
5. j = 0;
6. while 1

..

7. rect = users{i,j+3}..
.

8. if size(rect,2) == 0
9.

10.

11.

12.

13.

14.

break
end
j = j+1;
x = rect(1):rect(1)+rect(3);
y = rect(2):rect(2)+rect(4);
R(y,x) = R(y,x) + ones(numel(y),               
numel(x));

15. end
16. end

Index exceeds matrix 
dimensions

3. size(R)
8. 1
10. 2

Figure 4.19
Editor and Command Win dow at T9.



A Second Case Study 167

1992). We do not need to understand all the subtleties of this mapping that, 
by the way, never  really took off.10 For what interests us  here, we  shall only 
cover the basic princi ples of  these so- called sociotechnical graphs (STGs).

One of the results of the studies of sociotechnical proj ects was to show 
that the trajectories of such proj ects are a function of their capacity to enroll 
new actants— human or nonhuman entities—in order to overcome critical 
impasses (Akrich 1989; Callon 1986; Latour 1993a). Historical examples of 
such enrollments are legion: in order for American Bell to prevail over West-
ern Union in the development of the telephone network in the United States, 
it had to enroll— after many lawsuits— crucial telephone patents within its 
sociotechnical network (Brooks 1976). By enabling the production of highly 
reliable and flexible switching transistors, the planar pro cess allowed Fair-
child Semiconductor to become a commercial partner of the US Air Force 
(Lécuyer, Brock, and Last 2010). By enrolling the time- sharing technology as 
developed at MIT at the beginning of the 1960s, John Kemeny and his team 
 were able to pursue the development of the BASIC programming language 
at Dartmouth College (Montfort et al. 2013, 158–194). For each example, 
a specific actant— a set of telephone patents, the planar pro cess, the time- 
sharing technology—is enrolled, and this, in turn, makes the proj ect slightly 
shift. One impor tant credit to the history and sociology of technologies is 
to have successively demonstrated how crucial the inclusion of new actants 
for the development of technical proj ects is— may they be huge as the elec-
trification of the United States at the end of the nineteenth  century (Hughes 
1983; Nye 1992) or small as the installation of a road bump (Latour 2006).

Yet, this “latitudinal” dimension of technical proj ects enrolling new 
actants in order to develop and expand would be incomplete without an 
orthogonal “longitudinal” dimension expressing the transformations sug-
gested by the newly enrolled actants. Another crucial result of the history 
and sociology of technical proj ects is indeed that the inclusion of new actants 
si mul ta neously modifies the relationships among the previous actants of the 
proj ect, thus potentially creating new impasses. Using the examples of the 
previous paragraph, Bell’s technical system was transformed by the inclusion 
of telephone patents: the previously tiny network became a potential mono-
poly over telephone communications in the United States, hence necessitat-
ing further reconfigurations so as not to be the target of antitrust lawsuits by 
the US Department of Justice (Gertner 2013). Fairchild Semiconductor was 
fundamentally transformed by the inclusion of the planar pro cess: it became 
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a power ful entity soon capable of industrial production of integrated cir-
cuits.  These production capacities participated, in turn, in the development 
of intercontinental ballistic missiles, and this further created an explosion of 
the demand for integrated cir cuits and the progressive formation of serious 
competitors (most notably, Texas Instruments and Motorola; see Campbell- 
Kelly et al. 2013, 210–225). Similarly, the inclusion of time- sharing technol-
ogy within Dartmouth’s computer system greatly participated in the design of 
the BASIC programming language by considerably increasing its beta testing. 
But the inclusion of the actant “time sharing” also transformed Dartmouth’s 
computing infrastructure, which, by allowing its extensive utilization by 
students, soon started to be used for original computer- game experiments 
(Montfort et al. 2013, 165–194). More than just enrolling (or losing) actants, 
technical proj ects are also modified by them. And just like the latitude— 
inclusive— axis of technical proj ects, this longitude— transformative— axis 
does not only concern large and highly complex technological systems: small 
mundane proj ects are also affected by it (Latour 1992).

Building on this dual aspect of technical proj ects as well as concepts bor-
rowed from linguistics, the proponents of STGs proposed a way to map the 
development of technical proj ects according to two dimensions: a syntagmatic 
dimension and a paradigmatic dimension. The first dimension (syntagmatic) 
of STG is defined by specific assemblages of actants at a certain time T. 
This configuration of actants at a time T is specific to each technical proj-
ect and should therefore be supported by a narrative that exposes the whys 
and wherefores of the proj ect being considered. As this dimension expresses 
association among variables, it can be called the AND dimension. The con-
figuration of actants in the AND dimension is separated into two branches: 
the “allies” whose configuration participates in the development of the proj-
ect and the “opponents” whose configuration constitutes an obstacle to the 
completion of the proj ect. Again, which actant counts as an ally or as an 
opponent to the development of the proj ect depends on the narrative the 
STG is only summarizing (Latour, Mauguin, and Teil 1992, 39). The bound-
ary that separates allies’ configuration of actants and opponents’ configura-
tion of actants constitutes the “frontline” of the technical proj ect at time T.

The second (paradigmatic; nothing to do with Thomas Kuhn’s notion) 
dimension is defined by the substitutions that have occurred in both allies’ 
and opponents’ configurations at time T + 1. Since this dimension expresses 
substitution of variables, it can be called the OR dimension. Depending on 



A Second Case Study 169

the fluctuation of allies’ and opponents’ configurations at T + 1, the front-
line of the technical proj ect may also fluctuate. Once again, which actant 
is substituted by another, thus potentially making the frontline fluctuate, 
depends on the narrative of the technical proj ect.

Two other ele ments are necessary to translate the narrative of a technical 
proj ect into an STG: a specified point of view and what I call a “scenario.” 
First, the point of view of the actant whose view on the proj ect is being 
summarized by the STG has to be specified. In that sense, for any given 
narrative about a technical proj ect, if this narrative takes the point of view 
of many dif fer ent actants, each point of view can (potentially) be mapped 
by one specific STG. Second, the desire of the actant whose point of view is 
being mapped also has to be specified. This topic is a tricky one and  will be 
further developed in the next section of this chapter. For now, suffice it to 
say that what the actant wants to achieve, the  future it wants to live in, the 
scenario to which it is attached should be specified in each STG.

Let us now try to adapt  these theoretical ele ments to the proj ect that 
interests us  here: DF’s proj ect to complete PROG. If we consider T8 and 
the  whole narrative that precedes it, we might be able to translate it into 
an STG summarizing DF’s allies and opponents. The first ele ment of the 
graph should indicate the point of view that it re- presents. Contrary to 
most narratives about large technical systems where many points of view 
are considered and confronted, our small narrative only accounts for the 
point of view of DF. The second ele ment of the graph should be the scenario 
to which DF is attached. As already touched upon in the previous section, 
we know that DF’s scenario for PROG can be summarized as such: “Creating 
a matrix whose pixel-values correspond to the numbers of rectangles drawn 
by workers on each pixel.” Concerning the actants:  every instruction of the 
script can be considered an actant as they all make INT do  things. But other 
actants might also be included in the graph as long as they impact on the 
proj ect as framed by its scenario. In that sense, the red inscriptions printed 
in the Command line and what  these inscriptions refer to according to DF 
as well as the final actions the script is intended to accomplish on the data 
of the .txt file can also be included in the STG. Moreover, as the narrative of 
the script- project indicates that several instructions are now stabilized, we 
may consider  these “stable packages” of instructions as one single actant. 
If we consider  these ele ments altogether and adapt them for T8, we end up 
with a diagram that looks like figure 4.20.
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It is impor tant to remember that the STG mapping of T8 is a simplifica-
tion of T8 as initially presented in its Matlab view and enriched by DF’s 
sayings. As any simplification, it omits many ele ments. But as many sim-
plifications, it may also work as an instrument to identify key features of 
messy pro cesses (Star 1983).

From this point, based on the narrative presented above, we can include 
T9  in the STG graph, thus slightly modifying the configurations of allies 
and opponents (see figure 4.21).

For each remaining T of this programming sequence, I  will first pre sent 
its complete narrative (simplified Matlab IDE and transcriptions of DF’s 
sayings), discuss it shortly, and then pre sent its STG translation. As both 
“point of view” and “scenario”  will not change throughout the program-
ming sequence, I  will ignore them from now on. Moreover, in  every new 
STG, I  shall highlight the newly enrolled actant in bold. At the very end 
of the programming sequence, when DF  will have completed PROG, the 
succession of all the STGs should allow us to detect another set of practices 
deployed by programmers that goes along with the alignment of inscrip-
tions while being, I believe, fundamentally dif fer ent.

Create a matrix whose pixel-values correspond to the numbers of rectangles
drawn by workers on each pixel

Point of view of DF

Scenario:

T8 A B C D E F G H W X Y Z

Allies Opponents

OR

AND

Figure 4.20
STG of T8. “A” refers to PROG lines 1, 2, and 4 (stabilized since T0); “B” refers to 
line 3; “C” refers to lines 5, 6, and 7 (stabilized since T0); “D” refers to line 8; “E” 
refers to line 9; “F” refers to line 10; “G” refers to lines 11, 12, 13 (stabilized since 
T0); “H” refers to lines 14, 15, 16, 17, 18, 19 (stabilized since T6); “W” refers to the 
inscription “Index exceeds matrix dimensions”; “X” refers to DF’s assertions “the 
second rectangle is too big for INT”; “Y” refers to DF’s assertion “rectangles cannot 
increment the values of the matrix”; and “Z” refers to the script’s incapacity to follow 
the desired scenario.
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Let us continue to follow DF as he tries to shape PROG:

DF: “ We’re gonna do it like this.”

[DF creates a new line at 7]

DF: “If ‘j+3’ is larger”

[at line 7, types “if j+3 >”]

DF: “than the size of the cell of the user”

[at line 7, types “size(users{j})”]

DF: “then it goes over it”

[DF creates a new line at 8; types “break”]
[DF runs the script]
[figure 4.22— T10]
[DF examines Command Win dow of figure 4.22— T10]

DF: “Argh, of course. I  shouldn’t take ‘j.’  Can’t define anything that way.”

At T10 (figure 4.22), DF enrolls a new actant: the “if” statement that starts 
at line 7 and ends at line 9. Since, at this point, he knows for a fact that INT is 
blocked if the second rectangle is bigger than the first one, the addition of a 
conditional statement that could ask INT to go over this dimension prob lem 
makes complete sense. The addition of an “if” statement would thus allow 
INT to continue its interpretation of the script even though it encounters a 
rectangle bigger than the previous one. But as the red inscription and DF’s 

Create a matrix whose pixel-values correspond to the numbers of rectangles drawn
by workers on each pixel

Point of view of DF

Scenario:

T8 A B C D E F G H W X Y Z

Allies Opponents

OR

AND

A C E G HT9 W X Y Z

Figure 4.21
STG of T8 and T9.
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saying indicate, the statement was inappropriately expressed: DF should 
not have taken “j” as the size variable of “users” since it already equals to 
zero at line 5. The consequence of this attribution  mistake is that INT can-
not define anything. No rectangle can be defined, and the matrix cannot, in 
turn, be incremented.

If we map T10 as an STG in line with T8 and T9, we obtain figure 4.23. 
Looking at it, we can see that new actants have appeared and created differ-
ences in the proj ect, slightly altering its frontline. In the allies’ configuration, 
“I” has been added by DF in order to get around the configuration of “W,” 
“X,” “Y,” and “Z.” But if this new actant made “W” and “X” dis appear— that 
is, the index does not exceed the matrix dimension anymore, and the second 
rectangle is not too big anymore—it is only by making two new opponents 
appear: “V” and “U.” “Y” and “Z” are then still solidly opposing re sis tance to 
DF’s proj ect since, at this point, no rectangle can be defined.

Let us continue:

[at line 7, DF deletes “users, {j})”]

DF: “Actually, the size of the cell should just be ‘users, 2’ ”

[at line 7, types “users,2)”]
[runs the script],
[figure 4.24— T11]

DF: “OK, it may work.”

1. I = imread(images{1}); 
2. R = zeros(size(I,1), size(I,2));
3. users = images {1,2};
4. for i = 1:size(users), 1)
5. j = 0;
6. while 1
7. if j+3 > size(users, {j})
8. break
9. end
10. rect = users{i,j+3};;
11. if size(rect,2) == 0
12. break
13. end
14. j = j+1;
15. x = rect(1):rect(1)+rect(3);
16. y = rect(2):rect(2)+rect(4);
17. R(y,x) = R(y,x) + ones(numel(y),               

. numel(x));
18. end
19. end

Cell contents indices 
must be greater than 
0

Figure 4.22
Editor and Command Win dow at T10.
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T8 A B C D E F G H W X Y Z

Allies Opponents

OR

AND

A C E G HT9 W X Y Z

A C E G HT10 I V U Y Z

Figure 4.23
STG of T8, T9, and T10. At T10, “I” refers to lines 7 to 9; “V” refers to the inscription 
“cell contents indices must be greater than 0”; and “U” refers to DF’s asser-
tion “nothing can be defined.”

1. I = imread(images{1}); 
2. R = zeros(size(I,1), size(I,2));
3. users = images {1,2};
4. for i = 1:size(users), 1)
5. j = 0;
6. while 1
7. if j+3 > size(users, 2)
8. break
9. end
10. rect = users{i,j+3};;
11. if size(rect,2) == 0
12. break
13. end
14. j = j+1;
15. x = rect(1):rect(1)+rect(3);
16. y = rect(2):rect(2)+rect(4);
17. R(y,x) = R(y,x) + ones(numel(y),               

numel(x));
18. end
19. end

>>

7. size(users, {j})

Figure 4.24
Editor and Command Win dow at T11.
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At T11 (figure  4.24), DF modifies the conditional instruction: instead of 
referring to “j,” the size of the new rectangle now refers to the second value 
of the cell, “users.” We do not need to understand precisely what this value 
and cell refer to. The impor tant  thing at T11 is that the inclusion of a new 
actant— the modified “if” statement— creates an impor tant difference: INT 
does not print a red inscription anymore. This indicates that INT has man-
aged to translate  every line, thus triggering electronic computation on the 
data of the .txt files. At this point, then, it may work: the rectangles may 
increment the empty matrix. But it is not over yet since, symmetrically, it 
may also not work. Since the Command Win dow does not provide any indi-
cation about the incrementation of the empty matrix, something  else may 
also have happened.

If we continue our STG re- presentation of this programming sequence 
by including T11, we obtain figure 4.25. Several changes affected the allies’ 
configuration at T11. “I” dis appeared: DF deleted it  because it made oppo-
nents dis appear only by making new ones appear. But two new actants 
are included: “J” that corresponds to the new conditional statement and 
“K” that corresponds to the absence of any error inscription within the 
Command Win dow (and, corollary, to DF’s assertion that “it may work”). 
Did this new configuration of allies managed to get around the configura-
tion of opponents? Only partially since the incertitude suggested by “K” 
has its corollary: as  there is no indication in the Command Win dow, the 
script may also not work (“T”), that is, it may not increment the empty 
matrix properly. As a consequence, “Z”— “the script does not follow the 
scenario”— holds on. At this point, DF still needs to include something  else; 
he still needs to pursue his proj ect by other means in order to get around the 
impasse constituted by “T” and “Z.”

Let us continue to follow DF:

DF: “But I just need to be sure.”

[creates a line 20; types “imshow(R)”]
[runs the script]
[figure 4.26— T12 and figure 4.27]

FJ: “This is close!”

DF: “Yep. But it clips  after the value 1.”

FJ: “Clips?”
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T8 A B C D E F G H W X Y Z

Allies Opponents

OR

AND

A C E G HT9 W X Y Z

A C E G HT10 I V U Y Z

T11 A C E G H J K T Z

Figure 4.25
STG of T8, T9, T10, and T11. At T11, “J” refers to the new “if” statement at lines 7 
to 9; “K” refers to DF’s assertion that “it may work”; and “T” refers to DF’s implicit 
assertion that, symmetrically, “it may not work.”

1. I = imread(images{1}); 
2. R = zeros(size(I,1), size(I,2));
3. users = images {1,2};
4. for i = 1:size(users), 1)
5. j = 0;
6. while 1
7. if j+3 > size(users, 2)
8. break
9. end
10. rect = users{i,j+3};;
11. if size(rect,2) == 0
12. break
13. end
14. j = j+1;
15. x = rect(1):rect(1)+rect(3);
16. y = rect(2):rect(2)+rect(4);
17. R(y,x) = R(y,x) + ones(numel(y),               

. numel(x));
18. end
19. end
20. imshow(R)

>>

Figure 4.26
Editor and Command Win dow at T12.
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DF: “Yes, it often does that. Basically, it  doesn’t consider anything above 
1. I mean, the matrix may have values more than one, but it does not 
show it on the image.”

At T12 (figure 4.26), DF adds a new instruction— “imshow(R)”— that asks INT 
to print an image of the incremented matrix (figure 4.27). The results are 
convincing as well as disappointing. The positive  thing is that a matrix has 
effectively been incremented. The image printed by INT attests to this: it has 
differentiated values that together form a white shape. But the negative  thing 
is that this image has only binary values: ones forming the white shape and 
zeros forming the black background. According to DF, INT is once again the 
cause of this prob lem: by clipping  after the value 1 the printed image can only 
be binary. In  these conditions, it is difficult to know what values constitute 
the incremented matrix. At this point, again, DF needs to include something 
 else in the script in order to make it follow the desired scenario.

Let us have a look on the STG to get a condensed look on what has just 
happened (figure 4.28). The configuration of allies has again expanded: “L” 
and “M” allowed DF to be sure that the rectangles increment the matrix. 

Figure 4.27
Screenshot of the output of PROG at T12.
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This, in turn, made “T” dis appear so that no incertitude remains concern-
ing this aspect of the proj ect. But the binary characteristic of “M” made “R” 
appear in the configuration of opponents: for unknown reasons, INT clips 
 after one. This, in turn, creates “S,” the incertitude about the incrementing 
capability of the script that may stop  after “1.” In  these conditions, Z remains, 
and the script is still not following the desired scenario. Once again, DF has no 
choice: he has to enroll something  else to the configuration of allies; he has to 
delegate the work- around of “R,” “S,” and “Z” to a new actant.

With  these ele ments in mind, let us continue:

DF: “So I’ll just try to divide the value of ‘R’ by the maximal value of the 
matrix. If it has other values than one, it should show it.”

[at line 20, types “/max(R(:))”]
[runs the script]
[figure 4.29— T13 and figure 4.30]

DF: “All right, this is the right image of the matrix. This is it.”

T8 A B C D E F G H W X Y Z

Allies Opponents

OR

AND

A C E G HT9 W X Y Z

A C E G HT10 I V U Y Z

T11 A C E G H J K T Z

T12 A C E G H J L M N R S Z

Figure 4.28
STG of T8, T9, T10, T11, and T12. At T12, “L” refers to the instruction “imshow(R)” at 
line 20; “M” refers to the binary image of the matrix output by PROG; “N” refers to 
DF’s conclusion that rectangles do increment the matrix; “R” refers to DF’s assertion 
that INT “clipps”  after 1; and “S” refers to the DF’s saying that the matrix should not 
have only binary values.
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1. I = imread(images{1}); 
2. R = zeros(size(I,1), size(I,2));
3. users = images {1,2};
4. for i = 1:size(users), 1)
5. j = 0;
6. while 1
7. if j+3 > size(users, 2)
8. break
9. end
10. rect = users{i,j+3};;
11. if size(rect,2) == 0
12. break
13. end
14. j = j+1;
15. x = rect(1):rect(1)+rect(3);
16. y = rect(2):rect(2)+rect(4);
17. R(y,x) = R(y,x) + ones(numel(y),               

. numel(x));
18. end
19. end
20. imshow(R / max(R(:))) >>

Figure 4.29
Editor and Command Win dow at T13.

Figure 4.30
Screenshot of the output of PROG at T13.
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By including this last small bit of code— “/max(R(:))”— DF manages to 
complete the script (figure 4.29). No incertitude remains: the matrix is cor-
rectly incremented as the new output image shows (figure 4.30). DF thus 
successfully managed to make INT design an empty matrix according to 
width and height values; define rectangles from width, height, and position 
values; and use  these rectangles to successively increment the pixel-values 
of the matrix. Several technical operations had to be conducted but, in the 
end, the proj ect fulfilled its initial ambitions. At this point, the script can be 
considered a technical artifact that does something definable.

If we take a look at the STG (figure 4.31), we see that the inclusion of 
“/max(R(:))” managed to get around the impasse previously formed by “R,” 
“S,” and “Z.” At T13, the inclusion of “O” and its corollary “P” made “R,” 
“S,” and “Z” dis appear. The addition of the instruction “/max(R(:))” made 

T8 A B C D E F G H W X Y Z

Allies Opponents

OR

AND

A C E G HT9 W X Y Z

A C E G HT10 I V U Y Z

T11 A C E G H J K T Z

T12 A C E G H J L M N R S Z

T13 A C E G H J L M N O P Q

Figure 4.31
STG of T8, T9, T10, T11, T12, and T13. At T13, “O” refers to the instruction “/max(R(:))”; 
“P” refers the output image generated by PROG; and “Q” refers to the fulfillment of 
PROG’s scenario: now, the pixel-values of the new matrix correspond to the number 
of rectangles drawn by workers on each pixel.
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INT print a gray- scale image of the matrix, hence showing DF that its values 
do indeed variate between zero and the total number of rectangles drawn 
by the crowdworkers. All the opponents to the proj ect have been replaced 
by allies; all dead- ends have been bypassed. The scenario is followed. As DF 
puts it, “this is it.” The programming sequence is over.

What do  these STGs add to our analy sis of this programming sequence? 
What does this simplification allow us to see? While the previous section 
put the emphasis on the scientific moment of programming practices, I 
assume that the present section puts the emphasis on the technical moment 
of programming practices. Are scientific and technical practices dif fer ent? In 
the  middle of the action, they surely overlap to the point of appearing simi-
lar. But, following Latour (2013), I nonetheless assume that both express 
themselves quite differently.

We saw that the surprising similitude between the laboratory practices 
of science and the practices of programming lies in that they both multi-
ply and align inscriptions in order to shape chains of reference, thereby 
allowing the assemblage of information about remote entities. Even though 
both activities cannot be considered equivalent, I believe they echo well 
with each other: both sometimes produce and align inscriptions in order to 
access remote beings.

Although the sequence we have just documented required the formation 
of a (small) chain of reference in order to be initiated, I assume the sequence 
also expressed something radically dif fer ent. At T9, DF needed to change 
 things in the script. What did he do? At each T, he included new actants and 
delegated actions to them in order to get around impasses that  were obstruct-
ing the following of the scenario. The practices involved in this sequence 
did not tend  toward gaining knowledge about  these impasses; they tended 
 toward finding ways to get around them. This is precisely why STGs  were, 
in the end, instructive tools: by simplifying the narrative, they allowed to 
follow  these successive shifts, this constant zigzag that expressed the enroll-
ment of new entities, the del e ga tion they implied, and the work- arounds 
they triggered. The script, once completed at T13, became a technical arti-
fact. But it was only through technical practices, ingenious inclusions, del-
e ga tions, and work- arounds that such an artifact could come to existence. 
Along with the finished script, thanks to the simplification provided by the 
STGs, we can glance at the lightning strike drawn by DF and its technical 
actions (figure 4.32).
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The sequence was not linear; it was rhythmed by breaks of continuity 
that vanished at soon as the script was completed. Just as chains of refer-
ence are ignored as soon as they allowed the constitution of an informa-
tion about a remote being, the constant shifts, inclusions, del e ga tions, and 
work- arounds of technical practices are made invisible once they allowed 
the completion of the artifact.  Here lies, I believe, a serious limitation of 
the studies of programming that only consider the results of programming 
tests (see chapter  3). By only considering the final technical object (the 
finished script), they cannot grasp the practices that  were necessary to the 
technicality of this object. It is only by  going backward from the artifact to 
the detours that have constantly modified its form, thus making it singular, 
that we may capture the technical aspect of computer programming. Any 
working script holds thanks to all the now- invisible allies that  were added 
to each configuration in order to get around— one may even say, in order 
to hack (Nissenbaum 2004)— now also- invisible opponents. Just as the pro-
liferation and alignment of inscriptions made DF become knowledge- able, 

T 8

T 9

T 10

T 11

T 12

T 13

Figure 4.32
Technical zigzag of DF while assembling PROG.
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the technical detours made him in- genious: by catching entities— jinns— 
and enrolling them in work- arounds, he was able to include allies and get 
around opponents, thus drawing a dazzling zigzag.

It is in ter est ing to note that  these types of technical moments, when pro-
gramming is about the drawing of a zigzag, are often the most appreciated ones. 
While the construction of chains of reference can be very frustrating— the 
inscriptions keep piling up without forming any reliable chain of reference— 
the practices involved in the drawing of zigzags often appears more playful. 
Unfortunately, I cannot support this claim by any empirical materials; this 
would imply the pre sen ta tion of many other programming figures that are 
already too numerous at this point in the chapter. But in one of her literary 
accounts of programming affects, Ellen Ullman nicely expressed this feeling 
programmers often experience when they are engaged into technical detours 
that are very difficult to catch once the artifact is completed:

“Damn! The NULL case!”
“And if not  we’re out of the text field and they hit space—”
“— yeah, like for—”
“—no parameter—”
“Hell!”
“So what if we space- pad?”
“I  don’t know. … Wait a minute!”
“Yeah, we could space- pad—”
“— and do space as numeric.”
“Yes!  We’ll call SendKey(space) to—”
“— the numeric object.”
…
“No, no, no, no. What if the members of the set start with spaces. Oh, God.”
He is as near to naked despair as has ever been shown to me by anyone not 

in a film.  Here, in that place, we have no shame. He has seen me sleeping on the 
floor, drooling. We have both seen Danny’s puffy, white midsection— young as 
he is, it’s a pity— when he stripped to his underwear in the heat of the machine 
room. I have seen Joel’s dandruff, light coating of cat fur on his clothes, noticed 
 things about his body I should not. And I’m sure he’s seen my sticky hair, noticed 
how dull I look without make-up, caught sight of other details too intimate to 
mention. Still, none of this  matters anymore. Our bodies  were abandoned long 
ago, reduced to hunger and sleeplessness and the ravages of sitting for hours at 
a keyboard and a mouse. Our physical selves have been battered away. Now we 
know each other in one way and one way only: the code.

Besides, I know I can now give him plea sure of an order which is rare in any 
life: I am about to save him from despair.
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“No prob lem,” I say evenly. I put my hand on his shoulder, intending a ges-
ture of reassurance. “The par ameters never start with a space.”

It is just as I hoped. His despair vanishes. He becomes electric, turns to the key-
board and begins to type at a rapid speed. Now he is gone from me. He is disap-
pearing into the code. (Ullman 2012, 8–9; italics added)

In this literary excerpt, an information is progressively being assembled— 
the narrator provides the very last inscription (“The par ameters never start 
with a space”)— and a location is, in turn, defined: let entities be enrolled, 
actions be delegated, and opponents be gotten around. And the joyful tech-
nical lightning strike soon unfolds.

Let the reader forgive me if I rave a  little at this point of the chapter, but 
both technical and scientific practices as documented in  these two sections 
provide such a refreshing perspective on computer programming that it is 
difficult for me to remain placid. We see indeed how the standard cognitive- 
behavioral framing of computer programming as a problem- solving pro cess 
(cf. chapter 3) can be misleading. Programmers may never solve any prob-
lem; when confronted to a remote entity that refuses to generate electric 
pulses on data, they more or less collectively constitute a chain of refer-
ence that, if equipped enough, may indicate a problematic location, a loca-
tion that, in turn, may trigger the enrollment of new actants and technical 
work- arounds of impasses. Nothing is solved; something is located, thus 
eventually triggering the drawing of a zigzag that  will soon be forgotten. 
“Prob lem solving” and even the likable expression “debugging” may both 
miss the point: by amalgamating two dif fer ent and equally impor tant sets 
of practices, they may not adequately catch the subtle practical tempos a 
programmer goes through when defining appropriate lists of instructions.

Yet, despite my enthusiasm, this tentative model still lacks something 
crucial. Indeed, where does this “appropriateness” come from? Is it not 
something I surreptitiously invoke from outside, without defining its attri-
butes? At this point, it surely is. Fortunately, this is precisely the topic of the 
next section of this chapter.

Attached to a Scenario

We have seen so far that programming can be viewed as the expression of 
two sets of intimately related practices. The first set implies the multiplica-
tion and alignment of inscriptions in order to assem ble chains of reference 
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that can provide information about remote entities whose trajectories are 
affected in undesirable ways.  These practices echo well, to some degree, 
with some of the laboratory practices required for the construction of sci-
entific facts. The second set of practices— much more difficult to capture— 
implies the inclusion of new actants in order to get around impasses.  These 
practices of inclusion, del e ga tion, and bypassing echo well, to some degree, 
with practices required for the  running of technical proj ects. From this 
point, we may conjecture that during a computer programming episode, 
scientific and technical practices are intimately articulated, the program-
mer constantly shifting from one mode to the other. This tentative but 
empirical look at computer programming unfolds many crucial ele ments— 
inscriptions, chains of reference, impasses, detours— that most standard 
takes on computer programming do not stress.

At this point of the chapter though, something essential to computer 
programming is still taken for granted. While I keep on talking about “pro-
gramming episodes,” what defines the limits and the scope of such epi-
sodes? Where do  these “meta- instructions” that establish the bound aries 
of the programming episodes come from? What is this wind that pushes 
programmers in the back, making them inquire into remote entities, enroll 
actants, and get around impasses? In the previous section of the chapter, 
readers may have noticed that I surreptitiously used the term “program-
ming proj ect” to speak about the technical skills DF was deploying for the 
composition of PROG. But where does this projection come from? At this 
point, this aspiration, this desire  shall not be ignored anymore. It is time 
now to address the issues of projection and attachment without which  there 
would simply be no programming practices.

Lucy Suchman thoroughly explored this relationship between proj ects 
and situated actions or, as she put it, “the utility of projecting  future actions 
and the reliance of  those projections on a further horizon of activity they do 
not exhaustively specify” (Suchman 2007, 19; emphasis in the original). Ini-
tially struggling against mid-1980s artificial intelligence experts who tended 
to consider the relationship between plans and actions as deterministic— 
the former rigorously defining the latter— she proposed an alternative view 
of plans as resources that set up horizons without specifying the actions 
required to reach them. To clarify her proposition, she used the example 
of canoe:
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In planning to run a series of rapids in a canoe, one is very likely to sit for a while 
above the falls and plan one’s descent. The plan might go something like “I get 
as far over to the left as pos si ble, try to make it around that next bunch.” A  great 
deal of deliberation, discussion, simulation, and reconstruction may go into such 
a plan. But however detailed, the plan stops short of the  actual business of get-
ting your canoe through the falls. When it  really comes down to the details of 
responding to currents and  handling a canoe, you effectively abandon the plan 
and fall back on what ever embodied skills are available to you. The purpose of the 
plan in this case is not to get your canoe through the rapids, but rather to orient 
you in such a way that you can obtain the best pos si ble position from which to 
use  those embodied skills on which, in the final analy sis, your success depends. 
(Suchman 2007, 72)

Plans do not determine actions. Rather, by suggesting  future orientations, 
plans help express skills in appreciable conditions. Moreover, building on 
Suchman’s example, we can also assume that plans create something like 
another world, another layer of existence: by telling stories, plans express 
figures that could not exist without them. Before  running the rapids, when 
I am expressing my plan above the fall, I am projected into another space 
(“into the rapids,” “as far over to the left as pos si ble”), another time (“ later”), 
and  toward other  human and nonhuman actants (“me, alive, at the end of 
the rapids,” “the canoe, struggling to get around the next bunch,” “the 
power ful rapids I— hopefully— managed to run”). In this re spect, by estab-
lishing a  triple shifting out (Latour 2013, 234–257) into other space and 
time, and  toward other actants, plans are also narratives that help us engage 
into desirable pro cesses.

Yet this definition of plans as narratives establishing desirable hori-
zons without specifying how to reach them is still quite loose. In what 
sense are  these narratives dif fer ent from, say, bedtime stories for  children 
or Hollywood mega- productions? What specific transformations do plans- 
narratives institute? How do we address the modifications they suggest? 
To better understand the specificity of  these narratives—or, as I  will soon 
call them,  these scenarios—we  shall consider the narrative DF constructed 
for the completion of PROG. One point of departure could be two days 
before the programming episode we have followed in the last sections. At 
that time, I was struggling with the data I had previously collected from a 
crowdsourcing task. Unable to make sense of  these data, I asked the director 
of the Lab (DIR) for some advice:
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Thursday February 4, 2016, at the office of DIR

FJ: The  thing is that I am still struggling to find mea sures that could 
make sense of the variations of the rectangles drawn by the workers [and] 
depending on the images.11  Because at this point, I have this kind of result:

[FJ shows images on his laptop to DIR, see figure 4.33]

FJ: But the rectangles vary both in terms of size and alignment. That 
is, some rectangles are well aligned and small compared to the image; 
 others are aligned but vary in terms of dimensions;  others are aligned but 
in groups of dif fer ent sizes; and  others are just spread out everywhere.

DIR: Well,  there’s surely a way to mea sure how much overlap  there is. But 
in any case, you should get other views than  these. You  can’t see anything 
 here.

…
  There are many ways; but for example, you could go through each pixel 
and see how often they are in a rectangle. And once you get  these graphs, 
we can help you find a mea sure that explains the variations.

FJ: You mean, something like getting for each pixel, the relative differ-
ence of the number of rectangles they are part of?

DIR: Yes. Or rather, I guess in your case, for each image, the proportion 
of pixels that are part of one rectangle, two rectangles, and so on.  … 
And then you can get gray- scale images, or graphs like histograms. For 
example, assume  you’re giving zero to  every pixel that is labeled by no 
one, one for  every pixel that is labeled by only one worker,  etc. You add 
this up and you’ll get a maximum or, like twenty. Then you can normal-
ize between zero and one or do other  things. But for now at least, you 
should get better matrices from  these images.

DIR’s advice was clear: if I wanted to find correlations between the pixel-
values of the images and the rectangles drawn by the workers, the very first 
step was to simplify the collected results through the design of better matri-
ces. But how should  these matrices be designed? This issue was the raison 
d’être of PROG: in order to define simpler/better matrices whose values can 
be expressed by graphs, PROG should instruct my computer to transform 
the values of each image and its associated rectangles. In short, the graphs 
that could help me explain the dispersion/alignment of rectangles required 
matrices that still needed to be designed computationally by an instructed 



A Second Case Study 187

Figure 4.33
Sample of labeled images shown to DIR.
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computer. The first narrative—or plan— that further supported the formula-
tion of PROG can thus be summarized as such: “FJ  shall make a computer 
assem ble matrices whose pixel-values correspond to the number of rect-
angles each pixel is part of.”

I soon tried to write this program that could help me have a better grip 
on the data I had collected but was soon confronted to my incapacity to 
specify the prob lem with Matlab. What should be the first step? And the 
second step? Using the proj ect’s helping clause that allowed me to ask for 
help whenever I needed to (cf. above), I sent an email to DF:

Monday, January 15, 2016. Email from FJ to DF, header “Struggling with 
Matlab.  …”

Hi DF,

For my proj ect I need to pro cess each pixel of each image individually in 
order to count how many rectangles belong to each pixel. I got the idea, 
I think, but am still struggling with Matlab to write the script. Would 
you have some time to help me do it? That’d be  great!

Have a  great day,
FJ

Monday, January 15, 2016. Email from DF to FJ, header “Struggling with 
Matlab.  …”

Hi Florian,

No prob lem. What about this after noon then? It should be quite easy. 
 We’ll check this together.
DF

Monday, January, 15, 2016. Email from DF to FJ, header “Struggling 
with Matlab.  …”

This after noon is  great. I’ll be in my office. Come whenever you want.

See you then!
FJ

A  couple of hours  later, DF arrived at my office. Before starting to program, 
he told me what he intended to do:

DF: “Well, I think I know how to compute this. It  shouldn’t be difficult. 
So for each rectangle, we have the x and y coordinates right?”
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FJ: “Well, a rectangle is defined by four values”

DF: “Yes so x and y [coordinates] and then the size, right?”

FJ: “Yes.”

DF: “So basically we have this.”

[DF starts to write in FJ’s logbook]

DF: “And this, and then size. And all this defines the rectangle.”

[DF draws figure 4.34 (A)]

DF: “ Here [pointing at figure 4.34 (A)], you initialize all pixels of the 
matrix with the value 0. Then you iterate on all rectangles. So for the first 
rectangle of the image [starts to draw in FJ’s logbook], you have the coor-
dinates and you check what pixels of the matrix are in the rectangle.”

[DF draws figure 4.34 (B1)]

DF: “And you add one for  these pixels in the matrix. And then you do 
the same for the second rectangle [starts to draw in FJ’s logbook] that 
might be  here.”

[DF draws figure 4.34 (B2)]

DF: “And you also add one for all  these pixels. So  here [pointing at fig-
ure 4.34 (B2)], some pixels in the matrix  will have the value 0, some  will 
have the value 1, and some  others  will have the value 2.”

FJ: “OK, I see.”

DF: “And you do this for all the rectangles. And once you have a script 
that works for one image, it’s easy to adapt it [the script] to go through 
all the images.”

FJ: “Sure.”

DF: “And well, when you have  these matrices with values 0, 1, 2,  etc., 
you can make all the graphs you want like gray- scale images or histo-
grams [draws in FJ’s logbook] like this.”

[DF draws figure 4.34 (C)]

DF: “Where x is the number of rectangles and y the number of pixels.”

At this point, the narrative of PROG has thickened. From “FJ  shall make a 
computer create matrices whose pixel values correspond to the number of 
rectangles they are part of,” it has become “for  every image, DF  shall first 
make a computer use the dimension of the image to create an empty matrix, 
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then define the first rectangle of this image according to its coordinates as 
defined in its correlated .txt file, then add this rectangle to the matrix, then 
define the second rectangle, then add it to the matrix, and so on for  every 
rectangle of the image.” Even though the topic is slightly dif fer ent from Such-
man’s (2007, 72) example of canoe, DF’s narrative also works as a resource that 
sets up a horizon without specifying the actions required to reach it. Nothing 
is said about how to define the empty matrix, how to define a rectangle, and 
how to increment the matrix with  these rectangles. Yet, altogether, the pileup 
of  these steps institutes a desired  future that the following actions should try 
to reach. Moreover, similar to Suchman’s example, DF’s narrative also creates 

(A)

(B1) (B2)

(C)

Figure 4.34
Drawings of DF in FJ’s logbook.
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another layer of existence. His story proj ects us into another time (“in a 
 couple of minutes”), another space (“in front of the Matlab IDE”), and  toward 
other actants (“incremented matrices,” “gray- scale images,” “histograms,” “FJ 
being able to produce meaningful graphs thanks to the new program”).

But DF’s narrative— when considered in the light of the last two sections 
of this chapter— also suggests an impor tant difference between narratives 
that institute desired  futures and, say, bedtime stories for  children or Holly-
wood mega- productions. When  after the narrative has been expressed— 
that is,  after having been projected into other times, other locations, and 
 toward other actants—hopefully children fall into sleep and spectators 
leave the movie theater to carry on their occupations, DF’s narrative still 
has a hold on him. More than just establishing a  triple shifting out into 
other space and time and  toward other actants, DF’s narrative engages DF; 
it asks DF to do  things. In this sense, as soon as DF expresses the narrative, 
he finds himself si mul ta neously in two positions: he is the writer of the 
narrative who can modify it any time he wants but also the actor who has 
to follow the narrative he has just expressed (Latour 2013, 391). Following 
Austin (1975) and recent works in STS (Barad 2007), we can consider  these 
narratives as performative in the sense that they engage  those who articulate 
them. In our case, DF holds the narrative but is also held by it.

To underline the literary and performative dimensions of  these par-
tic u lar narratives that are crucial for computer programming— since they 
institute a desired horizon to be achieved, hence supporting both align-
ments of inscriptions and technical detours— I  shall call them scenarios.12 
The cinematographic connotation is voluntary. Indeed, a scenario—in the 
case of cinema or computer programming—is a narrative: it tells a story and 
therefore instantiates a beginning, an end, a plot, and characters that all 
possess ontological weights. Second, in both cases, a scenario is performa-
tive: it has a hold on both the movie director who is asked to transform it 
into a movie as well as on the programmer who tries to make it become an 
 actual computer program. Third, if a scenario roughly describes the succes-
sive scenes of a movie or the successive steps of a computer program, it says 
almost nothing about how to shoot  these scenes or implement  these steps. 
While in both cases, the scenario draws desirable horizons, almost every-
thing still needs to be done in order to reach them. Fourth, if the plot, steps, 
characters, or variables are described by the scenario, nothing prevents the 
movie director, the programmer, movie stars, or recalcitrant instructions 



192 Chapter 4

to modify some of its constitutive ele ments. In both computer program-
ming and movie production, a scenario can be revisited to better take into 
account unpredictable contingencies.

While they are not sufficient to assem ble computer programs, scenarios 
are nonetheless crucial for computer programming.  These flexible yet per-
formative narrative resources institute horizons on which programmers can 
hold— while being held by them— thus establishing the bound aries of com-
puter programming episodes. Scenarios both trigger and are blended with 
alignments of inscriptions and technical detours; altogether, they form pro-
gramming courses of action we can now consider in all their sinuosity.

But again, at this point, something is still missing. We are very close but 
are not  there yet. If the notion of “scenario” is useful to better understand 
what helped DF shift between scientific and technical modes of practice, 
thus framing the programming sequences we have previously followed, it 
does not make us understand why DF wanted to engage himself in it. If sce-
narios provide the frame and the energy of programming episodes, where 
does this energy initially come from?

Something is definitely overflowing scenarios, making them “put into gear” 
more or less delightful affects: how do we consider them as well? If scenarios 
give horizons, they do not by themselves allow to grab what arises from pro-
gramming episodes. INT’s stubbornness, the multiple inclusions of actants, 
and the numerous work- arounds of impasses; all of this—in the  middle of the 
action—is terribly uncertain. But when the program accomplishes what was 
hoped for at the beginning of the episode—or modified during the episode— 
something is happening that cannot be reduced to the consequence of what 
allowed it to happen. This is the impor tant contribution of the sociology of 
attachments against the social science of taste: reducing beloved objects to the 
conditions— social or material—of their appreciations tells us nothing about 
the objects themselves (Hennion 2015, 2017). While an object— a painting, a 
piece of  music, a computer program—is constructed, it also exists in its own 
right. Or perhaps even more; as it is constructed, it exists more intensely. But 
how do we grab this appreciation of the constituted object? In our case, how 
do we consider the upsurging of PROG? We may perhaps refer to what DF 
tells me at the end of the programming episode:

FJ: “Well, thanks. I’m always impressed by your patience.”

DF: “ You’re welcome. It was quick. And you know, I love it so it’s not a 
prob lem.”
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FJ: “You love spending time on  these lines of code?”

DF: “Sure. It’s fun. What I  really like is that you should never lose the 
thread. And when the script does the  thing, it means you  didn’t lose it.”

What may this excerpt tell us about the affects of computer programming? 
The notion of scenario seems, by itself, unable to provide a clearer under-
standing of what PROG, once assembled, does to DF. But, following DF 
and using the scenario as stepping stone, it helps to make appear some-
thing lovable: being able to constantly evaluate what has been done against 
what still needs to be done. This is what DF steadily needs to grab, the 
thread he tries never to lose: this scenario suggests a path, a plot, but also 
says nothing about how to follow it. Following a story by tracing his own 
path: a curious experience of establishing something by reaching it. But 
this reach, this access to the horizon— one should not simply consider it 
as the satisfaction of realizing something that was previously projected. 
Taking DF seriously— but also other Lab collaborators who participated in 
other “helping sessions”—we may consider it as the asymptote of a con-
stant evaluation. “This” had to be done, then “this,” then “this,” and now, 
 there is nothing  else to do  until the next affect- bearing scenario, of course. 
The specificity of the affects of computer programming may lie in the recur-
rent upsurging of this temporary “nothing  else.”

This is only an adventurous proposition about the attachments that 
bind programmers to the scripts they may instaure (Latour 2013, 151–178; 
Souriau [1943] 2015). More systematic studies are obviously necessary to 
enrich the above speculations. But let the reader not forget, once again, that 
one goal of this chapter, besides its analytical ambitions, is also to point to 
innovative ave nues of research on computer programming situated prac-
tices. In that sense, looking at the formation of scenarios and their com-
plex relationships with the attachments they may suggest— but not strictly 
produce— could be a relevant way to inquire into what moves programmers, 
sometimes to the point of spending huge amount of unpaid (or detoured) 
hours on uncertain  free and open- source software proj ects. In the light of 
programmers’ attachments to scenarios, what Demazière, Horn, and Zune 
(2007, 35) called the “enigma of  free software development”— the ability 
to produce coherent programming results from evanescent involvement— 
could, for example, be tackled in an alternative way. While entangled modes 
of regulations among  these voluntary collectives are certainly impor tant for 
the  actual production of  free and open- source software,  these arrangements 
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may also benefit from being considered in the light of the passions they 
make exist. What is indeed happening when a scenario is realized through 
a computer script? Can such an affective event only be reduced to the orga-
nizational pro cesses (Demazière, Horn, and Zune 2007), individual incen-
tives (Lerner and Tirole 2002), or ideologies (Elliott and Scacchi 2008) that 
made it pos si ble? Is  there not something in DF’s emotive spark that may 
also contribute to the formation and maintenance of programmers’ com-
munities? It is the  whole ecol ogy of programming work—be it  free, open- 
source, or corporate— that may deserve to be considered also in the light 
of what programmers are  after when they are writing numbered lists of 
instructions.

* * *

Despite its lengthy and tortuous aspect, the point I wanted to make in 
this part II is quite  simple. Once we inquire into computer programming 
courses of action, we see that they engage the alignment of inscriptions, 
the work- around of impasses, and the definition of scenarios.  These three 
modes of practices are intimately related: Working around impasses implies 
the localization of a problematic phenomenon that itself requires a scenario 
to be considered problematic. DF and more generally, perhaps, programmers 
constantly shift from one mode to the other  until temporally realizing their 
desired narratives.

The main difficulty lay in the preparatory work required to distinguish 
the pro cess of programming from its result. For complicated reasons we 
covered in chapter 3, a confusing mix has progressively been established 
between  human cognition and programmed computers. This confusion 
led, in turn, to impor tant misunderstandings such as cognitive studies of 
programming that ended up being tautological as they supposed the exis-
tence of what they tried to account for. As I wanted to analyze the situated 
practice of programming, I had to distance myself from cognitivism and 
embrace very minimal, yet power ful, enactivism that considers cognition 
as the pro cess by which we grasp affordances of local environments.

Unfortunately, I could play only at the edge of computer programming 
practices, and many questions  were left unanswered. Regarding the align-
ment of inscriptions, it would be insightful to learn more about the dif fer-
ent modalities, organ izations, and even institutions that participate in a 
programmer’s multiplications and articulations of inscriptions. Regarding 



A Second Case Study 195

the working around of impasses, what about exploring more thoroughly 
the equipment that supports the identification and enrollment of new 
actants? This may even lead to innovative programming devices and equip-
ment. Concerning scenarios, I  will soon document the formation of some 
specific, easily transposable ones. But in light of the fascination exerted by 
computer programming as well as its importance for con temporary socie-
ties, I wish  there  were more studies documenting the actions that some-
times make the joy of programming emerge. In  these times of controversies 
over algorithms— entities that seem to rely on ground- truthing and pro-
gramming activities— these are, I believe, crucial research directions.





III Formulating





It is easy to study laboratory practices  because they are so heavi ly equipped, so 
evidently collective, so obviously material, so clearly situated in specific times 
and spaces, so hesitant and costly. But the same is not true of mathematical prac-
tices: notions like … “calculating,” “formalism,” “abstraction” resist being shifted 
from the role of indisputable resources to that of inspectable and accountable 
topics. … We seem to be inevitably contaminated by [ these notions], as if abstrac-
tion has rendered us abstract as well!

— Latour (2008, 444)

We are not out of the woods yet. We may have a clearer idea about the whys 
and wherefores of ground- truthing (part I) and programming (part II), yet we 
still lack, at this point of the inquiry, one activity that is sometimes crucial 
to the formation of algorithms in computer science laboratories. Without 
accounting for  these practices, I could only propose an extremely partial con-
stitution of algorithms.

One way to become sensitive to the “missing mass” of our inquiry could 
be to look at a recent academic paper in computer science. And why not 
choose the subfield of image pro cessing since it is the empirical ground of 
this ethnographic venture? While browsing, for example, through a paper 
entitled “Learning Deep Features for Discriminative Localization” (Zhou 
et al. 2016), we would encounter many  things we are now familiar with. 
We would read about a specific prob lem (localizing class- specific image 
regions) that, according to the paper’s authors, is solved satisfactorily by 
means of a computer program they call CAM, which stands for “class acti-
vation mapping.” We would see that the prob lem, CAM, and what this 
program should retrieve all derive from an already- assembled ground truth 



200 Part III: Formulating

(in this case, ImageNet Large Scale Visual Recognition Challenge [ILSVRC] 
2014) that has been split into two parts: a training set and an evaluation 
set. We would also feel,  behind the printed words and numbers, the long 
and fastidious computer programming episodes that  were necessary to pro-
vide and discuss the paper’s results.  After all, if the authors did not write 
lists of instructions capable of triggering electric pulses in meaningful ways, 
they could not have provided any statistical evaluations of their algorithm’s 
per for mances.

However, while browsing through this academic paper that pre sents 
and tries to convince us about the relevance of a new image- processing 
algorithm, we would very quickly bump into cryptic passages such as this 
one: 

By plugging Fk = ∑x,y fk (x, y) into the class score, Sc, we obtain

Sc = wk
c f k x,y( ) =
x,y
∑

k
∑ wk

cf k x,y( )
k
∑

x,y
∑  (1)

We define Mc as the class activation map for class c, where each spatial ele-
ment is given by

Mc x,y( ) = wk
cf k x,y( )

k
∑  (2)

Thus, Sc = ∑x,y Mc (x,y), and hence Mc (x,y) directly indicates the importance of 
the activation at spatial grid (x,y) leading to the classification of an image to class c. 
(Zhou et al. 2016, 2923)

Such sentences that mix En glish words with combinations of Greek and 
Latin letters divided by equals signs are indeed widely used by computer sci-
entists when they communicate about their algorithms in academic jour-
nals. Of course, as grown-up readers, we immediately understand that such 
an excerpt deals with mathe matics and that (1) and (2) are proper formulas 
(or equations once their variables are replaced by numerical values). But if 
we only consider the descriptive system developed so far in this inquiry, 
we have no grip on  these mathematical inscriptions. The conceptual appa-
ratus of the inquiry enables us to deal with graphs and numeric values as 
they refer somehow to both data and targets as defined by ground truths. 
The inquiry’s apparatus also enables us to deal with lines of code as they 
refer to numbered lists of instructions that trigger electric pulses in desired 
ways. But what about mathematical formulas? Where do they come from? 
Why do computer scientists need them, and how are they assembled? 
At this point, I do not have any other choice. In this last and impor tant 
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part III, I  will have to consider the role of mathe matics in the formation of 
algorithms.

The road I am about to take is dangerous; one second of inattention and 
my action- oriented method  will be lost. For intricate reasons that I  will 
cover, mathematical entities such as “theorems,” “proofs,” or “formulas” are 
indeed extremely resistant to empirical considerations; even though they 
certainly are the products of situated activities, they are often considered 
fundamental ingredients of thoughts. This tenacious habit is frequently the 
starting point of a downward spiral, itself leading to  grand questions such 
as: “Are mathe matics the expressions of abstract structures or individual 
consciousness?” So many innocent souls have been consumed by such float-
ing interrogations! To avoid digging my own grave in this cemetery of prac-
tice, I  will have to be extremely cautious and pro cess one small step at a 
time. But with some patience, the construction of mathematical knowledge 
as well as its further enrollment in the formation of algorithms may be par-
tially accounted for. Altogether,  these efforts to define formulating practices 
 will allow me to link both ground- truthing practices (necessary to establish 
the terms of solvable prob lems) and programming practices (necessary to 
make computers compute in desired ways). Within the pre sent constituent 
effort, what we tend to call “algorithms” may then be described as uncer-
tain products of (at least)  these three interrelated activities.

As in part II— and largely for similar reasons— I  will require operation-
alization efforts before diving into ethnographic materials. I  will first have 
to put aside the vast majority of studies on mathe matics. Too many top-
ics, too many studies, too many methods; without preliminary cleaning 
efforts, dealing with mathe matics in an action- oriented way is doomed 
to fail. As we  shall see in chapter 5, the only way not to duck  will be to 
start (almost) afresh, from very basic observations and hypotheses. Progres-
sively,  these hypotheses— well inspired by several STS on mathe matics— will 
make us realize that mathematical entities such as “theorems,” “proofs,” or 
“formulas” are quite akin to more familiar scientific facts. If mathematical 
knowledge is often considered the expression of some superior real ity, it 
might only be due to its extreme combinability. Once the vascularization 
of mathe matics is put forward, we  will realize that its indubitable power 
also comes from the  humble instruments and actions that make nonmath-
ematical topics mathematicable. This impor tant point  will, in turn, allow me 
to define formulating practices as the empirical pro cess of merging networks 
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that sustain given domains of activity with networks that sustain certified 
mathematical knowledge. In chapter 6, I  will account for a small yet suc-
cessful formulating effort that took place within the Lab. This third and last 
case study  will underline the centrality of certified mathematical knowledge 
for the progressive formation of algorithms as it both forces the refinement 
of ground truths and unfolds scenarios for further programming episodes. It 
 will also allow me to consider recent issues related to machine learning and 
artificial intelligence in an unconventional way. The last section of chap-
ter 6  will be a brief summary.



This chapter aims to consider mathematical knowledge not as the expres-
sion of some superior real ity but as a huge collection of scientific facts whose 
shaping necessitated a fair amount of practical work. As we  will see, by con-
sidering mathematical knowledge to be one specific product (among many 
 others) of scientific activity, we may provide a reasonable explanation of its 
capacity to make impor tant differences in other scientific domains (neurol-
ogy, geography, gambling, computer science,  etc.). Once this operational-
ization exercise is over, I  will come back to the main goal of this part III: 
understanding when, how, and why mathematical knowledge takes active 
part in the constitution of algorithms (chapter 6).

Where Is the Math?

If we want to better understand how mathematical entities (formulas, theo-
rems, conjectures, equations) are manipulated and related to ground truths 
and programming languages, we first need to better understand where they 
come from. Such entities surely do not exist by themselves; they need to be 
assembled by  people in specific designated places. Where are  these places? 
Who are  these  people, and what do they do?

Such trivial questions lead to many, many heterogeneous answers. This 
is one reason why dealing with mathe matics can be dangerous: Where  shall 
we start? From the mathe matics of ancient Greece (Heath 1981a, 1981b; 
Netz 2003)? From mathe matics of medieval Islam (Berggren 1986; Netz 
2004)? From baroque mathe matics of continuous change (Bardi 2007; 
Boyer 1959)? But if we use the adjective “baroque,” we already define the 
seventeenth  century in quite an orientated way (Deleuze 1992).  Shall we 

5 Mathe matics as a Science



204 Chapter 5

then focus on more con temporary mathe matics such as set theory (Ferreirós 
2007; Tiles 2004), Weierstrass functions (Bottazzini 1986), and the subse-
quent “crisis of foundations” that shook up mathe matics at the beginning 
of the twentieth  century (Ewald 2007; Ferreirós 2008; Hesseling 2004; Man-
cosu 1997)? But what do we mean by “mathe matics” anyway? Do we mean 
mathematical texts (Rotman 1995, 2006; Sha 2005)? Do we mean famous 
mathematicians such as Leibniz (Antognazza 2011), Gauss (Tent 2006), or 
Cantor (Dauben 1990)? Do we mean philosophies of mathe matics that try to 
define what mathe matics is (Aspray and Kitcher 1988; Corfield 2006; Hack-
ing 2014)? Our head is spinning and we start to feel dizzy. But it is not over 
yet! Indeed, are we talking about arithmetic (Husserl 2012), algebra (Everest 
2007), geometry (Netz 2003; Serres 1995, 2002), or logic (Fisher 2007; Rosental 
2003)? Maybe are we talking about the evolution from numbers to logic (Kline 
1990a), from logic to geometry (Kline 1990b; Netz 2003), from geometry to 
algebra (Kline 1990c; Netz 2004)? And even within arithmetic, geometry, 
algebra, or logic, are we talking about theorems (Villani 2016), proofs (Lakatos 
1976; MacKenzie 1999, 2004, 2006) or conjectures (O’Shea 2008)? We do not 
know. We are lost in questions whose only enunciation makes us want to 
do something  else. But we cannot; we must find a way to address mathe-
matics as it seems impor tant for the constitution of algorithms. How can 
we do so?

One way to avoid this spiral of confusion could be to start from some 
very basic hypotheses. We would, of course, have to develop  these hypoth-
eses and justify them by using concrete examples. To do this, we may need 
to mobilize a tiny part of the gigantic mathe matics lit er a ture that scares 
us. One step  after the other, one hypothesis  after the other— coupled with 
some STS assumptions—we may end up with an operative definition of 
mathematical knowledge that could suffice to achieve our specific task: 
accounting for the way that computer scientists, when they try to assem-
ble new algorithms, are sometimes able to mobilize certified propositions 
previously  shaped by their mathematician colleagues. We surely do not 
need to revolutionize our understanding of  these power ful statements we 
sometimes call “theorems,” “conjectures,” or “formulas.” If we just manage 
to shape one  simple version of what mathematicians do (instead of what 
mathe matics is), our last duty— accounting for formulating practices— will 
be greatly facilitated.
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Written Claims of Relative Conviction Strengths

To initiate our operationalization exercise and shape our first hypotheses, let 
us start with three scenes that all gravitate around mathematical notions:1

Scene 1

January 1994. Charles Elkan is in turmoil: his theorem demonstrating 
that only two truth values can be expressed by a system of fuzzy logic is 
highly contested.2 What went wrong? The initial pre sen ta tion of his the-
orem at the Eleventh National Conference on Artificial Intelligence went 
very well. The paper that further appeared in the conference proceed-
ings was even selected for the “Best Written Paper Award” (Elkan 1993). 
The program committee saluted the elegance of the proof as well as its 
significance for further developments in expert systems. Every thing was 
in place for his theorem to be accepted. But many logician colleagues— 
who did not attend the conference but did read some of its proceedings 
published by MIT Press— are quite upset. Elkan can even follow their 
dissatisfaction on the newly established internet forum “comp.ai.fuzzy” 
that is dedicated to advanced discussions in fuzzy logic theories and sys-
tems. The critiques are harsh. Some say— and try to demonstrate— that 
Elkan’s basic hypotheses are flawed.  Others accuse him of deliberately 
weakening fuzzy logic as it is a threat to old, “dusty” classical logic. Some 
colleagues even suspect him to be a thick- headed Aristotelian! As one 
of his friends advises him, Elkan should now “cool  things down” and 
publish a “smoother” version of his theorem that could include some of 
its soundest critiques.

Scene 2

Summer of 1890. Alfred Kempe is puzzled;3 although not  really  because 
Percy Heawood recently managed to find a flaw in the proof of the four 
colors conjecture Kempe previously published in the American Journal of 
Mathe matics (Heawood 1890; Kempe 1879). Heawood did a  great job, and 
being refuted is part of the game anyway. No, it is more that even though 
his proof was shown to be erroneous, Kempe does not think that Fran-
cis Guthrie’s 1852 candid proposition— that says that four colors suffice 
to color any map drawn on a plane in such a way that no neighboring 
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countries have the same color—is wrong. But how could such a basic 
intuition lead to such  great difficulties? Do mathematicians not have the 
tools to prove this conjecture and make it a theorem once and for all? 
“Poor Heawood,” thinks Kempe. “He is now hooked on it, as I was fifteen 
years ago. He’d better drop it; this four colors  thing is old hat.”

Scene 3

November 8, 2013, 3 p.m. I sit at the back of the lecture hall.4 Around 
three hundred undergraduate students are also attending this Friday after-
noon “Information, Computing and Communication” class that aims to 
inculcate (communicate?) the foundational concepts of computer science 
to  future civil and mechanical engineers. I see my younger  brother and 
his friends— good students—in the second row.  They’ve just started their 
academic curriculum; I’ve almost finished mine. But  here we are in the 
same classroom, waiting for the same information ( orders?). The professor 
adjusts his microphone: “All right. Hi, every one. So, last week we talked 
about the Nyquist- Shannon sampling theorem.  Today,  we’ll start with 
another contribution of Claude Shannon to the mathematical under-
standing of digital signals, which is the Shannon- Hartley theorem. It is 
quite a power ful theorem that can be summarized with this formula  here:

C = B log2(1+ 
S
N
).

Of course,  we’ll go through it together.”

At this point, we do not need to make any a priori distinction between “the-
orems” (scenes 1 and 3), “conjectures” (scene 2), “proofs” (scene 1 and 2), 
and “formulas” (scene 3). We just need to notice that all three scenes, while 
presumably concerning mathe matics, deal with claims that attract more or 
less adherence. In scene 1, Elkan’s claim about fuzzy logic first attracts the 
adherence of the Eleventh National Conference on Artificial Intelligence’s 
program committee. But then, in January 1994, his claim repulses many 
logician colleagues who do not hesitate to publish “counterclaims” on the 
web forum “comp.ai.fuzzy.” In scene 2, Kempe’s claim about the veracity of 
Francis Guthrie’s claim (the “four colors conjecture”) also first attracts the 
adherence of the editorial board of the American Journal of Mathe matics. But 
then, in the summer of 1890, Kempe dissociates himself from his own claim 
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and adheres to that of Heawood. However, Guthrie’s 1852 “candid” claim 
has not lost all of its conviction strength yet, which makes Kempe puzzled 
about the fate of Heawood. Scene 3 is quite straightforward: Shannon and 
Hartley’s claim— and its correlated formula projected on the lecture hall’s 
whiteboard—is about to be taught to a crowd of undergraduate students in 
engineering.  There is  little room for doubt  here: in November 2013, Shan-
non and Hartley’s claim attracts the adherence of quite a lot of  people. In 
fact, their claim is so strong that a well- known pedagogical device— the 
exam— will soon verify that all students properly adhere to it.

 These basic but fair observations are all we need to start our operation-
alization exercise. Mathematicians certainly do a lot of  things, but among 
 these  things, they make claims that attract the adherence of more or fewer 
individuals. Let us assume then that the  grand notions of “theorems,” 
“conjectures,” “formulas,” or “proofs” can all be grasped in a down- to- earth 
manner; let us assume that, to a certain extent, they are claims that con-
vince more or fewer individuals.

This way to consider mathematical knowledge— theorems, conjectures, 
proofs, formulas—as the product of some rhe toric may sound odd at first. 
Many  grand narratives have indeed chanted the abstract power of mathemati-
cal truths that, by themselves, supposedly describe some superior real ity.5 But 
this is precisely the road we do not want to take, at least not yet. If we do not 
want to crash on the sharp rocks of epistemological accounts of mathe matics, 
we need to plug our ears and, for the moment, ignore the sirens of necessity. 
Fortunately for us, our first operational hypothesis— mathematicians make 
claims that convince more or fewer individuals— echoes well the central the-
sis of Lakatos’s (1976) impor tant book on mathe matics. As he showed, instead 
of an accumulation of self- evident discoveries, mathe matics should be con-
sidered a creative pro cess during which concurrent claims are subjected to 
criticism and improvement. But how are such claims criticized or improved? 
How do they gain or lose their relative conviction strength? Shannon and 
Hartley’s claim in scene 3 seems much stronger than Elkan’s claim in scene 1. 
Similarly, in 1890, the claim Kempe made in 1879 is now powerless in front 
of Heawood’s claim (scene 2). How do such differences come about?

To better understand how (mathematical) claims gain or lose conviction 
strength, we need to make another basic observation about scenes 1, 2, and 
3. If more or fewer individuals could adhere to the scenes’ claims, it means 



208 Chapter 5

that they could access  these claims. What medium allowed such access? 
Some claims are oral, but we are obviously not dealing with them  here. 
The claims in scenes 1, 2, and 3 are all written. This impor tant characteris-
tic allows individuals to read them and eventually— very rarely— adhere to 
them. In scene 1, it is Elkan’s written claim as it appears in the conference’s 
proceedings that makes the program committee adhere to it. But in Janu-
ary 1994, it is the multiplication of written counterclaims on the web forum 
“comp.ai.fuzzy” that begins tormenting Elkan. In scene 2, both Kempe and 
Heawood access their respective claims by reading mathematical journals. 
Fi nally, the engineering students in scene 3 are asked to adhere to Shannon 
and Hartley’s claim projected on the classroom’s whiteboard. Of course, 
Shannon and Hartley did not write their claim on the projected document; 
many individuals intervened to carry their claim further through time and 
space  until reaching this specific lecture hall. But this translation pro cess 
does not change the overall shape of the claim; it is still something that 
is written down on a flat surface. At this point, we can therefore slightly 
refresh our first hypothesis: mathematicians surely do a lot of  things, but 
among  these  things, they write claims that attract the adherence of more or 
fewer individuals.

It is also fair to assume that the written claims in the above scenes did 
not appear ex nihilo. In order to be published in proceedings, specialized 
web forums, mathematical journals, or the slides of a computer science 
professor, they all had to overcome a series of tests,  trials upon which their 
existence as written claims depended. I agree that this hypothesis flirts 
with the metaphysics of subsistence— close to “pro cess thought” (cf. intro-
duction)—as proposed by influential, yet contested, thinkers. Let us then 
consider it an assumption we need for our operationalization exercise. 
“What ever resists  trials is real” (Latour 1993a). The above (mathematical) 
written claims are real; they thus resisted  trials. But what  trials?

Resisting  Trials, Becoming Facts

The first kind of trial we can consider regarding the conviction strengths 
of (mathematical) written claims such as  those in scenes 1, 2, and 3 are the 
 trials they must endure before their  actual publication. Examining what we 
often call the “sources” of claims is indeed a common way to evaluate their 
seriousness.
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For example, we can make the fair assumption that, all  things being 
equal, a claim published in the journal Nature  will generally have more con-
viction strength than a claim posted on some social media platform with 
very  little monitoring. Without even considering their respective content, 
both claims  will have dif fer ent capabilities. Why is that? We must immedi-
ately put aside the question of prestige or symbolic power;  these are short-
cuts our so cio log i cal method of inquiry forbids us to manipulate. A more 
empirical grip on this topic would quickly point to the number of indi-
viduals who could prevent the publication of a claim. Very few  people—or 
bots— can prevent me from publishing a claim on, say, Facebook. Con-
versely, many individuals can prevent me from publishing a claim in the 
journal Nature. Taking into account  those who have to be convinced by 
claims in order for them to circulate and reach a broader audience is crucial 
as it somewhat calibrates the cost of disagreement. If someone disagrees 
with a claim I publish on Facebook, they can just shrug their shoulders and 
move on to something  else.6 But if the same person disagrees with a claim 
I publish in Nature, they  will have to disagree with me, my institution, 
the funding agencies that supported my research, Nature’s editorial board, 
 those responsible for the nomination of this board, and so on. Compared 
with a claim I publish on Facebook, a claim I publish in Nature is initially 
supported by a far bigger team of external allies (Latour 1987, 31–33).

But if we consider our three scenes, we quickly realize that surviving 
publication  trials— and thus enrolling external allies—is not enough to 
assure any durable conviction strength of (mathematical) claims. Although 
this lecture, in terms of convinced gatekeepers, may be enough to quickly 
account for the conviction strength of Shannon and Hartley’s claim within 
the lecture hall— the students being literally crushed by all its external allies 
(their professor, their manuals, all  those responsible for the engineering 
curriculum of their university, the exam they  will soon have to pass)—it 
does not help us understand the relative strengths of Kempe’s, Heawood’s, 
and Elkan’s claims (scene 1 and scene 2). In scene 2, both Kempe’s and 
Heawood’s claims survived similar publication  trials; both propositions 
 were initially supported by roughly the same number of individuals.7 Yet 
Kempe’s claim became distrusted as Heawood’s appeared certified. The situ-
ation is even more confusing in scene 1: even though Elkan’s claim suc-
cessively resisted the scrutiny of the sixty- eight individuals responsible for 
the publication of the proceedings and the se lection of the “Best Written 



210 Chapter 5

Paper,”8 his claim is seriously shaken up by posts on a web forum with 
almost no monitoring (Rosental 2003, 81–86). Again,  these counterclaims 
must have survived other kinds of  trials in order to gain such strength.

Another kind of trial that may provide strength to written claims is one 
that consists in successively enrolling internal allies by means of citations 
and references (Latour 1987, 33–45). Equipping one’s claim with previously 
published claims is indeed an impor tant conviction strategy that has even 
become a  whole field of study.9 In addition to allies outside of the writ-
ten document, a claim with references and citations is now supported by 
allies inside of it. Or is it? While often necessary, augmenting the convic-
tion strength of a claim by means of references and citations can be a risky 
endeavor. What if the references do not match the claim, or worse, what if 
some unmentioned references contradict the presented claim? In some cases, 
this citation trial is overcome. One example is Shannon’s initial paper that 
presented the basic ele ments of what would  later be called the “Shannon- 
Hartley theorem” (Shannon 1948). In this paper, Shannon enrolls previ-
ously “solidified” claims made by Ralph Hartley (hence his  later inclusion in 
the theorem’s name) and thirteen other impor tant mathematicians. As far as 
I know, no serious disagreements about the use of  these references emerged 
 after Shannon’s initial publication. But the same was not true of Elkan’s 
publication. Although he mobilized thirty- nine internal allies to strengthen 
his claim about the limitations of fuzzy logic, his contradictors managed to 
find and publish many strong “ counter references” on the specialized web 
forum. Elkan soon appeared as someone unaware of many recent uses of 
fuzzy logic in advanced expert systems (Rosental 2003, 157–168). Although 
they  were at first certainly useful to convince the program committee of the 
Eleventh National Conference on Artificial Intelligence, the internal allies 
of Elkan’s paper ended up working as stepping stones for his contradictors.

However, surviving or not surviving citation  trials is, again, not enough 
to account for the relative conviction strengths of the claims in all of our 
scenes. Indeed, in scene 2, Kempe’s 1879 paper makes only three references 
to former mathematical propositions, the first two being loose statements 
made by Augustus De Morgan and Arthur Cayley to the London Mathemat-
ical Society (Kempe 1879, 193–194) and the third one being a more impor-
tant claim made by Augustin- Louis Cauchy about polyhedrons (Kempe 
1879, 198). Yet this scarcity of references did not prevent his claim— the 
proof that Guthrie’s 1852 proposition was correct— from convincing his 
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mathematician colleagues for eleven years. The same is even truer of 
Heawood’s claim, for his 1890 paper includes no references other than 
Kempe’s 1879 paper. Again, this scarcity did not prevent his claim from 
attracting the adherence of the chief person concerned: Kempe himself 
(MacKenzie 1999, 22).  There must be something  else in published (math-
ematical) claims that makes them gain, sometimes, in persuasion strength.

Some potential objectors of published (mathematical) claims  will not be 
impressed by lists of convinced gatekeepers nor by the references invoked 
by the author. To be convinced by a claim,  these skeptical readers want to 
see the  thing the author asks them to believe in. This strategy that consists 
of presenting the  thing in question to the reader was precisely the one used 
by Heawood in his paper against Kempe. He did not only rely on external 
allies; he also showed a figure (see figure 5.1) that, according to Kempe’s 
1871 claim, was impossible to draw:

Mr. Kempe says— the transmission of colours throughout E’s red- green and B’s 
red- yellow regions  will each remove a red, and what is required is done. If this 
 were so, it would at once lead to a proof of the proposition in question [the four- 
colours conjecture].  … But, unfortunately, it is conceivable that though  either 
transposition would remove a red, both may not remove both reds. Fig [below] is 
an  actual exemplification of this possibility. (Heawood 1890, 337–338)

We do not need to spend too much time on the specificities of Heawood’s 
figure10 nor on the role of drawings in published mathematical claims.11 
 Here, the impor tant  thing to notice is the conviction strategy; just as scien-
tists engaged in many other fields— biology (Rheinberger 1997), chemistry 
(Bensaude- Vincent 1995), climatology (Edwards 2013)— mathematicians 
try to gain in persuasion strength by adding the referent of what they write 
about. At this point, then, “this is not a question any more of belief: this is 
seeing” (Latour 1987, 48). If,  until now, I put the adjective “mathematical” 
in parenthesis, it was not to grant too much specificity to mathematical 
claims; they too are part of the scientific genre that tries to silence poten-
tial objectors by gathering more and more supporters. Scientific as well as 
mathematical texts can indeed be compared with bobsled tracks allowing 
very  little room for maneuver while implying high level of skills. In both 
cases, readers must start at point A, pass through checkpoints B1,2,…,n, and 
fi nally finish at point C, the claim that tries to be established as a fact.

If scientific lit er a ture can be described as texts gathering many external 
and internal allies in order to isolate their readers and force them to take 
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Figure 5.1
Reproduction of Heawood’s figure showing that Kempe’s proof does not hold. Source: 
MacKenzie (1999). Reproduced with permission from Sage Publications.
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only one path, dif fer ent scientific domains progressively  shaped their own 
specific rhetorical habits.12 In the case of mathe matics, this  whole captation 
trial (Latour 1987, 56–61) that consists in subtly controlling the movements 
of potential objectors has been finely analyzed by Rotman (1995, 2006). As 
he showed, mathematical publications are full of verbs in the imperative 
form, such as “construct,” “define,” “connect,” or “compute.” But a close 
analy sis of  these imperative forms reveals that they are in fact split into two 
distinctive types: inclusive imperative to establish premises— often equipped 
with references— and exclusive imperative to pre sent lists of actions an imagi-
nary reader should perform to reach the claimed result:

Inclusive command marked by the verbs “consider,” “define,” “prove” and their 
synonyms— demand that speaker and hearer institute and inhabit a common 
world or that they share some specific argued conviction about an item in such a 
world; and exclusive commands— essentially the mathematical actions denoted 
by all other verbs— dictate that certain operations meaningful in an already 
shared world be executed. (Rotman 2006, 104)

 These ele ments are crucial for our operationalization exercise as they indi-
cate the felicity conditions of captation  trials within mathematical texts. 
If skeptical readers, thanks to all the allies mobilized by the writer, have 
no other choice than to accept the premises and follow one specific path 
in order to reach one necessary conclusion, a mathematical text and its 
concomitant claim have, at least temporally, overcome their captation trial. 
In this re spect, Kempe’s 1879 paper on the four colors conjecture is quite 
illustrative. Remember that Kempe wanted to prove that four colors suf-
fice to color any map drawn on a plane in such a way that no neighboring 
countries have the same color. How did he enjoin his readers to reach this 
conclusion? With a succession of inclusive commands, both Kempe and his 
imaginary skeptical reader start by defining a perfectly four- colored “singly 
connected surface” divided into many “districts” (Kempe 1879, 193). Once 
this basic common world has been instituted, they then consider two sets 
of “detached regions”  either colored in red and green or in yellow and blue 
(Kempe 1879, 194).  These premises allow Kempe and his reader to further 
define the properties of “points of concourse” (points where bound aries 
and districts meet) that themselves permit the definition of six classes of 
districts with dif fer ent characteristics: “island districts,” “island regions,” 
“peninsula districts,” “peninsula regions,” “complex districts,” and “ simple 
districts” (Kempe 1879, 195–196). Once this quite complex common world 
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has been instituted, Kempe then switches to exclusive commands and asks 
his reader to execute a series of operations:

Now, take a piece of paper and cut it out to the same shape as any simple- island 
or peninsula- district, but larger, so as just to overlap the bound aries when laid on 
the district. Fasten this patch (as I  shall term it) to the surface and produce all the 
bound aries which meet the patch … to meet at a point, (a point of concourse) 
within the patch. If only two bound aries meet the patch, which  will happen if 
the district be a peninsula, join them across the patch, no point of concourse being 
necessary. The map  will then have one district less, and the number of bound aries 
 will also be reduced. (Kempe 1879, 196–197; italics added)

By asking the reader to reiterate this patching pro cess, the  whole  imagined 
map is progressively reduced to one single district with no bound aries or 
points of concourse. Kempe then asks the reader to reverse the pro cess; that 
is, to “strip off the patches in reverse order, taking off first that which was put 
on last. As each patch is stripped off it discloses a new district and the map 
is developed by degrees” (Kempe 1879, 197). At this precise point, Kempe 
switches to inclusive command again, thus instituting a second common world 
based on the first one that has just been modified. The author and the reader, 
together again, define the progressive reconstitution of all districts, bound-
aries, and points of concourse.  Little by  little, they soon realize that their 
recombination of districts, bound aries, and points of concourse is equivalent 
to, respectively,  faces, edges, and points of polyhedrons as already defined by 
Augustin- Louis Cauchy in 1813 (Kempe 1879, 198). Once this polyhedron 
world has been instituted, Kempe switches one last time to exclusive com-
mand and makes the reader reach the claimed result: obviously— look, we 
have just done it together!— four colors suffice to color any map drawn on a 
plane in such a way that no neighboring countries have the same color.

We do not need to understand  every  little step of Kempe’s paper. We just 
need to appreciate how Kempe manages to control the movements of his 
reader; from the initial premises to the conclusion, the reader is literally car-
ried through Kempe’s line of argument. His allies are quite numerous— “single 
connected surface,” “districts,” “detached regions,” Cauchy’s “polyhedrons”— 
and his transitions are smooth enough to transport the reader through the 
flow of necessity. But as we saw, Kempe’s captatio was only temporary, for as 
eleven years  later, Heawood managed to escape from Kempe’s line of argu-
ment and propose a figure that dismantled the  whole rhetorical edifice (see 
figure 5.1).
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Publication, citation, and captation  trials— just as any other claim trying 
to gain conviction strength and become a fact, mathematical claims must 
survive many jeopardies. Yet this is still not enough. A claim published in 
an impor tant journal, with well- arrayed references and a smooth line of 
argument, may still vanish if it is not carried further by  later claims. This is a 
sine qua non condition as  there is no such  thing as a solitary scientific fact: 
“Fact construction is so much a collective pro cess that an isolated person 
builds only dreams, claims and feelings, not facts” (Latour 1987, 41). The 
fate of a claim, its progressive transformation into a solidified fact, depends 
ultimately on how it is used by  later claims. We saw that Kempe’s claim, 
despite its captation strength, ended up being refuted by Heawood. From 
the status of mathematical fact, it turned into mere fiction. What about 
Heawood’s claim? It is difficult to call it a fact as it only concerned Kempe’s 
fiction; it successively refuted Kempe’s claim but did not provide any con-
firmable, or refutable, proposition. What about Elkan’s claim, then? Despite 
Elkan’s efforts to make it stronger— especially via the inclusion of many 
coauthors, better arrayed references, and smoother transitions (Elkan et al. 
1994; Rosental 2003, 282–331)—it ended up being known for the doubt-
ful reactions it gave rise to; that is, precisely, for not being a fact. Among 
our arbitrary mathematical examples, only Shannon’s claim survived this 
impor tant posterity trial, as scene 3 already suggested it. In fact, Shannon’s 
claim survived the posterity trial so well that it progressively became part 
of a very small number of facts that are constantly used as resources in  later 
claims. As it became more and more enrolled without any skeptical modali-
ties, it became a black box with certified content presented in a clear- cut 
form. This stylization pro cess (Latour 1987, 42) is typical of scientific facts 
that are much enrolled in  later claims. Although Shannon went through 
several demonstrations in his initial paper, only the results of  these demon-
strations  were progressively retained.  These results  were  later concatenated, 
polished, and linked with former results established by Hartley  until reach-
ing a stylized form expressed by the formula presented in scene 3. Soon, 
perhaps, this strong mathematical fact may even become a “single sentence 
statement” (Latour 1987, 43): a scientific fact that is so accepted that it no 
longer needs any reference. If this happens, Shannon and Hartley’s theo-
rem  will be part of tacit, undisputable, and necessary knowledge.

 These last ele ments about blackboxed polished facts that may become 
part of tacit knowledge allow us to respond to an impor tant objection:
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Objection of a skeptical reader

But is not mathe matics dif fer ent from all the other scientific disciplines 
in that it deals with fundamental truths? We could feel it when you 
presented Kempe’s paper: in order to overcome the captation trial, he 
followed the timeless laws of deduction, did he not?

Not so long ago, it would have been very difficult to respond to this classi-
cal objection.13 But thanks to the philological efforts made by Reviel Netz 
(2003, 2004), we now know that what we call “deduction” and “logical 
relations” are themselves blackboxed polished facts that  were initially pub-
lished around the  middle of the fifth  century BCE in Greece and southern 
Italy.14 At that time, several self- educated amateurs who, presumably, tried 
to distance themselves from ancient Greece’s highly polemical culture,15 
 were surprised to discover that when they wrote only about the properties 
of lettered diagrams drawn on wax tablets, they could, step by step, express 
indisputable propositions. More precisely, by starting with some lettered 
parts of a diagram— say, two segments— they could, in turn, compare them 
with another lettered part of the same diagram. This very basic operation, 
made pos si ble by the combination of drawings and letters on a flat surface, 
can be reconstituted as such: “This segment A  here is equal to that segment 
B  there. And that segment B  there is equal to that segment C over  there.” In 
turn, thanks to the lettered diagram, Greek geometers could surreptitiously 
use conjunctive adverbs in a necessary way: “Therefore this segment A  here is 
equal to that segment C over  there.” The shift seems trivial but is in fact cru-
cial. Indeed, this first necessary result could be used to compare other parts 
of the diagram: “And that segment D over  there is two times segment C. 
Therefore, segment A is half segment D.” Progressively, by comparing more 
and more parts of the diagram, using more and more conjunctive adverbs 
and cumulating more and more intermediary results such as “A is half seg-
ment D,” the Greek geometer could end up with a complicated yet neces-
sary true proposition— the written list of indexical steps  going from his first 
basic assertion to his last complicated one being the proof of the veracity of 
his claim.

For the sake of this section that only tries to pre sent mathematical claims 
as part of the broader  family of scientific claims, we do not need to dig fur-
ther into the fascinating work done by Netz. Suffice it  here to say that thanks 
to his efforts, we can now assert with some confidence that even deduction 
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is the solidified product of past accepted claims.  These constructed- yet- 
fully- logical laws of necessity must certainly have been surprising in ancient 
Greece.16 But  after centuries of enrollments in further claims, this style of 
reasoning— that obviously overcame its posterity trial— was progressively 
blackboxed, polished, and stylized  until acquiring the status of indisput-
able knowledge.17 Who would now quote Aristotle when using the infer-
ence rule of modus ponens? Yet even  these princi ples of logic— dear to the 
formalist school of mathe matics18— went through a pro cess similar to that of 
Shannon and Hartley’s theorem that very few mathematicians in signal pro-
cessing would now try to contest. Just as the theorem they helped to shape, 
deductive laws  were themselves  shaped a long time ago by  people equipped 
with specific instruments (in this case, lettered diagrams drawn on wax tab-
lets and indexed to small Greek sentences).

Flat Laboratories

In the previous sections, we spent some time trying to stress the similarities 
between mathematical and scientific claims. It appeared that both need to 
survive similar  trials to become, eventually, indisputable facts. No supe-
rior necessity helps mathematical claims to become certified facts; they too 
need to convince their readers in order to be enrolled in  later claims and 
become, very rarely, polished black boxes.

However, so far, we have only considered one side of the coin. Although 
looking at mathematical published claims helps us realize that successful 
mathematical propositions could be considered genuine certified knowledge, 
we can legitimately assume that mathematicians do not prepare, write, and 
read papers all their working time. They must also spend time and energy on 
the  things they write about. All the claims we considered in the last sections 
 were indeed about  things: limitations of fuzzy logic systems for Elkan, the 
four colors conjecture for Kempe, Kempe’s claim about the four colors con-
jecture for Heawood, and maximum rate of information transmission over 
noisy channels for Shannon (and  later, Hartley). But how are  these  things 
assembled? What practices lead to the pre sen ta tion of  these mathematical 
 things—or objects—in published materials? Are  these practices dif fer ent 
from laboratory practices in other scientific communities?

As we prepare to look inside the locations in which mathematical objects 
are  shaped, we immediately face a difficulty:  there are very few empirical 
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studies of such locations. Although  there are robust studies about contro-
versies within mathematical domains (Warwick 1992, 1993; MacKenzie 
1999, 2000, 2004, 2006; Rosental 2003, 2004) and historical reconstruc-
tions of the shaping of mathematical objects from famous mathematicians’ 
logbooks (Lakatos 1976; Pickering and Stephanides 1992),  there are very 
few laboratory studies of mathe matics.19 It is thus with  limited means that 
I  will now try to stress the scientific aspect of mathe matics a  little bit more:

Scene 4

Salk Institute for Biological Studies at La Jolla (California), winter of 1972.20 
Paul Brazeau is on edge. His boss, Professor Roger Guillemin, is  after him, 
casting doubts on his ability to  handle the lab’s brand new— and very 
expansive— radioimmunoassay. It is true that the graphs recently printed 
by the massive bioelectronic instrument are surprising; instead of show-
ing that Guillemin’s newly purified peptide triggers the growth hormone, 
it shows that it decreases it. This drives Guillemin crazy. But Brazeau 
and his technicians retro- inspected the  whole experimental procedure a 
dozen times:  there  were no  mistakes. The right amount of purified pep-
tide was injected in the carefully assembled rat pituitary cell culture, and 
no mishandling occurred during the operationalization of the radioim-
munoassay. “It’s terribly  simple,” thinks Brazeau. “ Either I am no consci-
entious professional or, for the last three years, we  were all wrong about 
this peptide.”

Scene 5

Dublin, fall of 1843. William Rowan Hamilton is in a challenging mood: 
even though he bumps into another impasse in his attempt to extend 
complex number theory to a three- dimensional space, he is obviously 
making impor tant pro gress.21 He is particularly proud of his new start-
ing point; what a  mistake it was to start his previous experiments from 
tiring algebraic models! As he now starts geometrically by moving from 
x + iy to x + iy + jz, he possesses a three- dimensional line segment that is 
far easier to test (even though it adds a second imaginary number j right 
from the start). His first experiment was, in that sense, very conclusive. 
Thanks to the advice of his German colleague Gotthold Eisenstein, he 
could reach an equivalence between algebraic and geometrical defini-
tions of the square of his three- dimensional segment by abandoning the 
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assumption of commutation between i and j. He could then further test 
his model by multiplying two arbitrary coplanar triplets according to his 
new noncommutative rule for ij. Although he strug gled at first to define 
the orientation of his new product, he realized— after several attempts— 
that Pythagoras’s theorem could nicely do the trick.  Here again, an 
encouraging achievement. Yet this last move led him to another prob-
lem: the algebraic and geometrical repre sen ta tions of this coplanar mul-
tiplication differ by a  factor of (bz— cy)2. “I must find a way to remove 
this superfluous term,” he thinks. “I  don’t want to start the  whole  thing 
over again!”

Despite their cryptic aspects, what do  these two scenes tell us about labora-
tory practices? Can we draw similarities between what takes place within 
Guillemin’s laboratory of endocrinology (scene 4) and what takes place 
within Hamilton’s laboratory of mathe matics (scene 5)?

We can first notice that both scenes deal with experiments; they both put 
something to the test in order to evaluate its reactions. The peptide in scene 
4 is, in 1973, still undefined. Guillemin—in line with recent claims about 
this class of amino acid polymer—is convinced that it should trigger the 
rat’s growth hormone.22 But how much is such growth hormone triggered? 
And  under what circumstances? To have a clearer view on the capacities of 
this peptide, he puts Brazeau in charge of implementing an experiment he 
recently designed. In scene 5, a complex three- dimensional line segment 
x + iy + jz is, in 1843, still undefined.23 Hamilton hopes that this “triplet”—
as he calls it— will allow him to extend the geometrical repre sen ta tion of 
complex number theory.24 But at this point, nothing is certain. To better 
understand the capacities of his complex three- dimensional line segment, 
he puts it through two successive experiments: he first squares it and then 
multiplies it with another arbitrary coplanar triplet.

In both scenes then, experiments are run to test undefined entities. Yet 
experiments do not happen by themselves; in both scenes, instruments are 
used by scientists in order to help them probe their undefined entities. 
In scene 4, the delicately assembled rat pituitary cell culture and the very 
expansive radioimmunoassay are the two principal tools used to test the 
peptide. It is worth noting that both instruments are highly vis i ble and take 
up a lot of space. The instruments in scene 5 are a priori less impressive but 
equally impor tant. The first instrument is, obviously, the algebraic apparatus 
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as progressively defined by medieval Islamic mathematicians; without any 
means to express relationships among variables in a condensed and succinct 
manner, Hamilton could not juggle his triplet.25 But he also needs a coor-
dinate space to express his triplet geometrically. In that sense, without the 
efforts of seventeenth- century mathematicians such as Descartes, de Fermat, 
Newton, and Leibniz, Hamilton would have no means to consider the trans-
formations of his triplet. He further requires some insight from noncommu-
tative algebra, as then recently proposed by Gotthold Eisenstein, to  handle 
the complex product ij (Hankins 1980). Fi nally, he needs good old Pythago-
ras’s theorem to multiply his initial triplet with another arbitrary coplanar 
triplet.26

At this point, we need to make another down- to- earth observation: 
although both laboratories have instruments to conduct experiments on 
undefined entities, the shapes of  these instruments differ from each other. 
On the one hand,  there is a bioelectronic assemblage that gathers peptides, 
Brazeau, rat cells, laboratory technicians, and an imposing metal box full of 
electronic parts; on the other hand,  there are books, paper, Hamilton, and 
a pencil.  There is  little room for doubt  here: the instruments do not take up 
the same amount of space. Hamilton’s instruments appear dryer and thinner 
whereas Guillemin’s instruments appear wetter and thicker. One could say— 
and that is the terminology I  will use for the remainder of this section— that 
Hamilton’s laboratory is flat whereas Guillemin’s laboratory is bulky. Both 
laboratories are engaged in the same process— testing the reactions of an 
undefined entity— but they use instruments that are dif fer ent in terms of 
occupied space.27

Can we in turn say that Guillemin’s laboratory is more expansive than 
Hamilton’s laboratory? If we only consider the relative price of their instru-
ments, it seems indeed to be the case: paper is cheaper than laboratory 
technicians, most books (even in nineteenth- century Ireland) are cheaper 
than a radioimmunoassay from the 1970s, and pencils are cheaper than a 
rat pituitary cell culture. Yet if one considers the relative networks of both 
laboratory apparatuses, the question appears trickier. Indeed, how many 
efforts  were needed to cultivate and sell standardized rat cells? Many, indu-
bitably. But how many efforts  were required to establish coordinate spaces? 
Many, indubitably. And what about algebra? As Netz (1998, 2004) showed, 
without centuries of commentaries on Greek geometrical writings, without 
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Byzantine libraries, and without the classification efforts of Bagdad mathe-
maticians, no algebraic system of notation could have come into existence. 
The same is true of Pythagoras’s theorem; many long- standing efforts  were 
required to gather, compile, and preserve Pythagorean propositions from 
early antiquity to nineteenth- century Ireland. Let us then stick to the topo-
logical difference between our two laboratories: Hamilton’s laboratory is 
flatter than Guillemin’s.

If we continue to analyze both scenes, we can see that despite their 
topological differences, both bulky and flat instruments end up producing 
comparable inscriptions; that is, readable traces on documents. Indeed, the 
bulky bioelectronic experimental assemblage of scene 4 ends up produc-
ing graphs whose curves indicate that the rat’s hormone decreases. The 
results of the experiment on the undefined peptide conducted by Brazeau 
are pieces of paper anxiously examined by Guillemin.28 Similarly, the flat 
experimental assemblage of scene 5 ends up producing a series of coupled 
algebraic and geometrical equations; at first, both equations appeared 
equivalent (which was good news for Hamilton), but in the second step of 
the experiment, both appeared dissimilar (which was bad news for Ham-
ilton). Yet, just as for Brazeau and Guillemin, the results of Hamilton’s 
flat experiments are readable traces on documents he examines with his 
eyes.29

At this point then, we can tentatively say that both scenes deal with 
experiments, instruments (of dif fer ent topologies), and series of inscrip-
tions. But where does all this work lead to? At this stage, it certainly cannot 
lead to any published claim that may  later become a scientific fact. Within 
 these two laboratories, scientists impose tests on undefined entities, but 
how can  these practices lead to the formation of objects capable of being 
described in academic papers?

Scene 6

Salk Institute for Biological Studies at La Jolla (California), January 1973.30 
 There is nothing to do about it; even  after two other meticulous experi-
ments, the graphs printed by the radioimmunoassay still show that the 
rat’s hormone decreases when put in contact with Guillemin’s peptide. 
The rat pituitary cell culture is indisputable as are the composition of Guil-
lemin’s peptide, the radioimmunoassay, and Brazeau’s professionalism 
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(Guillemin quickly admits it). The only way to escape from this impasse is 
to cast doubt on what the peptide does. Leading figures in endocrinology— 
including Guillemin— thought that this class of peptide triggered the 
growth hormone; obviously, it does the opposite.  After being in contact 
with rat pituitary cell culture for a certain amount of time and  after having 
gone through the radioimmunoassay with some consistent par ameters, 
this new  thing significantly decreases the rat’s growth hormone. As it is cer-
tain that  there have been no  mistakes during the experimental procedures, 
a paper is now being prepared to convince skeptical readers about the exis-
tence of this new scientific object Guillemin starts to call somatostatin (lit-
erally, “that which blocks the body”).

Scene 7

Dublin, fall of 1843.31  There is nothing to do about it: the superfluous 
term (bz— cy)2 within the geometrical expression of the length of a com-
plex line segment cannot be removed without adding a new imaginary 
quantity. The rules of algebra— including noncommutativity— are indis-
putable, as are Pythagoras’s theorem and Hamilton’s scriptural opera-
tions (he ran the  whole experiment several times). The only way to 
escape from this impasse is to cast doubt on the premises of the experi-
ment: What if the extension of the geometrical repre sen ta tion of com-
plex number theory required not three but four dimensions? Indeed, 
only the inclusion of a third imaginary quantity k as the product of i 
and j can make the superfluous term (bz— cy)2 dis appear. It is true that 
this new imaginary quantity needs in turn a fourth axis in order to be 
geometrically represented, but who cares?  After the introduction of k as 
 either an imaginary quantity (in the algebraic repre sen ta tion) or a fourth 
dimensional axis (in the geometrical repre sen ta tion), this new  thing can 
be squared and multiplied while producing equivalent equations, hence 
effectively extending the geometrical repre sen ta tion of complex number 
theory. If Hamilton now manages to define the quantities k2, ik, kj, and 
i2— almost a formality at this stage—he  will be able to completely define 
the be hav ior of this new mathematical object he starts to call quaternion 
(literally, “that which is made of four”).

Again, beyond their cryptic aspects, what do  these two scenes tell us about 
the formation of new objects within scientific laboratories? Can we draw 



Mathe matics as a Science 223

some similarities between the progressive shaping of somatostatin (scene 6) 
and quaternions (scene 7)?

We can first see that in both scenes, inscriptions printed out by instru-
ments begin by expressing singular phenomena. In scene 6, the graphs 
printed by the radioimmunoassay indicate confidently that  after the pep-
tide is injected in the rat pituitary cell culture over a specific period of time 
and  after it goes through the radioimmunoassay with specific par ameters, 
the growth hormone decreases significantly. This is what is inscribed within 
the graphs Guillemin can read; the  whole experimental pro cess ends up 
decreasing the rat’s growth hormone. Trustful graphs become flatter; there-
fore the growth hormone decreases.

Similarly, in scene 7, the inscriptions produced by the hands of Hamil-
ton indicate that  after a fourth dimension is added to the triplet in order 
to geometrically express the new imaginary quantity k— itself required to 
make the superfluous term (bz— cy)2 dis appear— both algebraic and geomet-
rical repre sen ta tions of complex number theory become equivalent. Again, 
this is the phenomenon described by the inscriptions Hamilton can read 
on a sheet of paper; the  whole experimental pro cess ends up expressing an 
extension of the equivalence between geometrical and algebraic repre sen-
ta tion of complex number theory. A trustful geometrical equation becomes 
equivalent to another algebraic equation; therefore, the geometrical repre-
sen ta tion of complex number theory is extended.

However, and this is the crucial point, by virtue of the experimental set-
ting, the origins of  these two phenomena— “quantifiable inhibition of the 
growth hormone” and “extension of the equivalence between geometry 
and complex number theory”— can be attributed to specific  things. In scene 
6, the only ele ment whose actions  were undefined at the beginning of the 
experimental pro cess was the peptide. The actions of rat pituitary cell cul-
tures, radioimmunoassay, Brazeau, and the technicians  were all predictable; 
the unpredictable phenomenon— the graphs becoming flatter— must thus 
result from the action of this peptide- thing that “blocks the body.” Similarly, 
in scene 7, the only ele ment whose actions  were undefined at this stage of 
the experimental setting was the third imaginary quantity k geometrically 
expressed by a fourth dimensional axis. The actions of noncommutative 
algebra, Pythagoras’s theorem, and Hamilton’s pencil and paper operations 
 were all predictable; the unpredictable, yet anticipated, phenomenon— 
geometrical and algebraic equations becoming equivalent— can only be 
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attributed to this four- dimensional  thing that “groups together four num-
bers.” In both scenes, new  things emerge from the same attribution pro cess; 
scriptural traces of a new phenomenon are imputed to the be hav ior of a 
previously undefined entity.

At the end of both scenes, this attribution pro cess that imputes a be hav-
ior to a previously undefined entity by virtue of an experimental setting 
ends up being summarized by a term that encapsulates what the now 
defined  thing does: “that which blocks the body” becomes somatostatin and 
“that which groups four numbers” becomes quaternion. New objects come 
into existence, but  there has been no miracle; in both cases, the shape of 
the new object was progressively defined as scientists made it “grow” from a 
list of actions to the name of a  thing. In scene 6, somatostatin was first “the 
graphs become flatter,” then “ under  these experimental conditions,  there 
is a diminution of the growth hormone,” then “our new peptide decreases 
rat’s growth hormone,” and fi nally “somatostatin decreases rat’s growth 
hormone.” The same reification pro cess (Latour 1987, 86–100) happened in 
scene 7: quaternion was first “two equations become equivalent,” then “ there 
is an extension of geometrical repre sen ta tion of complex number theory,” 
then “four- dimensional repre sen ta tion allows the extension of geometrical 
repre sen ta tion of complex number theory,” and fi nally “quaternions express 
geometrically complex number theory in a four- dimensional space.” In 
both cases, experiments, instruments, and alignments of inscriptions—in 
short, laboratory practices (Latour and Woolgar 1986)— progressively led to 
the shaping of scientific objects whose properties and contours could, in 
turn, become the topics of papers claiming their existence.32

However, as we saw in the previous section, both somatostatin and qua-
ternions as presented in papers that can be read by skeptical colleagues still 
need to overcome many  trials to become certified scientific facts capable 
of being blackboxed, stylized, polished, and enrolled in further claims and 
experimental settings. Although both objects came into existence within 
their respective bulky and flat laboratories, they still need to attract the 
adherence of a wider community. But when the doubts of skeptical read-
ers are removed, when the veracity of both claims are certified by the 
scientific institution, we can in turn confidently say that Guillemin dis-
covered somatostatin and that Hamilton discovered quaternions. Or can we? 
We saw indeed that both objects  were the results of laboratory practices 
that progressively  shaped them. Can scientists discover objects they  were 
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previously constructing?  Were somatostatin and quaternions already part 
of “nature” even though they had to be  shaped in well- equipped (yet topo-
logically dif fer ent) laboratories? This is where the story starts to become 
tricky. If STS has long shown that scientific objects need to be manufac-
tured in laboratories, the heavy apparatus of  these locations as well as the 
practical work needed to make them operative tend to vanish as soon as 
written claims about scientific objects become certified facts. Once  there 
are no more controversies or disagreements about a new scientific object, 
nature tends to be invoked as the realm that always already contained this 
constructed scientific object.  Here, we encounter something we discussed 
in chapter 4 where we  were dealing with computer programming practices: 
when facts are certified and enrolled in further studies, the experiments, 
instruments, communities, and practices that allowed their progressive for-
mation are generally put aside (Latour and Woolgar 1986, 105–155). This is 
what makes the history and sociology of sciences (including mathe matics) 
so difficult to conduct; as established facts are purified from the artificial 
setting that supported their formation, the temptation is  great to start from 
 these established facts and extrapolate backward (Collins 1975).33

However, if one is not interested in the history or sociology of sciences, if 
one “just” wants to speak about objective facts and eventually enroll them in 
further claims, the reference to nature appears completely justified. In that 
sense, one may of course say—as a kind of con ve nient shortcut— that Ham-
ilton “discovered” quaternions or that Guillemin “discovered” somatostatin, 
but only  because  these objects ended up being accepted as certified facts, put 
in black boxes, translated, polished, and enrolled in  later claims. As both ini-
tially manufactured objects presented in written claims successively resisted 
 trials, the conditions of their production within dedicated laboratories can 
be, temporarily, neglected; nature can take over and support their raison 
d’être. In this re spect, Latour’s funny analogy is quite instructive:

Nature, in scientists’ hands, is a constitutional monarch, much like Queen Eliza-
beth the Second. From the throne she reads with the same tone, majesty and 
conviction, a speech written by Conservative or  Labour prime ministers depend-
ing on the election outcome. Indeed she adds something to the dispute, but only 
 after the dispute has ended; as long as the election is  going on she does nothing 
but wait. (Latour 1987, 98)

The notion of “nature” is thus con ve nient to speak about noncontrover-
sial scientific facts— why not?— but as soon as one speaks about scientific 
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controversies or about scientific objects in the making, one needs to consider 
nature as the uncertain result of scientific practices.34 This cautious posi-
tion  toward nature applies to “conventional” bulky scientific objects such 
as somatostatin as well as to “unconventional” flat scientific objects such as 
quaternions. Again, no superior real ity makes mathematical objects appear 
to mathematicians. They too need to be  shaped within (flat) laboratories 
equipped with instruments that print inscriptions.

Mathematicable

A good  thing has been taken care of: it seems indeed that the construc-
tion pro cess of scientific facts is quite similar to the construction pro cess of 
mathematical facts. Theorems (cf. scenes 1 and 3), mathematical systems 
(cf. scenes 5 and 7), conjectures (cf. scene 2), and even formulas (cf. scene 
3) may all be considered genuine scientific claims that try to convince col-
leagues of the existence of objects previously  shaped within (flat) laborato-
ries. If the vast majority of  these claims do not overcome the  trials that can 
make them become certified facts, some of them (e.g., Shannon- Hartley’s the-
orem, Hamilton’s theory of quaternions) may become stylized and polished 
black boxes that are used as instruments in further experimental settings. It is 
this huge— and changing— repository of certified mathematical facts that we 
may call “mathematical knowledge.” Moreover, several ele ments of this certi-
fied body of knowledge may, sometimes, become part of tacit, indisputable, 
and necessary knowledge (e.g., the logical laws of deduction).

However, despite the striking similarities between their respective con-
struction pro cesses, certified scientific and mathematical facts— and their 
correlated objects— still seem to differ significantly:

Objection of a skeptical reader

All right, let’s assume that both facts— and correlated objects—go through 
similar construction pro cesses, as you obviously believe (while only rely-
ing on small, incomplete examples). An impor tant difference subsists: 
mathematical objects never stop being used for the constitution of non-
mathematical objects! We could even see it in the laboratory of endo-
crinology you used to illustrate your point. The graphs printed by the 
radioimmunoassay, which quantify how much the growth hormone is 
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decreased by the peptide, are importations of solidified mathematical 
facts (in this case, basic analytical geometry). The same is certainly true 
of the inner mechanisms of the radioimmunoassay; complex mathemat-
ical theories must have been used to develop this costly instrument. Sim-
ilar pro cesses happen all the time in demography, climatology, po liti cal 
science, biology, and so on. Mathematical objects such as logarithms, 
Gaussian functions, or probabilities infiltrate all domains of “hard” sci-
ence, helping scientists to shape new objects and facts. Yet the inverse 
is not true: how could peptides or radioimmunoassay help mathemati-
cians shape new objects? Mathematicians have to do  things by them-
selves, without the help of the other sciences. This is why mathe matics 
is the queen of all sciences: without the work of mathematicians in their 
“flat laboratories”—we may keep that— there would simply be no exact 
sciences. Mathematical objects are so power ful; they must be of some 
superior nature. How could it be other wise?

 There are two glitches in this classical objection. First, it is not tenable to 
say that the practice of mathe matics is self- sufficient, for many disciplines 
intervene in the construction pro cess of mathematical objects and facts. 
Netz (1998, 2004) showed, for example, how archiving and standardization 
 were central to overcome the stagnation of Greek geometry.35 Thanks to the 
assembling of well- arrayed corpora of papyruses and parchments— especially 
in Byzantium— late antiquity commentators such as Eutocius became able to 
compare, annotate, and complete the entangled multiplicities of Greek geo-
metrical writings. Progressively,  these systematic standardization efforts made 
early antiquity’s geometrical propositions commensurable; unlike Greek 
geometers,36 medieval mathematicians— especially in Bagdad’s House of Wis-
dom (Netz 2004, 131–186)— could see what Greek geometry was. Equipped 
with “intellectual technologies” (Goody 1977)— here, collections of standard-
ized Greek geometrical treatises— mathematicians such as al- Khwarizmi and 
Khayyam could systematize and classify the geometrical prob lems solved 
by the Greeks.  These systematic comparisons progressively led, according to 
Netz, to the formation of the algebraic language: “Al- Khwarizmi’s algebra was, 
ultimately, a fairly unambitious ambition, translated into major transforma-
tions. Without himself  doing anything beyond classifying the results of the 
past, Al- Khwarizmi, effectively, created the equation” (Netz 2004, 143).
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Since archiving and standardization  were, and are,37 central to the for-
mation of mathematical objects, do we have to say that  these two respect-
able disciplines are the queens of the queen of all sciences? To me, a more 
reasonable position would be to accept that hierarchal classification of 
disciplines is misleading. When something allows something  else to come 
into existence, it may not be a  matter of vertical hierarchy but of horizontal 
arrangement.

This leads us to the second objection regarding the usability of mathe-
matical objects for the assembling of nonmathematical objects. It is true that 
the combinational capabilities of mathematical facts are surprising. In  every 
scientific discipline, recent or ancient mathematical discoveries are used to 
conduct experiments, or ga nize inscriptions, express new phenomena, and 
eventually define new objects. I would go even further than our skepti-
cal reader and expand this extreme combinability of mathematical objects 
to everyday life. For example, how many times a day do we use the basic 
precepts of arithmetic? Obviously, mathe matics is everywhere, from labo-
ratories of high energy physics to cashiers’ desks. This capacity to infiltrate 
heterogeneous domains of activity is very impressive. But does it neces-
sarily mean that mathematical objects come from a dif fer ent nature? Does 
their plasticity necessarily manifest a super natural essence?

Let us consider Guillemin’s laboratory of endocrinology since it is the 
example used by our skeptical reader. It is true that the results printed by the 
computer of the radioimmunoassay required the application of elementary 
mathematical theories in order to indicate a diminution of the growth hor-
mone. Was  there some magic? Not if we consider more precisely the pro cess 
by which the rat pituitary cell culture was “flattened” to become represent-
able as a graph with numerical values varying through time. What hap-
pened indeed within the radioimmunoassay? Schematically, the very small 
radioactive waves emitted by the rat pituitary cell culture  were captured 
and,  after a series of translations, counted by the costly equipment. Radio-
active waves became signals that, in turn, became discrete values varying 
through time. This transubstantiation process—or, more succinctly, transla-
tion process— that made a cell culture go from the state of complex liquid 
to the state of a writable list of (radioactive) values spread over time is pre-
cisely what allowed the enrollment of the elementary mathematical notion 
of “ratio” and the further calculation of the growth hormone’s decreasing. 
How did the ancestral theory of ratios as developed by the Pythagoreans 
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become applicable to the world of endocrinology? The concrete efforts to 
form differently (trans- form) the cell culture into quantifiable inscriptions, 
thus making it become a geometrical graph, allowed the connection between 
ratios and Guillemin’s peptide. It was by flattening the cell culture and 
adapting it to the flat ecol ogy of ratios that  these mathematical objects 
became applicable to the cell culture. Nothing mysterious happened; by 
progressively translating a complex entity into a scriptural form, it became 
pos si ble to link it with certified mathematical facts.

Another— better— example of such an empirical pro cess that makes non- 
mathematical entities become mathematicable is provided by Michal Lynch 
(1985) in his book Art and Artifact in Laboratory Science. During the 1970s, an 
impor tant topic in neurology was the plasticity of the brain; that is— briefly 
stated— its capacity to recover lost functions through the reor ga ni za tion of 
some of its tissues. How this reor ga ni za tion occurs was a controversial topic 
at the time of Lynch’s laboratory study. Two major conjectures  were in com-
petition. The first one considered that the reor ga ni za tion occurred through 
the densification of the synapses— the structures that allow interneuro-
nal communication between axons and dendrites— within the damaged 
brain territory.38 The second theory, labeled “axon sprouting,” considered 
that the reor ga ni za tion was due to the extension of axons adjacent to the 
damaged territory. For many reasons encompassing results of then recent 
laboratory experiments as well as promising industrial applications, the 
director of the laboratory studied by Lynch believed that axon sprouting 
was the main ingredient for the brain’s reor gan i za tional capacity (Lynch 
1985, 32–33). But how could he demonstrate it? Many pitfalls got in his 
way. First, neurons are very small. Observing their (re)organ ization required 
power ful zooms. Fortunately, the advent of electron microscopy— a tech-
nology recently purchased by the laboratory— allowed him to make ultra-
structural observations. But this led to another issue: at that time,  these 
observations could only be made on tiny slides whose flat topology was 
dif fer ent from the bulky topology of neurons. Fortunately, a “methodic 
series of renderings of laboratory rats” (Lynch 1985, 37) could be or ga-
nized to properly slice brains and adapt them to ultrastructural visibility. 
But this extraction of brain slides led to another issue as a reor gan i za tional 
brain pro cess can only happen within a living brain. How could it then be 
pos si ble to observe brain plasticity on dead sliced samples? Fortunately, 
the availability of many standardized laboratory rats with almost identical 
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brains allowed the organ ization of a “chain of sacrifices” (Lynch 1985, 38). 
Although it was not pos si ble to observe the reor ga ni za tion of one living 
damaged brain, it progressively became pos si ble to observe the reor ga ni-
za tion of “same” damaged brains killed at dif fer ent time intervals. A regu-
lar series of discrete— and meticulously referenced— dead slices permitted 
the reconstitution of the evolution of one living brain trying to palliate its 
damages. Yet the scientists followed by Lynch still needed to discern spe-
cific events within the mess of  every single slide. They  were indeed trying 
to account for axon fibers that  were expanding their territories to damage 
zones. But how could they define territories of axons as well as their poten-
tial expansions? Fortunately— and this greatly contributed to designing 
the  whole proj ect— one in ter est ing characteristic of the “dorsal hippocam-
pus” helped them to establish points of reference common to all electron 
microscopic observable sections. It had indeed been demonstrated— and 
accepted— that the structure of the dorsal hippocampus looks like a grid, 
the dendrites of its cell bodies regularly intersecting axons indexed to dif fer-
ent brain regions (Ramón y Cajal 1968). Therefore, if the brain researchers 
managed to produce electron microscopic observable slices of dorsal hip-
pocampus extracted from similarly damaged rats’ brains (killed at dif fer ent 
time intervals), the “natu ral” grid structure produced by the intersections 
of the dendrites of dorsal hippocampus’s body cells with axons indexed to 
dif fer ent brain regions could constitute an initial empirical base for further 
mea sure ments (Lynch 1985, 35–39). In other words, as it was certified that 
one specific part of the dorsal hippocampus contained cell bodies whose 
dendrites always intersected regularly with axons indexed to two dif fer ent 
brain regions, which I call  here α and β, it became pos si ble to damage the β 
brain regions of all rats and then check if the axons indexed to α “sprouted” 
to infiltrate the territory of the axons previously indexed to β. But again, 
a new prob lem arose: how to go from specific electron microscopic views 
on slices to a pa norama of many slices distributed over time? At the time 
of Lynch’s study, the easiest way to operate this translation was first to 
take analogical photo graphs of electron microscopic dorsal hippocampus 
displays. Brain scientists then had to develop  these photo graphs in high 
definition and equip them with a coordinate system scaled according to 
the ultrastructural levels of observation (between 2,160 and 24,000 times, 
depending on the photo graphs). How did Lynch’s scientists concretely 
manage to equip  these high- definition photo graphs? They pinned down 
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the photo graphs on a cardboard sheet, hence creating a chronological 
montage of the microscopic displays. As Lynch put it, “ these successions of 
photo graphs provided the vis i ble configuration of brain ultrastructure that 
was addressed in the analytical phase of the study” (Lynch 1985, 38). But 
 here again, it was not enough to mea sure an extension of axons indexed to 
α. Even though the dendrites of dorsal hippocampus’s cell bodies regularly 
intersected axons indexed to α and β, it remained necessary to affix a refer-
ential common to all photo graphs. How did the brain scientists do this? It 
is difficult  here not to quote Lynch’s account:

As each montage was constructed, it was analytically addressed in the follow-
ing manner: a clear plastic sheet was laid over the surface of the photo graphs, 
and a linear scale was drawn over the surface of the sheet  running in a vertical 
direction which paralleled the edge of the columnar montage of photo graphs.  … 
A scale of “microns” (computed with reference to the magnificational power of 
the photo graphs) was plotted for the drawn- line, where the “zero” point was set 
at a horizontal line that approximated the alignment of the granule cell body 
layer.  … Mea sure ment along this scale was used to estimate linear distance along the 
“vertical” alignment of granule cell dendrites as they arose from the cell bodies and 
coursed “upward.” (Lynch 1985, 38; italics added)

Flat linear distances are a priori far removed from neurons and the poten-
tial sprouting of their axons. Yet, once enlarged photo graphs of tiny  little 
slices of standardized rats’ dorsal hippocampus are mounted on cardboard 
and equipped with a linear scale drawn on clear plastic sheets whose “zero” 
point corresponds to the cell body of each slice, this venerable mathe-
matical theory and its correlated objects become very, very close (Latour 
1987, 244). The experimental setting of the laboratory and all of its instru-
ments producing “alignable” inscriptions— standardized rats; tiny, care-
fully washed (and stained) slices of rats’ dorsal hippocampus; montages of 
enlarged photo graphs; linear scales drawn on clear plastic sheets— end up 
conferring to rats’ dorsal hippocampus the same form as graphs on which 
linear distances can be estimated. At the end of this mea sure ment pro cess, 
ratios of intact/dead terminals— junctions between axons and dendrites— 
plotted in terms of days post the lesion could even be computed by the 
scientists, thus demonstrating statistically the phenomenon of axon sprout-
ing: “Mea sure ment of this expansion showed a consistent reoccupancy of 
the lower 25 per cent of the region of the granule cell dendrites formerly 
occupied by the [damaged] layer of axons” (Lynch 1985, 35).
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Again, as Lynch demonstrated, no magic intervened; laboratory prac-
tices made the relationships between axons and dendrites become mathe-
maticable. Standardized rats became dorsal hippocampus, tiny slices became 
enlarged photo graphs, and a montage of cardboard became one regular 
geometrical space whose occupancy evolved through time. If some pol-
ished mathematical facts— computation of surfaces progressively occupied 
by intact terminals— did help demonstrate the existence of a nonmathe-
matical phenomenon (axon sprouting), this event necessitated a succession 
of translations in order to connect the wet and bulky ecol ogy of the brain 
with the dry and flat ecol ogy of mathe matics.

Formulating: A Definition

Mathe matics does not apply to the world. A cascade of translations is required 
to connect nonmathematical entities with certified mathematical facts. But 
at this point of our operationalization exercise, one question remains: if 
the rats’ dorsal hippocampus of the brain research laboratory we have just 
considered and the rat pituitary cell culture of Guillemin’s laboratory both 
end up being trans- formed in order to fit with the networks sustaining 
solidified mathematical objects (themselves formerly described by claims 
that progressively became certified facts and even, sometimes, single sen-
tence statements part of tacit undisputable knowledge), do they not lose 
many properties on the road?  After all, from a rich and complex region of 
the brain, the dorsal hippocampus becomes a tinkered montage of gridded 
photo graphs; from a rich and complex soup of cells, the rat pituitary cell 
culture becomes a  simple graph. To make both entities mathematicable, 
they must endure impor tant reductions. But is it worth it? What justifies 
such flattening and drying?

In  these specific situations, the gains of  these reductions are impor tant 
 because the properties of the mathematical objects as formerly defined 
by mathematicians within their flat laboratories are progressively “lent” 
to the pituitary cell culture and the dorsal hippocampus. First, both enti-
ties become easier to  handle.  After the translation pro cess from a cell soup 
to a graph, Guillemin does not need the cell soup anymore. He certainly 
conserves it for potential verifications, but whenever he needs to see or 
show the rat pituitary cell culture, he can now use the graph printed by the 
radioimmunoassay that expresses only the tiny impor tant part of the soup’s 
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properties. The same is true of the brain research laboratory studied by 
Lynch: instead of  handling tiny slices of hippocampus, brain scientists can 
now consider gridded photo graphs. One direct consequence of this ergo-
nomic gain is that the reduced entities become also more sharable. Although 
it is impossible to e- mail—or, in  these cases, fax— wet and bulky dorsal hip-
pocampus,  after their translation into a succession of photo graphs, trustful 
brain scientist colleagues based on the other side of the world are also able to 
scrutinize them. Transforming the hippocampus into gridded pieces of paper 
allows it to invest extended— yet expansive and fragile— communication 
networks. Such a reduced and flattened hippocampus therefore also becomes 
more comparable; if the brain scientists based on the other side of the world 
also manage to operate similar reductions on the dorsal hippocampus, they 
may be able to compare both successions of gridded photo graphs. The same 
is also true of Guillemin’s graphs: instead of comparing cell soups, endocri-
nologists can compare graphs, a far easier endeavor.

Another gain of reducing entities and making them fit with the flat net-
work of certified mathematical knowledge is that reduced entities become 
much more malleable; new takes appear that, in turn, suggest new instru-
ments, tests, and inscriptions. For example, when active junctions between 
axons and dendrites become points within a uniform geometrical space, the 
instruments already defined by mathematicians for this geometrical space 
can be used to further probe the still undefined phenomenon of axon sprout-
ing, thus producing new inscriptions that  will precisely help to define it. 
Within this geometrical space, new tests can be made, such as mea sur ing sur-
faces, counting terminals, and calculating ratios of occupancy.  These tests and 
their correlated instruments  will, in turn, produce readable inscriptions— 
here, lists of numbers— that  will help further characterize the phenomenon 
 under scrutiny. The same is true of Guillemin’s rat pituitary cell culture: once 
complex biochemical reactions become discrete values varying through 
time, all the instruments that become available through this graphic form 
can be used to further probe the cell soup. What is the slope of the graph? 
What is the speed of the growth hormone’s decreasing? Again, a flat reduced 
form enables the use of new instruments and the production of new readable 
inscriptions that help with the characterization of a new phenomenon.

This leads us to one last gain of  these crucial reduction pro cesses, perhaps 
the consequence of all the other gains:39 when an entity is made compatible 
with mathematical facts, it also becomes enrollable within the written claim 



234 Chapter 5

that  will try to attest to its reified existence. This ele ment is crucial if we 
want to understand the full additional strength  these reduction pro cesses 
may give to undefined entities. How indeed to include axons within a text 
claiming their ability to sprout? How to include Guillemin’s new peptide 
within a paper attesting to its decreasing effect on the growth hormone? 
Reducing them  until they reach the same form as certified “flat” mathe-
matical facts allows them to become the referents of the prose that pre sents 
them to their respective scientific communities. In addition to making both 
axons and peptide easier to  handle, more shareable, more comparable, and 
more malleable, reducing them to make them compatible with the flat ecol-
ogy of mathematical facts allows them to be included inside the texts that 
talk about them. The reified object “axon sprouting,” more than just being 
described in a paper, is also pre sent within the paper in the flat and dry 
form that precisely allowed its mathematization (in this case, according to 
Lynch [1985, 40–49], as a succession of gridded photo graphs whose points 
move “upward”). Similarly, the reified object “somatostatin,” more than 
just being described in a paper, is also within the paper in the form of a 
graph summarizing its be hav ior (Brazeau et al. 1973). The attentive reader 
may have noticed that we have now come full circle from the beginning of 
this operationalization exercise where we  were talking about written claims 
of relative conviction strengths. The end results of laboratories, experi-
ments, instruments, and inscriptions are indeed the formulation of claims 
that try to attract the adherence of individuals. In this re spect, we should 
now be in a position to better understand the fascinating power of math-
ematical objects and facts; they may go through construction pro cesses that 
are similar to other scientific facts, but their par tic u lar flat and dry ecol ogy 
makes them relevant for the formation of nonmathematical objects and 
facts. They make undefined entities easier to  handle, more shareable, more 
comparable, more malleable, and more enrollable within claims they pre-
cisely help to formulate.

It is not mathematical facts and their correlated objects that give, by 
themselves, some additional strength to the transformed entities they some-
times encounter. Rather, it is the flat ecol ogy within which mathematical 
knowledge deploys itself that, sometimes, provides advantages to the entities 
that acquire the same form. This last ele ment allows me to fi nally define the 
activity of formulating more technically; for the remainder of this part III, I 
 shall call formulating the empirical pro cess of translating an undefined entity 
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 until it acquires the same form as already defined mathematical object. The 
encounter between a “made- flat” entity and a mathematical object— that 
previously had to be constructed in a laboratory and presented in a claim 
whose conviction strength made it a polished fact— will, in turn, help scien-
tists to further characterize the be hav ior of the entity and pre sent its reified 
version in a written claim. Just as any scientific claim (including  those for-
mulated by mathematicians), this written claim  will still have to overcome 
publication, citation, captation, and posterity  trials to become, eventually, a 
certified fact. A circle has been drawn; we are now back to where we started. 
With all  these ele ments in mind, it is high time to return to computer science 
in the making and engage with ethnographic materials.





As in part II when we  were dealing with computer programming, the journey 
was long and full of zigzags. But we did not have any other choice: in order not 
to get lost in our further explorations of the role of mathe matics in the forma-
tion of algorithms, we needed to understand where certified mathematical facts 
come from; how they solidify; and how, sometimes— very rarely— they become 
part of tacit necessary knowledge. Thanks to STS works on mathe matics as well 
as heterogeneous examples taken from nineteenth- century protograph theory, 
con temporary controversies in fuzzy logic, a well- accepted theorem in theoreti-
cal signal pro cessing, and the laboratory practices that led to the shaping/discov-
ery of quaternions, we progressively realized that mathematical objects— and 
the certified facts that describe them— need academic papers,  trials, labora-
tories, instruments, and inscriptions to come into existence. Moreover, when 
nonmathematical disciplines, such as endocrinology or brain research, need 
to borrow the heuristic and ergonomic strength of certified mathematical 
objects and facts to qualify bulky and wet entities (e.g., a new peptide, axons 
of dorsal hippocampus), a cascade of translations is required in order to make 
 these entities compatible with the flat ecol ogy of certified mathematical facts. 
Consequently, we saw that the indubitable power of mathe matics should be 
understood in the light of the mundane practices that allow nonmathemati-
cal entities to become “mathematicable.”  These mundane yet often ignored 
practices aiming to connect undefined entities to certified mathematical 
knowledge are what I call “formulating.”

But how do formulating practices express themselves within computer 
science laboratories? What is their role in the construction of algorithms? 
In light of the previous parts of this book, how does formulating articulate 
with ground- truthing and programming activities? This is what we are  going 
to consider in this third case study.

6 A Third Case Study
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Pre sen ta tion of the Empirical Materials

This case study is taken from the saliency- detection proj ect we already 
encountered in chapter 2. Just to refresh the memory of the reader, this 
saliency- detection proj ect included two PhD students and a postdoc— BJ, 
GY, and CL— that I  shall keep on referring to as a single entity: “the Group.” 
In a nutshell, the Group’s argument that framed the proj ect was that 
saliency detection in image pro cessing may become industrially more in ter-
est ing if saliency- detection algorithms could detect, segment, and evaluate 
the varying importance of salient objects and  human  faces within complex 
digital photo graphs. This new problematization of the saliency prob lem 
called for the construction of a new ground- truth database gathering unla-
beled complex digital images and their manually labeled counter parts, the 
“targets.” The new ground truth was central to the formation of the Group’s 
algorithm as this database materially established the terms of the prob lem 
to be solved computationally. To effectively shape its algorithm, the Group 
divided its new ground- truth database into two sets: a training set and an 
evaluation set. The training set was used to study the relationships between 
input- data and their targets. Once  these relationships  were defined and 
expressed in a computational model, the Group translated this model into 
numbered lists of machine- readable instructions, thus assembling a genu-
ine computer program. The per for mances of this program could then be 
evaluated on the evaluation set of the ground truth by means of standard 
statistical mea sures. The new ground- truth database, the princi ples of the 
computational model, and the pro cessing per for mances of the correlated 
computer program  were  later presented in an academic paper that was 
rejected by the committee of an impor tant conference in image pro cessing. 
Yet one year  later, a revised version of the article won the “Best Short Paper 
Award” at a smaller conference.

In the following sections, I  will mainly focus on the training set and 
the practices that led to the formulation of the relationships between input- 
images and their targets that was then translated into lines of code. As the 
targets of the Group’s new ground truth  were quite complex, I  will focus 
exclusively on one of the targets’ component: the relative importance values 
of the detected and segmented  faces (see figure 6.1). My goal is to account 
for the formulating practices that led to the characterization of a way to 
automatically calculate the relative importance values of detected  faces, 
thus retrieving one— small— part of the ground truth’s targets. Accounting 
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Figure 6.1
Montage assembled from the data of Group’s ground truth. On the left, an “input- 
image” of the Group’s new ground- truth database. In the  middle, the same image 
as labeled by the workers of the crowdsourcing task. The crowdworkers did not all 
agree on the salient features of the image. If all of them labeled the  whole body of the 
 woman, then some  others also labeled her face, the face in the  middle of the image, 
and the face on the right- hand side of the image. The gray- scale image on the right 
is based on the labeled image in the  middle. It was post- processed within the Lab 
 after the crowdsourcing experiment. Each gray- scale zone corresponds to one target 
of the unlabeled image on the left.  These zones are what the computer program, 
as defined by the computational model, should retrieve in the best pos si ble way. 
The relative saliency values of the targets— expressed by dif fer ent gray- scale values— 
were defined as the ratios of the number of rectangles that surround them over the 
number of workers who performed the labeling task on the image. In this case, four-
teen workers performed the labeling task. Fourteen rectangles surrounded the  whole 
 woman, which makes the shape of her body have the maximum value 1. But thirteen 
rectangles also specifically surrounded the face of the  woman, making it have the 
value 0.93. Twelve rectangles surrounded the face in the  middle (value 0.85), and 
ten rectangles surrounded the face on the right (value 0.71). The background of the 
gray- scale image— every thing that is not labeled— has the value zero. All  these values 
and zones have been defined with the help of the labels drawn by the workers. At this 
point, the goal of the Group’s proj ect was to find a way to automatically transform 
the image on the left into the image on the right without the help of the labels. In 
this case study, we  will only examine how the Group found a way to automatically 
retrieve the relative saliency values of  faces. We  will not deal with nonface ele ments 
nor with any sort of segmentation. Following the Group, the question we  will have 
to answer is thus the following: How do we retrieve face importance values (e.g., 
0.93, 0.85, 0.71) from input- images such as the one on the left?

for  these practices  will allow me to link this part III with part I (ground- 
truthing) and part II (programming). This case study  will also serve as step-
ping stone to touch on the now widely discussed topics of machine learning 
and artificial intelligence.

To better understand the practices that lead to the definition of a computa-
tional model for face importance, we  will have to closely examine the Group’s 
training set and the progressive reor ga ni za tion of its data. Yet, as a Matlab 
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Figure 6.2
Screenshot of the Group’s training set used for the modeling of face importance val-
ues as it appeared in the Matlab software environment. On the right, the Workspace 
of Matlab IDE indicates all the variables used to create the database. In the center of 
the screenshot, a spreadsheet that summarizes the organ ization of the database. The 
first column of the spreadsheet gathers the IDs of the input- images of the training 
set. The second column indicates the number of crowdworkers who performed the 
labeling task on the input- image of the same row. The third column gathers the coor-
dinates of the face- detection rectangles as provided by BJ’s algorithm when run on 
the input- image of the same row (more on this below, in the main text). Each group 
of four coordinates refers to (a) the point on the x axis of the input- image where the 
rectangle starts; (b) the point on the y axis where the rectangle starts; (c) the point 
on the x axis where the rectangle ends; and (d) the point on the y axis where the 
rectangle ends. The fourth column indicates the number of salient feature within 
the input- image according to the crowdworkers. This value can be dif fer ent from the 
number of groups of four coordinates in column 3. The fifth column refers to the 
importance values of the  faces as the Group computed them based on the labels of 
the crowdworkers. On the left of the spreadsheet, the win dow Current Folder indi-
cates the folder currently accessed by Matlab IDE. On the far left, the Editor shows a 
small part of the Matlab script that was required to parse the data of the crowdsourc-
ing task and or ga nize it as a Matlab database. The computer programming practices 
that  were needed for the completion of this Matlab script  were similar to  those I 
described in chapter 4.
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training set is quite confusing (see figure 6.2), I  will not be able to base my 
analy sis on “real” screenshots. Just like in chapter 4 when I was accounting 
for programming practices, I  will have to simplify the Group’s training set 
and retain only the ele ments that are relevant for the pre sent analy sis. The 
simplified version of the Group’s training set  will thus be presented as in 
 table 6.1. As we are  going to follow a succession of translations, the first trans-
lation of the Group’s training set  will be counted as one, the second transla-
tion as two, and so on. The initial form of the training set  will be counted as 
translation 0.

This case study is or ga nized as follows. I  will first start by illustrating 
how the anticipation of formulating practices may sometimes impact on 
the design of ground truths. It seems indeed that translating undefined 

 Table 6.1
Translation 0: Simplified Matlab IDE as it  will be presented for the remainder of 
the analy sis

Input- images ID
Coordinates of labeled  faces 
(BJ’s model)

Face importance 
values of labeled  faces

image1.jpg [52; 131; 211; 295] [479; 99; 
565; 166] [763; 114; 826; 168]

[0.928] [0.857] 
[0.714]

image2.jpg [102; 181; 276; 306] [501; 
224; 581; 304]

[0.916] [0.818]

image3.jpg [138; 256; 245; 379] [367; 
142; 406; 202]

[0.916] [0.636]

… … …

image152.jpg [396; 151; 542; 280] [0.928]

Note: The term “Translation 0” indicates that it is the “initial” state of the train-
ing set. This “Translation 0” is of course relative to the sequence we  will follow: 
many other translations  were necessary to give this dataset its “initial” form. The 
first column refers to the input- images’ IDs. For this case study, we  will only need 
to consider the first three and the very last input- images. For the sake of clarity, 
I simplified their IDs. All the rows between image3 and image152 are summarized by 
the ellipsis “…”. The second column indicates the coordinates of the labeled  faces in 
the input- images.  These coordinates  were provided by BJ’s face- detection algorithm 
(more on this in the main text). The last column gathers the importance values of 
 these  faces as provided by the crowdworkers.  These are the only data we need in 
order to follow the group as it tried to define the relationship between input- images 
and the varying importance values of their  faces.
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data- target relationships to make them fit with certified mathematical 
knowledge requires, sometimes, preparatory efforts. In the subsequent sec-
tion, I  will account for the formulating practices that led to the charac-
terization of a computational model that could satisfactorily retrieve face 
importance values from input- images. As we  shall see, many parallels can 
be drawn between what the Group did to its data- target relationships and 
what other scientists do to the undefined entities they try to characterize. 
In that sense, apart from the fact that they often rely on ground- truth data-
bases, the formulating practices that sometimes take place within computer 
science laboratories may not be very dif fer ent from formulating practices that 
take place within laboratories of biology, anthropology, or physics. In the 
next section of the chapter, I  will link formulating practices with program-
ming practices as defined in chapter 4. As we  shall see, formulating data- target 
relationships can make appear polished mathematical facts that operate as 
scenarios for further programming episodes. Fi nally, I  will consider machine- 
learning techniques as audacious attempts at automating formulating prac-
tices at the cost of more ground- truthing and programming efforts. This last 
ele ment  will make me tentatively deal with what is nowadays called (often 
indiscriminately) “artificial intelligence.”

But first  things first; for the moment, let us go back to November 2013 
at the Lab’s cafeteria.

Ground- Truthing— Formulating

November 2013, at the Lab’s cafeteria: I meet the Group for the very first 
time. As I know almost nothing about image pro cessing, ground truths, and 
saliency detection, this first Group meeting is for me difficult to follow. But 
during the pre sen ta tion of the proj ect, the Group soon shares with me one 
impor tant assumption:

Group meeting, the Lab’s cafeteria, November 7, 2013

CL: “Experiments have shown that saliency of  faces varies according 
to their size and number. Basically, one large face is considered more 
impor tant than many small  faces.”

GY: “And when  there are many  faces, each face ‘loses’ some saliency, so 
to speak.”

FJ: “But when  there are many  faces, they are also smaller, no?”
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GY: “Well, not necessary. You can have one large face on the foreground 
and many  faces in the background.”

FJ: “I see. And the other algorithms  don’t do that?”

SL: “No, they  don’t pay attention to  faces. At least in saliency. And that’s 
precisely the point of including  faces to saliency.”

As I  will find out a few days  later, the experiments CL mentions at the 
beginning of the above transcription come from papers in gaze predic-
tion (Cerf, Frady, and Koch 2009), cognitive psy chol ogy ( Little, Jones, and 
DeBruine 2011), and neurobiology (Dekowska, Kuniecki, and Jaśkowski 
2008) published in peer- reviewed journals.  These papers claim that the rela-
tive size and number of  faces within a given scene tend to affect their attrac-
tion strength. Roughly stated, in a given scene, one large face  will generally 
attract more attention than one small face that itself  will attract more atten-
tion than many small  faces but less attention than, for example, two larger 
 faces. That the importance of  faces is somehow related to their size and 
number within a given image is an impor tant assumption for the Group as 
it further contributes to defining the se lection criteria of the images of the 
new ground truth:

Group meeting, the Lab’s cafeteria, November 7, 2013

CL: “So if it’s OK for you, you can start downloading images. Mean-
while,  we’ll keep working on the code [of the experiment].”

FJ: “Sure.”

CL: “But again, it has to be complex images. And most of them must 
also contain  faces.”

BJ: “And  faces of dif fer ent sizes and number.”

FJ: “You mean, images with many  faces as well?”

BJ: “Yes  because it impacts on their importance. Other wise every body 
 will agree and we  won’t have continuous values.”

How could crowdworkers disagree if the dataset only includes  simple images 
with one centered face or object? As one goal of the Group’s proj ect is to 
refine saliency and make it become more flexible, the images the workers 
 will be asked to label should also give interpretative opportunities. In that 
sense, the recent findings in gaze prediction and neurology are decisive: 
gathering images with more or less  faces of dif fer ent sizes may guarantee 
some healthy disagreement among workers.
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Still dazed by all  these new stories about ground truths and models, I 
soon started downloading images on the Lab’s server. At the second Group 
meeting, on November 14, 2013, I showed the Group sample images just to 
be sure I understood the instructions correctly. As the feedback was positive 
I continued to download photos. On November 16, 2013, nine hundred 
carefully selected complex images  were available on the Lab’s server. But 
the day  after, I received an email from BJ:

Friday, November  17, 2013. Email from BJ to FJ, header “About the 
distribution of  faces”

Hey FJ,

I’ve quickly pro cessed the  faces in the images you selected and binned 
the x axis.  Here is the distribution of our database over number of  faces 
and face size so far.
[see figure 6.3]
 We’ll try to model  things  later so we need to equalize a  little with more 
images with two or more large  faces. So if you can keep on digging for 
such images (say two hundred), that’d be  great.

Best,
BJ

Many questions immediately arose. First, how did BJ manage to count the 
number of  faces and calculate their respective sizes for  every image I put on 
the server? It turned out that BJ had previously worked on a face- detection 
algorithm that does precisely this: detecting, counting, and mea sur ing the 
size of  faces within images.1 Capitalizing on BJ’s previous work on face 
detection was even a reason why this saliency proj ect was launched in the 
first place (see chapter 2). But why would the current distribution impact 
the model the Group  will have to shape  after the crowdsourcing task that 
was not even submitted? This is precisely the question I asked BJ:

Friday, November  17, 2013. Email from FJ to BJ, header “About the 
distribution of  faces”

Sure, no prob lem. But, if I may, why is it so impor tant to equalize at this 
stage of the proj ect?

Best,
FJ
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Saturday, November 18, 2013. Email from BJ to FJ, header “About the 
distribution of  faces”

 Great if you can do it.
It’s just that if face importance  really varies with size and number,  we’ll 
surely need a bigger range of cases to fit the data.

Best,
BJ

At this stage of the chapter, we do not need to understand what “fit the 
data” means (we  will cover this in the next section). Suffice  here to notice 
the projection BJ makes  toward the Group’s forthcoming analy sis of the rela-
tionship between input- images and the importance values of  faces, the one 
small aspect of the output- targets I de cided to cover in this case study. In 
November 2013, the Group does not possess any ground- truth database yet: 
the web application is not finished; the crowdworkers have not labeled any 
images; no coordinates of rectangles have been stored in the Lab’s server; no 
multilevel targets have been post- processed. At this stage,  there is nothing. Or 
is  there? We saw indeed that the Group has an assumption based on papers 
it considered trustworthy: the perceived importance of  faces is somehow cor-
related to their size and number. This assumption suffices to make BJ foresee 
a con ve nient way to connect the output- target relationship of face values 
with— hopefully— some certified mathematical claim that  will, in turn, help 
to qualify it. It is indeed not the first time that BJ and the other members 
of the Group have embarked on the construction of a new algorithm. They 
have done it before— especially the postdoc CL— and know what to expect. 
It is perhaps this habit that pushes them to be on the safe side. If equalizing 
face data can facilitate the  future work that  will consist in automating the 
passage from input- images to output- targets that still need to be constructed, 
it is indeed impor tant to do it.

At the end of chapter 1, I suggested two complementary analytical per-
spectives on algorithms: a “problem- oriented perspective” that should 
inquire into the problematization pro cesses leading to the formation of 
ground truths and an “axiomatic perspective” that should inquire into the 
numerical procedures extracted from already constituted ground truths. The 
distinction between  these two perspectives was motivated by the need to 
better understand the formation of the ground truths from which algorithms 
ultimately derive— hence the “problem- oriented” perspective— while not 
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completely reducing algorithms to  these ground truths— hence the “axi-
omatic” perspective. But I also stipulated, though quite loosely, that both 
perspectives should be intimately articulated as ground- truthing and what I 
now call formulating activities may sometimes overlap, specific numerical 
features being suggested by ground truths (and vice versa). We see  here 
concretely how  these two pro cesses can overlap; the uncertainty related 
to the construction of a ground truth relying on anonymous and scattered 
crowdworkers certainly encourages the development of equalizing habits 
that can further help connect with certified mathematical facts capable of 
specifying a new phenomenon.

Reaching a Gaussian Function

March 2014: the post- processing of the crowdworkers’ rectangular labels is 
now over. The Group fi nally possesses a new ground- truth database gather-
ing input- images and their corresponding multilevel targets (see chapter 2, 
figure 2.8). At this stage, one can say that the Group effectively managed 
to redefine the terms of the saliency prob lem, at least at the “laboratory 
level” (Fujimura 1987). The task of the not yet fully designed algorithm 
is now clear: from the input- images of the ground truth, it  will have to 
retrieve their corresponding targets in the best pos si ble way. The ground- 
truth database is thus the material base that  will allow both the shaping 
of the algorithm as well as its evaluation in terms of precision and recall 
statistical mea sures.

The next move of the Group is to split the ground truth into two subsets: 
a training set and an evaluation set. Only the training set containing two 
hundred images and targets is used to design the computational model. The 
remaining six hundred images and targets are stored in the Lab’s server and 
 will only be used to test the accuracy of the model’s program and compare 
it with other models’ programs already proposed by concurrent laboratories 
(cf. figure 2.9).2 Within the training set, 152 images contain  faces. It is thus 
this subset of the training set that is used to define a way to automatically 
retrieve face importance values from input- images without the help of the 
workers’ labels.

Let us have a closer look on this subset of the training set. What does it 
look like? For the case that interests us  here— the definition of the relation-
ship between input- images and face importance values— the training set 
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concretely looks like a spreadsheet of 152 rows and five columns (only the 
first three columns are represented in the simplified  table 6.2).3

The first column of  table 6.2 refers to the IDs of the input- images, the 
second column refers to groups of four coordinates— each group providing 
information about one face of the input- image (more on this below)— and 
the third column refers to the importance values attributed by the crowd-
workers to each labeled face of the input- images. The data of this Matlab 
spreadsheet— actually, a genuine database—is crucial as it is the material 
base of the still to be defined model that  will have to retrieve face impor-
tance values as provided by the labels of the crowdworkers without the help 
of  these labels. But arranged in such a spreadsheet,  these data remain quite 
confusing. How indeed to discern the relationship between the  faces of 
input- images and their correlated face importance values in such an austere 
classification? Something needs to be done to better appreciate what this 
relationship looks like.

A con ve nient way to get a better grip on this relationship between  faces 
of input- images and their importance values— the still- undefined entity 
the Group tries, precisely, to define—is to make it seeable all at once. But 
how to see  faces and their importance values within one legible document? 
Importance values are numbers so they can be represented as dots within 
a readable drawing— for example, a graph— rather easily. But what about 
 faces? What are they? Technically, within the training database— thanks to 
BJ’s face- detection algorithm— the  faces of input- images are groups of four 
coordinates linked to one image ID. But how then do we make  these groups 

 Table 6.2
Translation 0 of the Group’s training set

Input- images ID
Coordinates of labeled  faces 
(BJ’s model)

Face importance values 
of labeled  faces

image1.jpg [52; 131; 211; 295] [479; 99; 
565; 166] [763; 114; 826; 168]

[0.928] [0.857] 
[0.714]

image2.jpg [102; 181; 276; 306]  
[501; 224; 581; 304]

[0.916] [0.818]

image3.jpg [138; 256; 245; 379]  
[367; 142; 406; 202]

[0.916] [0.636]

… … …

image152.jpg [396; 151; 542; 280] [0.928]
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commensurable with face importance values? One necessary operation is 
to reduce  these groups and translate them into something  else, hopefully 
comparable to the face importance numerical values. In line with its doc-
umented initial assumption regarding the size and number of  faces—an 
assumption that participated in the collection of the data in the first place 
(cf. above)— the Group de cided to summarize  every group of coordinates 
with only two numerical values: a “number- value” and a “size- value.” The 
number- value is provided by BJ’s face- detection algorithm. It refers to the 
absolute number of  faces within each input- image. This value can some-
times be superior to the number of labeled  faces as crowdworkers have not 
always labeled as salient all the  faces within the input- images. The “size- 
value” refers to the size of the  faces labeled as salient by the crowdwork-
ers. Again, BJ’s face- detection algorithm helped to produce  these values as 
it computed the  faces’ sizes as the ratio of the area of the face- detection 
rectangle over the size of the image.  After the Group wrote the appropriate 
scripts in the Matlab Editor to compute  these values with the help of BJ’s 
face- detection algorithm, the spreadsheet of its training set is reor ga nized 
as in  table 6.3.

If this first translation successively reduces each labeled face of input- 
images to two numerical values— a “number- value” (column 2) and a 
“size- value” (column 3)—it remains difficult to compare them with their 
importance values deriving from the workers’ labels. Indeed, how would 
it be possible to represent such dif fer ent  orders of magnitude on the same 
scale? We saw that face importance values can vary between zero and one. 
But what about “number- values” and “size- values”? Number- values can be 
problematic as they can vary from one to ninety- eight. But the real issue 
comes from the size- values that can vary from 0.0003 (smallest labeled face 
of the training set) to 0.7500 (the biggest labeled face of the training set): 
four  orders of magnitude separate the smallest size- value from the high-
est. And six  orders of magnitude separate the smallest size- value (0.0003) 
from the highest number- value (98). With such differences of scale, it is 
extremely difficult to gather all  these values in one readable document.

Yet all  these numerical values possess an impor tant property: they are 
numerical values and can thus be written down, studied, and tested in flat 
laboratories by researchers called mathematicians (as we saw in chapter 5). 
In fact, a  whole subfield of mathe matics— number theory— daily dedicates 
itself to the study of  these flat and dry entities. An impor tant proto number 
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theorist, John Napier, even shaped/discovered what he called, in 1614, 
“logarithm”: the inverse of exponentiation.4 Thanks to this mathematical 
fact that is now a “single sentence statement” (Latour 1987, 21–62), it is 
nowadays easy to translate values of dif fer ent  orders of magnitude and re- 
present them on one same readable drawing. Thanks to the instrument 
of logarithm, both number- values and size- values referring to the  faces of 
input- images can be further translated by the Group into logarithmic values. 
Thanks to this basic operation— imbedded in Matlab— the initial prob lem 
of scale vanishes, and a  whole set of comparable integers now appears in 
the Group’s dataset (see  table 6.4). And the undefined entity “relationship 
between  faces of input images and their importance values” the Group tries 
to describe becomes a  little bit more characterizable.

But still, at this stage, the training set remains hard to read. Whereas the 
Group is mainly interested in the  faces of its training set, the database keeps 
being or ga nized around the IDs of the input- images. This organ ization of 
the data was impor tant at the beginning of the translation pro cess as it 
helped to indicate what BJ’s face- detection algorithm was to look at. But at 
this stage, this image- centered organ ization is cumbersome. It is then time 
for the Group, once again, to reor ga nize its spreadsheet to center it around 
its face- related data: log(number- values), log(size- values), and face impor-
tance values. When put together,  these “triplets” of values give a unique 
“signature” to each of the 266 labeled  faces of the training set (see  table 6.5).

 After this third translation, the training set has become a list of signa-
tures gathering triplets of relatively close values. Though quite common 
and mundane, the efforts undertook by the Group from Translation 0 

 Table 6.3
Translation 1 of the Group’s training set

Input- images ID
number- 
values

size- values of labeled 
 faces

Face importance values 
of labeled  faces

image1.jpg 3 [0.065] [0.014] 
[0.008]

[0.928] [0.857] 
[0.714]

image2.jpg 2 [0.042] [0.012] [0.916] [0.818]

image3.jpg 3 [0.030] [0.0054] [0.916] [0.636]

… … … …

image152.jpg 1 [0.053] [0.928]
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start to pay off:  every labeled face is now described by a unique combina-
tion of numbers. But still, in this list form, it remains hard for the Group 
to discern a relationship among the values of  these triplets: how do face 
importance values interact with both number- values and size- values? Even 
though this list well simplifies the initial spreadsheet, it still has an impor-
tant incon ve nience: it looks like any other list— from shopping lists to 
lists of bond prices. The values within  these lists may differ, but the lists 
themselves have always roughly the same shape: they remain successions 
of lines (Goody 1977, 78–108). How then to grasp the particularity of the 
undefined entity the Group tries to characterize? How to define its shape, 
its unique be hav ior?

 Table 6.4
Translation 2 of the Group’s training set

Input- images ID
log(number- 
values) log(size- values)

Face importance 
values

image1.jpg 0.477 [-1.187] [-1.853] 
[-2.096]

[0.928] [0.857] 
[0.714]

Image2.jpg 0.301 [-1.376] [-1.920] [0.916] [0.818]

Image3.jpg 0.477 [-1.522] [-2.267] [0.916] [0.636]

… … … …

image152.jpg 0 [-1.275] [0.928]

 Table 6.5
Translation 3 of the Group’s training set

Face signatures

1 [0.477; -1.187; 0.928]

2 [0.477; -1.853; 0.857]

3 [0.477; -2.096; 0.714]

4 [0.301; -1.376; 0.916]

5 [0.301; -1.920; 0.818]

6 [0.301; -1.522; 0.916]

7 [0.301; -2.267; 0.636]

…

266 [0; -1.275; 0.928]
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If the forms of lists of numbers are difficult to differentiate,  these lists 
have nonetheless a crucial quality: they can—at least since the second half 
of the seventeenth  century— give form to the values they contain. Indeed, 
when coupled with an appropriate coordinate space, the numbers contained 
by lists can be transformed into points that draw distinguishable shapes. 
As the transformation of lists of values into graphs is nowadays a “single 
sentence statement” part of tacit and necessary knowledge, the Group just 
needs to write the Matlab instruction “scatter(data(:,1), data(:,2), 
data(:,3))” to create the scatterplot of figure 6.4.

 Every labeled face of the training set is re- presented in this Matlab scatter-
plot of log(number- values)— x axis— and log(size- values)— y axis— against 
importance values— z axis, ψ in the plot. At this point, the undefined entity 
the Group tries to characterize starts to get a shape. Its be hav ior begins to 
appear; a genuine phenomenon is being drawn that has specific characteris-
tics. It starts “slowly” with low ψ values before drawing a steep slope. This 
slope then stops to form a kind of ridge before abruptly dropping again. 
The bell shape of this phenomenon might not talk to every one. Yet to the 
Group’s members, who are used to encountering mathematical objects, it 
soon reminds them of a Gaussian function:

Friday April 14, 2014. The terrace of CSF’s cafeteria, discussion with BJ

FJ: But how did you know that face importance was a Gaussian?5

BJ: Well, once we got the plot, it was sure that it was a Gaussian.

FJ: I mean, it could have been something  else?

BJ: Sure, but  here, the data drew a Gaussian.

FJ: But you juggled the data in the first place!

BJ: Yes, but it’s just to make something appear. You have to do  these 
 things; other wise you have nothing to model.

Thanks to this fourth translation of the training set, the Group has a strong 
intuition: the relationship between  faces of input images and their impor-
tance values is surely close to some kind of Gaussian function, a polished 
certified mathematical object whose be hav ior is now decently understood 
and documented. But how could the Group be certain that the phenom-
enon its experiment created  really behaves like a Gaussian function?  After 
all, a Gaussian function is something smooth while the scatterplot the Group 
asked Matlab to draw is quite discontinuous. From a distance, this heap of 
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points may look like a Gaussian function but when one looks closer, its shape 
appears rough and uneven.

This is where Matlab, as a huge repository of certified mathemati-
cal knowledge, is again crucial as the  simple instruction “fit(x.’, y.’,  
‘gauss2’)” allows the Group to verify its intuition by producing other 
graphs and captions (see figure 6.5).

Once again, the training set is translated, trans- formed. Its shape is now 
smooth and homogeneous; it becomes an  actual function. This new transla-
tion of the training set also produces a series of new inscriptions describing 
the junction between the previous rough heap of points and its smooth 
counterpart. Let us have a look at  these inscriptions: What do they refer 
to? The last piece of inscription— “R2 = 0.8567”— indicates that more than 
85   percent of the variability in the z data points that constitute the phe-
nomenon the Group tries to qualify can be described by this mathemati-
cal function. The inscriptions “μ1 = -1.172” and “μ2 = 0.4308” refer to 
the peak of the function. They assert that the xy point [−1.72; 0.4308] cor-
responds to the function’s highest z value. Fi nally, the inscriptions “σ1 = 
0.9701” and “σ2 = 0.7799” indicate the standard deviation of the function 
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along the x axis and y axis, respectively. Altogether, “μ1,” “μ2,” “σ1,” and 
“σ2” form the par ameters of the Gaussian function.

In this chapter, I try to account for the formulating practices required 
for the shaping of an image- processing algorithm (and potentially many 
 others). As a consequence, we do not need to understand  every subtlety 
of  these mathematical objects called Gaussian functions. All we need to 
understand is, first, that Gaussian functions do not come from some 
superior real ity: just as any other mathematical object, Gaussian func-
tions had to be  shaped within flat laboratories and described in written 
claims that had to overcome many  trials to become polished certified facts 
(see chapter 5). Second, we need to understand that thanks to the par-
ameters provided by Matlab— themselves relying on the training set as 
transformed into a list of coordinates (see  table 6.5)— the Group becomes 
able to deduce face importance values as provided by crowdworkers from 
log(number- values) and log(size- values) as provided by the input- images 
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 after being pro cessed by BJ’s algorithm. In other words, the Group can 
now decently retrieve face importance values without any labels. This is 
the consequence of a certified mathematical fact about Gaussian func-
tions. As Matlab reminds the Group  after the fifth translation, any z value 
of this Gaussian function at any point (x,y) can be expressed by the follow-
ing formula:

z = f(x,y) = exp(-((x- μ1)^2/2σ1^2)-((y- μ2)^2/2σ2^2)).

When reor ga nized more elegantly, this formula provided by the certified 
mathematical knowledge embedded in Matlab gives us:

z = f xi ,yi( ) = exp(−
xi − µ1( )
2σ1

2

2

−  
yi − µ2( )
2σ 2

2

2

).

A connection has been made with the flat ecol ogy of mathe matics; thanks 
to this fifth translation and its correlated inscriptions, the Group now pos-
sesses all the ele ments it needs to compute face importance values. With the 
fourth translation, the undefined entity “relationship between face impor-
tance values and  faces” became an observable phenomenon. With this fifth 
translation and the connection it creates with a certified mathematical 
fact, the be hav ior of this phenomenon is describable: for any duets (x, y) 
with coordinates (log[number- value],log[size- value]),  there is a z coordinate 
described by the following equation:

z = f xi ,yi( ) = exp(−
xi − (−1.172)( )
2 0.9701( )2

2

−  
yi − 0.4308( )
2 0.7799( )2

2

).

But how does the parametrized equation of the formula that describes the 
Gaussian function work concretely? How does this equation effectively 
output face importance values close to  those provided by the crowdwork-
ers? Let us consider the first input- image of the training set— the one we 
used to introduce the topic of the case study in figure 6.1. We saw that, 
thanks to BJ’s face- detection algorithms, the  faces of this input- image can 
be described as [0.065; 3], [0.014; 3], and [0.008; 3], the first values of 
 these duets representing the size- value of the face, the second value repre-
senting its number- value. Now, by plugging the log values of  these three 
duets (x1, y1), (x2, y2), and (x3, y3) into the formula provided by the certified 
mathematical knowledge embedded in Matlab (itself deriving from the 
Group’s translations of the training set), one obtains the three following 
equations:
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f x1,y1( ) = exp(− (log 0.065( )− (−1.172))
2(0.9701)2

2

−  
(log 3( )− 0.4308)

2 0.7799( )2
2

) = 0.998

f x2 ,y2( ) = exp(− (log(0.014)− (−1.172))
2(0.9701)2

2

−  
(log(3)− 0.4308)

2(0.7799)2
2

) = 0.779

f x3,y3( ) = exp(− (log(0.008)− (−1.172))
2(0.9701)2

2

−  
(log(3)− 0.4308)

2 0.7799( )2
2

) = 0.633

The values [0.998], [0.779], and [0.633] are the three face- importance val-
ues of the three  faces of input- image1 as computed by the Group’s com-
putational model. We can see that  these values are close but not similar to 
the “original” values [0.928], [0.857], and [0.714] as computed from the 
crowdworkers coordinates. This is the cost but also the benefit of the  whole 
formulation as the Group now possesses a face importance model that can 
retrieve dif fer ent, yet close, face importance values without the help of the 
crowdworkers’ labels.

But the translation pro cess is not over yet.  After the statistical evalua-
tion of the  whole algorithm on the evaluation set (see chapter 2), one last 
operation needs to be done; the Group still has to pre sent its reified object 
within the claim that attests for its existence. This is another advantage of 
formulating practices— more than connecting undefined entities with cer-
tified mathematical facts that help to characterize them, it also allows the 
inclusion of the characterized object inside the text that pre sents it to the 
peers. At this point, I must then quote the passage of the Group’s initially 
rejected manuscript where the computational model for face importance is 
presented:

We use the following function, denoted as G in Eqn. 2, as a model for varying 
importance of  faces in our saliency algorithm.

ψ i
f ≈G si

f ,ni( ) = exp(−
(log si

f( )− µ1)

2σ 1
2

2

−
(log ni( )− µ2 )

2σ 2
2

2

) (2)

 Here, ψ i
f  is the importance values of f  th face in ith image. si

f  and ni are the 
size of the f  th face in ith image and the number of  faces in ith image, respectively. 
Note that si

f  is the relative size compared to the size of the image, therefore it is 
between 0 and 1. The par ameters of the Gaussian fit are μ1 = −1.172, μ2 = 0.4308, 
σ1 = 0.9701. σ2 = 0.7799, and the base of the logarithm is equal to 10.

Our efforts paid off: we fi nally managed to account for  these sentences 
that mix En glish words with combinations of Greek and Latin letters 
divided by equal signs that are widely used by computer scientists when 
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they communicate about their algorithms in academic journals. We first 
had to better understand how mathematical facts and objects come into 
existence. We then had to accept that the power of  these facts and objects 
does not come from a superior real ity but from the mundane formulat-
ing practices that progressively translate and reduce undefined nonmath-
ematical entities— peptides, axons, relationships between values of Matlab 
databases—in order to, eventually, connect them to the flat ecol ogy of math-
ematical knowledge. We also had to better appreciate the extra strength 
 these connections provide to undefined entities: formulating practices— 
and the reductions that go with them— make undefined entities easier to 
 handle, more sharable, comparable, malleable, and enrollable within texts 
claiming for their existence and be hav ior. With all  these ele ments of chap-
ter  5  in mind, we further had to account for how formulating practices 
are expressed in the construction of new image- processing algorithms (and 
potentially many  others). We first saw that the anticipation of  these prac-
tices may sometimes impact on the shaping of ground truths. We then saw 
how  these practices— and all the translations they call for— progressively 
make an undefined entity become a mathematical object capable of being 
described by a formula.  These connections with the flat ecol ogy of mathe-
matics—in fact, genuine transformations into well- documented mathemati-
cal objects— participate in the assemblage of computational models that 
further appear in academic publications. To paraphrase Latour (1999a, 55), 
we saw in this section that mathe matics has never crossed the  great abyss 
between ideas and  things. Yet it often crosses the tiny gap between the 
already geometrical graph of Translation 4 (figure 6.4) and the solid formula 
as provided by Translation 5 (figure 6.5). Once this tiny gap is crossed— and 
this requires many preparatory small gaps— mathe matics provides full addi-
tional strength to the object  under scrutiny.

Yet despite this small victory, something remains mysterious. Indeed, a 
mathematical formula such as the one summarizing the (very small part of) 
the Group’s model within its academic paper is surely power ful as it allows 
us to retrieve face importance values without the data provided by the 
crowdworkers. In that sense, this formula decently describes the be hav ior 
of the phenomenon “relationship between  faces of input images and their 
importance values” that was still an undefined entity at the beginning of 
the formulating pro cess. But in this “formula state,” such a computational 
model cannot make any computer compute anything. In this written form, 
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within the Group’s manuscript, the model might be understandable to 
 human beings, but it is not able to trigger electric pulses capable of making 
computers compute. Yet it somehow needs to; as the per for mances of the 
Group’s model  will also be evaluated on the evaluation set of the ground 
truth, the model must also take the shape of an  actual program. What is 
then the relationship between the mathematical inscriptions that describe 
computational models and the  actual computer programs that effectively 
compute data by means of electric pulses?

Formulating— Programming

The point I want to make in this section is quite  simple: if mathemati-
cal inscriptions that describe computational models in academic papers 
cannot, of course, trigger electrical pulses capable of making computers 
compute  actual data, they nonetheless work, sometimes, as transposable sce-
narios for computer programming episodes.

In chapter 4, we saw that computer programming practices imply the 
alignment of inscriptions to produce knowledge about a remote entity (e.g., 
a compiler, an interpreter, a micropro cessor) that is negatively affected in 
its trajectory. We also saw that programmers constantly need to enroll new 
actants to get around impasses. More importantly for the case that interests 
us  here, we also found that both aligning and contouring actions needed to 
be “triggered” by special narratives that engage  those who enunciate them. 
Building on Lucy Suchman and Bruno Latour, I de cided to call  these perfor-
mative narratives “scenarios.”

Scenarios are crucial as they provide the bound aries of programming 
episodes while enabling them to unfold. But their irritating drawback is 
that while they constitute indispensable resources that set up desirable 
programming horizons, they often tell  little about the actions required to 
reach  these horizons. We experienced this when we  were following DF in 
his small computer programming venture. Even though his scenario stipu-
lated the need for the incrementation of an empty matrix with rectangles 
defined by coordinates stored in .txt files, the scenario said almost nothing 
about how to do this incrementation. The lines of code had to be progres-
sively assembled as this pro cess was required to align inscriptions and to get 
around impasses.
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Yet some scenarios might be more transposable than  others. Let us 
imagine the following programming scenario: “FJ  shall make a computer 
compute the square root of 485,692.” Though quite short, this imaginary 
example can be considered a genuine scenario as it operates a  triple shifting 
out into other space (at my desk) and time ( later) and  toward other actants 
(the Matlab Editor, my having completed the script,  etc.) while also engag-
ing me, the one who enunciated it. How could I reach the horizon I am 
projecting? If I am using Matlab or many other high- level programming 
languages, the program would be the single instruction “sqrt(485692).” 
The passage from the scenario to its completion would thus seem quite 
direct. Let us imagine a trickier scenario: “FJ  shall make a computer com-
pute k-means of five clusters over dataset δ.” How could I reach this horizon? 
For the case of Matlab and several other high- level programming languages, 
the program  will, once again, be the single instruction “kmeans(δ,5)”— 
another straightforward accomplishment.6 Both imaginary scenarios thus 
appear quickly transposable into lines of code; the horizon they establish 
can be reached without many tedious alignments of inscriptions and work- 
arounds of impasses.

Are both imaginary scenarios simpler that the scenario defined by DF in 
chapter 4? It is difficult to say as both square roots of large numbers and 
k-means of five clusters are not so trivial operations.7 Rather, it seems that 
 there is a difference of density: while our imaginary scenarios can be trans-
lated into code almost as they stand, DF’s scenario needs to be completed, 
patched, and refreshed. If nothing seems to stand in between the terms 
of the statements “square root of 485,692” and “k-means of five clusters,” 
many gaps surely separate each term of the statement “empty matrix incre-
mented with coordinates of rectangles.”

The issue is trickier that it seems. One may indeed think that  these differ-
ences of density within programming scenarios come from scenarios them-
selves. One may, for example, think that if DF’s scenario is less transposable 
than our two examples, it is  because it is less precise. But it is actually the 
opposite: whereas “square root of 485,692” and “k-means of five clusters” 
tell us almost nothing about how to perform such tasks, DF’s scenario takes 
the trou ble to specify a succession of actions. Yes,  there are differences of 
density, but no, they are not necessarily related to what is inside scenarios. 
So where do  these differences come from? I believe  these differences of 
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density might be linked to the diffusion of the operations necessary to real-
ize a scenario. My hypothesis, which still needs to be further verified, is that 
the more an operation is common to the community of users and designers 
of programming languages, the less it  will need to be decomposed, trans-
lated, and completed. The most striking example of such diffusion- related 
difference of density within a programming scenario is certainly arithmetic 
operations. What can be more common to users and designers of program-
ming languages than adding, subtracting, dividing, and multiplying ele-
ments? Electronic computers themselves have been progressively designed 
around  these widely distributed operations (Lévy 1995). The terms “add,” 
“subtract,” “multiply,” or “divide”— when part of a scenario— will thus be 
immediately translated into their well- known mathematical symbols “+,” 
“/,” “– ,” and “*.” The same is true of many other widely diffused calculat-
ing operations. “Sine,” “cosine,” “greatest common divisor,” “logarithms,” 
and even sometimes “k- means clustering” are all operations that can be 
straightly transposed from scenarios to programs.

Though quite wild,  these propositions  will allow us to better understand 
how the Group’s computational model can be almost directly transposed 
into an  actual computer program. Let us first consider once again the for-
mula describing the model  shaped by the Group. We saw that the phenom-
enon observed by the Group was a par tic u lar Gaussian function that could 
be described as

zi = f xi ,yi( ) = exp(−
log(xi )− µ1( )

2σ 1
2

2

−
log(yi )− µ2( )

2σ 2
2

2

),

where xi is the size- value of the ith face, yi is the number- value of the ith face, 
and μ1, μ2, σ1, σ2 are the par ameters of the Gaussian fit. When all the par-
ameters of this formula are replaced by the numerical values provided by 
Matlab, the model becomes the following equation:

zi = f xi ,yi( ) = exp(−
log(xi )+1.172( )
1.88218802

2

−
log(yi )− 0.4308( )
1.21648802

2

).

From that point, the Group just needs to transpose this mathematical sce-
nario almost as it is within Matlab Editor. This translation gives us the fol-
lowing line of code:

z=exp(-((log10(x)+1.172)^2/1.88218802)-((log10(y)-0.4308) 
  ^2/1.21648802));
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As we can see,  there is an almost one- to- one correspondence among the 
mathematical operations as expressed within the equation and the mathe-
matical operations as expressed within the program of this equation: “exp,” 
“– ,” “log,” and “+” all keep the same shape. Only the squaring and dividing 
operations had to be slightly modified.

Yet in this state, the Group’s program of the model  will not do anything; it 
still needs to become iterative to pro cess the changing values of x1,2,…,266 and 
y1,2,…,266.  Here again, the scenario as defined by the computational model is 
quickly transposable. We saw in the last section that the training set could 
be reor ga nized as needed, as long as the Group manages to write the appro-
priate Matlab scripts to instruct the training set’s reorganization. To opera-
tionalize its computational model, the Group just needs to or ga nize the 
 faces of its training set according to their size- values and number- values. 
Expressed within the Matlab software environment, this reor ga ni za tion 
takes the (simplified) form of  table 6.6.

This reor ga nized Matlab spreadsheet  will allow the program to know 
what data it should pro cess. With Matlab programming language, the data 
of  every cell of such spreadsheets can be accessed by inscribing a duet of 
values in between curly brackets. For our case, the instruction “cell{1,1}” 
 will ask INT to consider the value [0.065]; the instruction “cell{1,2}”  will 
ask INT to consider the value [3]; and so on.8 Thanks to this referential 
system, it is pos si ble to ask INT to go through all the cells of the spread-
sheet and iteratively plug their values inside the equation. Moreover, the 

 Table 6.6
Simplified view on the Group’s reor ga ni za tion of the training set

1 2

1 [0.065] [3]

2 [0.0143] [3]

3 [0.008] [3]

4 [0.042] [2]

5 [0.012] [2]

6 [0.030] [3]

7 [0.0054] [3]

… … …

266 [0.053] [1]
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spreadsheet has a finite length of [266]. This easily accessible information—
it is the number of rows of the spreadsheet— can be used to instruct INT 
to start at line 1 of the spreadsheet and stop at its end. When all the size- 
values and number- values are pro cessed, they  will fi nally be integrated in 
the spreadsheet for their further use in the definition of the remainder of 
the Group’s algorithm (remember that we only considered one tiny part 
of the Group’s  whole algorithm). The small yet crucial script that permits to 
operationalize the Group’s computational model for face importance takes 
the form of figure 6.6. When run, this small script outputs something close 
to  table 6.7.

At this point, we can say that the Group managed to assem ble a model 
that effectively computes data. The deal is now changed:  every digital 
image can now— potentially—be pro cessed by the Group’s model program 
for face importance evaluation. Of course, it only forms one small aspect 
of the Group’s saliency- detection proj ect that ended up being rejected by 

 Table 6.7
Simplified view on the results of the Matlab script as instructed by the Group’s 
mathematical model

1 2 3

1 [0.065] [3] [0.998]

2 [0.0143] [3] [0.779]

3 [0.008] [3] [0.633]

4 [0.042] [2] [0.964]

5 [0.012] [2] [0.732]

6 [0.030] [3] [0.935]

7 [0.0054] [3] [0.527]

… … … …

266 [0.053] [1] [0.853]

1. for i = 1:length(cell)
2. x = cell{i,1};
3. y = cell{i,2};
4. z = exp(-((log10(x)+1.172)^2/1.88218802)-((log10(y)-0.4308)^2/1.21648802));
5. cell{i,3} = z;
6. end

Figure 6.6
Operational script for the computation of face importance values.
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the reviewers of the conference (before being awarded the “Best Short Paper 
Award” at a smaller conference one year  later). But still, some existence 
must be granted to this tiny entity we carefully followed. For three tortur-
ous parts divided into six chapters, we have looked for  these  things we like 
to call “algorithms”; now we fi nally glimpse one. And in such a prototypi-
cal state, this small piece of algorithm is the uncertain product of account-
able courses of action.

The (Varying) Real ity of Machine Learning

So far in this case study, we saw that although ground- truthing activities—in 
their capacity as producers of training and evaluation sets and enablers of per-
for mance measures— influence formulating activities, expectations regarding 
future formulating requirements may also influence the initial generation of 
ground truths. We then saw how formulating courses of action unfold in situ. 
As we continued to follow the Group in its algorithm proj ect, we saw that 
many practical translations  were necessary to make a training set acquire the 
same form as a mathematical object. Moreover, we saw how the results of 
formulating activities—in this case, a mathematical formula— relate to pro-
gramming activities, the former providing transposable scenarios to the latter.

When we combine  these empirical ele ments with  those of part I and part 
II, we get a quite unusual action- oriented conception of algorithms (see 
figure 6.7). Indeed, it seems that sometimes what we tend to call an algo-
rithm may be the result of three interrelated activities that I call ground- 
truthing, programming, and formulating. Of course,  these activities may not 
be the only ones partaking in the constitution of algorithms (hence the inter-
est in launching other ethnographic inquiries). At least, however, in  these 
days of controversies, we can now realistically account for some of the con-
stitutive associations of algorithms.

Yet this action- oriented conception of algorithms remains unduly nar-
row. Nowadays, is  there such a  thing as a solitary algorithm? As we have seen 
throughout the chapters of this book, the constitution of one algorithm under-
takes the enrollment of many other algorithms. This was noticeable when we 
 were dealing with ground- truthing practices;  whether the se lection of images 
on the Flickr website, their uploading onto the Lab’s server, the administration 
of the crowdsourcing task, or the subsequent pixel- level segmentation of mul-
tilayered salient ele ments,  these moments  were all supported by additional 
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algorithms, among many other  things. The same is true of computer pro-
gramming. Even though this specialized activity currently contributes signifi-
cantly to the constitution of new algorithms, it goes itself through numerous 
algorithms, many of which operate close to the computer’s hardware to help 
interpreters, compilers, or pro cessors compute digital data in appreciable 
ways. Moreover, as we just saw in this chapter, formulating practices are also 
irrigated by algorithms, an especially vis i ble example being BJ’s algorithm that 
reliably counted the number of  faces in an image and calculated their respec-
tive sizes. During the constitution of algorithms, algorithms are everywhere, 
actively contributing to the expression of ground- truthing, programming, 
and formulating activities. Yet we may reasonably assume that, one way or 
another,  these other algorithms also had to be constituted in specific times 
and places, being themselves—if my proposition is right— the products of, at 
least, the same three activities (see figure 6.8).

This conception of algorithms as the joint product of ground- truthing, 
programming, and formulating activities— themselves often supported 
by other algorithms that may have under gone analogue constituting 

??
G-T

F P

Figure 6.7
Schematic of the interpolation of ground- truthing (G- T), programming (P), and for-
mulating (F) activities. The gray area in the  middle of the figure is where algorithms 
sometimes come into existence. The fourth ellipse tagged “??” stands for other 
potential activities my inquiry has not managed to account for.
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processes— complicates the overall picture while making it more intelli-
gible. Indeed, whenever controversies arise over the effect of an algorithm, 
disputants may now refer to this basic mapping and collectively consider 
questions such as: How was the algorithm’s ground truth produced? Which 
formulas operated the transformation of the input- data into output- targets? 
What programming efforts did all this necessitate? And, if deeper reflections 
are required, disputants may excavate another layer: Which algorithms 
contributed to  these ground- truthing, programming, and formulating pro-
cesses? And how  were  these second- order algorithms constituted in the first 
place?  These are the kinds of empowering questions the pre sent book aims 
to suggest to fuel constructive disputes about algorithms— a po liti cal argu-
ment I  will develop further in the next, and concluding, chapter.

??G-T

F P

??G-T

F P

??G-T

F P

??G-T

F P

??G-T

F P

??G-T

F P

??G-T

F P

Figure 6.8
Complementary schematic of constituted algorithms partaking in the constitutive 
activities of other algorithms.
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Again, however, something is still missing. Although the inquiry may 
sharpen the overall picture, it still fails to address a massive issue—an issue 
that may even be the most discussed algorithm- related topic at pre sent 
among the press and academia: machine learning. Machine learning is an 
extremely sensitive topic, sometimes considered in itself (Alpaydin 2010), 
other times in relation to closely related, yet evolving, terms such as “big 
data” (Bhattacharyya et al. 2018) or “artificial intelligence” (Michalski, Car-
bonell, and Mitchell 2014); it is sometimes presented as industrially well 
established (Finlay 2017) and at  others, as still in its infancy (Domingos 
2015); it is sometimes praised for its per for mance (Jordan and Mitchell 
2015), and other times criticized for the danger it (but what is it?) seems 
likely to represent to the collective world (Müller 2015). As soon as it is 
articulated, the term “machine learning” triggers warring feelings of famil-
iarity and ignorance, hopes and fears, utopia and dystopia; a strange mad-
ness that seems very incompatible with the down- to- earth vision I am 
trying to constitute  here. In  these difficult conditions, how do we address, 
even superficially, iterations of machine learning as expressions of lived 
courses of action?

One way to scratch the very surface of machine learning, in the light 
of our empirical and theoretical equipment, may be to make the follow-
ing observation: during the formulating pro cess accounted for in the sec-
tion entitled “Reaching a Gaussian Function,” something crucial happened 
just  after the Group wrote and ran the Matlab instruction “fit (x’, y’, 
‘gauss2’).” Before this quick Matlab computation— which took only a few 
seconds— face values (x), size- values (y), and importance values (z)  were sim-
ply put in the same three- dimensional coordinate space. As we saw, putting 
this together required several translations of the training set, but at a cer-
tain point, it was pos si ble to arrange variables x, y, and z together within the 
same vector space (figure 6.4). At this point,  these values  were attached to 
dif fer ent desires (themselves progressively  shaped during ground- truthing 
pro cesses); x and y values  were the Group’s desired inputs, and z values  were 
its desired outputs. But their respective antecedence and posteriority— there are 
first inputs that should then become outputs— were not operationalized; 
x, y, and z values coexisted si mul ta neously in one mathematical world. 
But  after INT had computed the translated training set by means of the 
instruction “fit (x’, y’, ‘gauss2’)” and printed the correlated graph, 
formula, and par ameters (figure 6.5), number- values and size- values became 
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mathematical inputs, and face importance values became mathematical out-
puts. The Gaussian fit, as the Group happened to call it, made x and y values 
become operands, just as it made z values become the results of an operation. 
From the Group’s perspective, temporality shifted, it was now pos si ble to 
start with input values and end with output values. An operation has been 
implemented to allow sequential transformations; dimensionality has been 
reduced by extracting a before and an  after.

This turning point, a shift in temporality, was enabled by the enrollment 
of and del e ga tion to another algorithm. Indeed, when the Group wrote 
the Matlab instruction “fit,” it asked INT to estimate the par ameters of a 
function—in this case, a Gaussian one— from a series of coordinate points. 
At this precise point for the Group, this was a routine intuitive action that 
required only a handful of characters in the Editor of the Matlab IDE. For 
INT, however, which effectively computed this estimation of par ameters, 
this was a not so trivial endeavor. How did INT do it?

If we refer to MathWorks’ official 2017 documentation, the instruction 
“fit (… ‘gauss2’)” uses a nonlinear least square computerized method 
of calculation to estimate the optimal par ameters of a Gaussian function 
from coordinate points.9 It can thus be inferred that INT does something 
not so dissimilar to, first, defining the error associated with each point and 
then defining a function that is the sum of the squares of  these errors before 
taking the partial derivative of the function’s equation— with re spect to the 
four par ameters— thereby establishing four nonlinear equations that can in 
turn be solved by using, for example, the Newton- Gauss method. Though 
contested by several researchers in the field of statistical signal pro cessing 
(e.g., Hagen and Dereniak 2008; Guo 2011)— thereby making it a genuine 
research topic— the nonlinear least square algorithm is currently a standard 
way of estimating par ameters of Gaussian functions. Further, by writing 
this Matlab- imbedded instruction, the Group deployed another computer-
ized method of calculation— one with its own shaping history—to take an 
impor tant step  toward formulating the relationships between the data and 
the targets of its training set.

That the Group used another algorithm to formulate its new algorithm 
should not surprise us; ground- truthing, programming, and formulating 
activities are full of moments where past algorithms contribute to the con-
stitution of a new algorithm (see figure 6.8). What should beg our atten-
tion, however, is the decisive temporal shift provoked by the nonlinear 
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least square algorithm subtending the Matlab “fit” instruction during the 
formulating pro cess. Before the appearance of the Gaussian fit’s par ameters 
in the Command Win dow, the Group had no means to effectively com-
pute the face importance values without the labels of the crowdworkers; its 
appearance, however, furnished the Group with such an operative ability. 
Can this specific algorithmically based predictive capacity for the constitu-
tion of the Group’s algorithm be our entry point to the topic of machine 
learning?

It is tempting to assert that the algorithm invoked by the Group to 
help formulate its model found the Gaussian function. In fact, it would 
be more appropriate to say that the algorithm found an approximation of 
the initial function that already underlined the reor ga nized training set. 
In other words, given the ground- truth function f(x,y) that, presumably, 
structured the relationship among size- values, number- values, and face 
importance values within the translated training set, the algorithm found 
a useful estimate f′(x,y) that further allowed the production of prediction 
with an admittedly low probability of errors (hence its usefulness). Accord-
ing to Adrian Mackenzie (2017, 75–102), it is this very specific action that 
fundamentally consists of processing— some authors even say “torturing” 
(Domingos 2015, 73)— data to generate an approximation of an initially 
assumed function that is the main goal of machine learning algorithms, 
 whether they are  simple linear regressions or complex deep convolutional 
neural networks. As Mackenzie, building on the authoritative lit er a ture on 
this now widely discussed topic, astutely summarized it:

 Whether they are seen as forms of artificial intelligence or statistical models, 
machine learners are directed to build “a good and useful approximation to the 
desired output” (Alpaydin 2010, 41) or, put more statistically, “to use the sample 
to find the function from the set of admissible functions that minimizes the prob-
ability of errors (Vapnik 1999, 31).” (Mackenzie 2017, 82)

It seems, then, that machine learning algorithms—or “machine learners,” as 
Mackenzie calls them— may be regarded as computerized methods of calcu-
lation that aspire to find approximations of functions that presumably or ga-
nize training and evaluation sets’ desired inputs and outputs, themselves 
deriving from ground- truthing practices (that are still sometimes oriented 
 toward future- formulating practices, as we saw in a previous section of this 
chapter). This general argument allows us to better grasp the role played by 
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the Gaussian fit during the Group’s formulating pro cess. By virtue of Mack-
enzie’s proposition, the Matlab- embedded algorithm enrolled by the Group 
during its formulating pro cess worked as a machine learner, building the 
mathematical approximation of the ground- truth function and its related 
formula (itself working as an easily transposable programming scenario).

Yet if the Matlab least square algorithm can be considered a machine 
learner, is it reasonable to say that  there was machine learning during the 
Group’s formulating episode? From Mackenzie’s point of view as well as 
the perspective of the specialized lit er a ture, it may appear so; as soon as the 
Group ran the “fit” instruction, the proj ect became a machine- learning 
proj ect as its model relied on a statistical learning method that found a 
useful approximation of the desired output. However, from the Group’s 
perspective, the story is more intricate than that as GY and BJ suggested to 
me  after I shared some of my thoughts:

Wednesday, April 12, 2014. Terrace of the CSF’s cafeteria. Discussion 
with GY

FJ: I’m still holding on to the Gaussian fit moment.  … To find the par-
ameters,  there was some kind of machine learning under neath in Mat-
lab, was  there not?10

GY: Huh, yes perhaps. Some kind of regression, I guess.

FJ: Which is a kind of machine- learning technique, no?

GY: Maybe, technically. But I  wouldn’t say that. You know, we saw it was 
a Gaussian anyway, so it was no real machine learning.

FJ: Real machine learning?

GY: Yes. For example, like when you do deep- learning  things, you first 
have no idea about the function. You just have many data, and you let 
the machine do its  things. And  there, the machine  really learns.

Friday, April 14, 2014. Terrace of the CSF’s cafeteria. Discussion with BJ

FJ: So, machine learning is not what  you’ve done with the Gaussian fit?11

BJ: No, no. I mean,  there was a fit, yes. But it was so obvious, and Matlab 
does that very quickly, right? It’s nothing compared to machine learn-
ing. If you look at what  people do now with convolutional neural net-
works, it’s very very dif fer ent! Or with what NK is  doing  here with deep 
learning [for handwritten recognition].  There you need GPUs [graphical 
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pro cessing units], parallelization,  etc. And you pro cess again and again 
a lot of raw data.

 There seems to be some uncertainty surrounding the status of the Gaussian 
fit. If it “technically” can be qualified as machine learning, it is also opposed 
to “real” machine learning, such as “deep learning” or “convolutional neu-
ral networks,” where the machine “ really learns.” It seems that, for GY 
and BJ— and also for CL, as I learned  later on— regarding the Gaussian fit 
moment as machine learning would misunderstand something constitutive 
of it. How should we qualify this uncertainty? How should we seek to grasp 
what, at least for the Group, gives machine learning its specific expression?

An ele ment that, for the Group, seems to subtend the distinction between 
real and less real machine learning is the visual component that puts the 
instruction “fit” into gear: “We saw it was a Gaussian anyway, so it was 
no real machine learning.” The visual component was indeed decisive in 
qualifying the phenomenon the Group tried to formulate;  after several trans-
lations/reductions of the training set, the scatterplot of figure 6.4 literally 
looked like a Gaussian, and this similarity, in turn, suggested the use of the 
“fit” instruction to the Group. The dependent variables— size- values and 
number- values— were hypothesized before the formulating episode (they 
even contributed to the construction of the ground truth), and  these  were 
parsimonious enough to be visualized in an understandable graph. The 
group may well have used a machine learner made by  others, in other places 
and at other times; this del e ga tion was minimal, in the sense that most of 
the work involved in approximating the function had already been under-
taken. This is evidenced by the instruction “gauss2” within the instruction 
“fit,” which oriented INT’s work  toward a 2D Gaussian function with four 
par ameters.

What about deep learning? Why do GY and BJ use it to distinguish 
between real and less real machine learning? It is impor tant to note that in 
the spring of 2014—at the time of our discussions at the CSF’s cafeteria— 
deep learning was becoming a popu lar trend among image- processing 
communities that specialized in classification and recognition tasks. This 
popularity was closely related to an impor tant event that occurred during 
a workshop at the 2012 Eu ro pean Conference on Computer Vision, where 
Alex Krizhevsky presented a model he had developed with Ilya Sutskever 
and Geoffrey Hinton— one of the founding  fathers of the revival of neural 
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networks (more on this  later)— for classifying objects in natu ral images. 
This model had partaken in the 2012 ImageNet challenge (more on this 
 later) and won by a large margin, surpassing the error rate of competing 
algorithms by more than 10   percent (Krizhevsky, Sutskever, and Hinton 
2012). The method Krizhevsky, Sutskever, and Hinton used to design their 
algorithm was initially called “deep convolutional neural networks” before 
receiving the more generic label of “deep learning” (LeCun, Bengio, and 
Hinton 2015; Schmidhuber 2015), pursuant to the terminology proposed by 
Bengio (2009). While this statistical learning method had already been used 
for handwritten digit recognition (LeCun et al. 1989), natu ral language pro-
cessing (Bengio et al. 2003), and traffic sign classification (Nagi et al. 2011), 
this was its first time being used for “natu ral” object classification and 
localization. And in view of its impressive results, a new momentum began 
to flow through the image- processing community as deep learning started 
to become more and more discussed in the academic lit er a ture, modular-
ized within high- level computer programming languages, and adapted for 
industrial applications.

In the Lab, NK was the member most familiar with the then latest advances 
in deep learning as suggested in the above excerpts. He was indeed conduct-
ing his PhD research on the application of deep learning for handwritten 
recognition of fiction writers, and it was through his work— and through 
communications during Lab meetings— that the topic progressively infil-
trated the Lab. As a sign of the growing popularity of  these formulating 
techniques, five doctoral students  were moving  toward deep learning when 
I left the field in February 2016, compared with only one— NK— when I 
arrived. Unfortunately, despite the growing interest in  these techniques 
within the Lab, I did not have the opportunity to explore in detail a deep 
learning formulating episode. However, based on Krizhevsky’s paper, which 
marked the rise of deep learning within digital image pro cessing, it may 
be pos si ble to dig further into—or rather, speculate on— the difference 
suggested by the Group between “real” and “less real” machine learning 
(despite the dangers that such an approach, based on a “purified account,” 
represents; On this topic, see this book’s introduction).

Let us start with the ground truth Krizhevsky, Sutskever, and Hinton 
used to develop their algorithm. If, to a certain extent, we get the algorithms 
of our ground truths (see chapter  2), then what was theirs? Krizhevsky, 
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Sutskever, and Hinton used a ground truth called ImageNet to train and 
evaluate their deep- learning algorithm. ImageNet was an ambitious proj ect, 
initially conceived in 2006 by Fei- Fei Li, who was at that time a professor of 
computer science at the University of Illinois Urbana- Champaign.12 Even 
though the detailed history of ImageNet—an endeavor that would repre-
sent an impor tant step  toward problem- oriented studies of algorithms (see 
chapter 2)— has yet to be undertaken, several academic papers (Deng et al. 
2009, 2014; Russakovsky et al. 2015), journalist reports (Gershgorn 2017; 
Markoff 2012), and a section of Gray and Suri’s (2019, 6–8) book Ghost Work 
nonetheless allow us to make informed assumptions about its genealogy.

It seems then that Fei- Fei Li, at least since 2006, was fully aware of some-
thing that we realized in chapter 2: better ground truths may lead to better 
algorithms. Just like the Group, who was not satisfied with ground truths 
for saliency detection, Li regarded the use of ground truths for the classifica-
tion of natu ral images as too simplistic.13 Through exchanges with Christine 
Fellbaum, who, since the 1990s, has been building WordNet— a lexical data-
base of En glish adjectives, verbs, nouns, and adverbs, or ga nized according 
to sets of synonyms called synsets (Fellbaum 1998)— the idea of associating 
digital images with each word of this gigantic database for computational 
linguistics progressively emerged. In 2007, when Fei- Fei Li joined the fac-
ulty of Prince ton University, she officially started the ImageNet proj ect by 
recruiting a professor, Kai Li, and a PhD student, Jia Deng.  After several 
unsuccessful attempts,14 Fei- Fei Li, Kai Li, and Jia Deng turned to the new 
possibilities offered by the crowdsourcing platform Amazon Mechanical 
Turk (MTurk). Indeed, while images could be quickly scrapped via a keyword 
search engine such as Google or, at that time, Yahoo, reliably annotating the 
objects in  these images required time- consuming  human work. And Ama-
zon MTurk, as a provider of large- scale on- demand microlabor, effectively 
provided such valuable operations at an unbeatable price. Using ingenious 
quality control mechanisms, Li’s team managed to construct, in two and a 
half years, a ground- truth database that gathered 3.2 million labeled images, 
or ga nized into twelve subtrees (e.g., mammal, vehicle, reptile), with 5,247 
synsets (e.g., carnivore, trimaran, snake).15 Despite difficult beginnings,16 
ImageNet has made its way into computer vision research not only through 
the publicization efforts of Fei- Fei Li, Jia Deng, Kai Li, and Alexander Berg 
(Deng et al. 2010, 2011b; Deng, Berg, and Li 2011a) but also through its asso-
ciation with a well- respected Eu ro pean image- recognition competition called 
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PASCAL VOC that has now been followed by ILSVRC.17 And it was in the 
context of the 2012 ILSVRC competition that Alex Krizhevsky, Ilya Sutskever, 
and Geoffrey Hinton developed their deep- learning method that surpassed, 
by far, all their competitors, initiating a wave of enthusiasm that we are still 
experiencing  today.18

But what about the machinery implemented by Krizhevsky, Sutskever, 
and Hinton to develop their deep convolutional neural network algorithm? 
How did they formulate the relationship between the input- data ( here, raw 
RGB pixel-values) and the output- targets ( here, words referring to objects 
pre sent in natu ral images) of the ImageNet ground truth? Let us start with 
the term “neural networks.” We have already encountered it in chapter 3 
when we  were inquiring into the progressive invisibilization of computer 
programming practices. As we saw, the term neural network came from 
McCulloch and Pitts’s 1943 paper, which was itself made vis i ble by its 
instrumental role in von Neumann’s First Draft of a Report on the EDVAC 
(von Neumann 1945). McCulluch and Pitts’s main argument was that a sim-
plified conception of “all- or- non” neurons could act, depending on their 
inputs, as logical operators OR, AND, and NOT and thus, when or ga nized 
into interrelated networks, could be compared to a Turing machine. This 
analogy between logic gates and the inner constituent of the  human brain 
was then used by von Neumann in his Draft, in which he was prompted to 
use unusual terms such as “organs” instead of “modules” and “memory” 
instead of “storage” (surprising analogies that must, crucially, be put into 
the 1945 context when military proj ects such as the ENIAC and the EDVAC 
 were still classified). Yet, as intriguing as they  were, McCulloch and Pitts’s 
neural networks, in their role as logic gates, could not learn; that is, they 
could not adjust the weight of their “synaptic” interconnections according 
to mea sur able errors. It is a merit of Frank Rosenblatt’s perceptron to have 
integrated a potential for repetition and modification of logic gates based 
on algorithmic comparisons between  actual and desired outputs (Domingos 
2015, 97; Rosenblatt 1958, 1962). But the perceptron algorithm that allows 
neural networks to modify their synaptic weight according error signals 
could only learn to draw linear bound aries among vectorized data, mak-
ing it vulnerable to much criticism.19 Nearly twenty years  later, physicist 
John Hopfield, as part of his work on spin glasses, proposed an information 
storage algorithm that allowed neural networks to effectively perform pat-
tern recognition, an achievement that fi nally brought to light this so- called 
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connectionist approach to learning (Domingos 2015, 102–104; Hopfield 
1982). Shortly thereafter, David Ackley, Geoffrey Hinton, and Terrence Sej-
nokwski built on Hopfield’s insights and adapted his deterministic neurons 
into probabilistic ones, by proposing a learning algorithm for Boltzmann’s 
machines (Ackley, Hinton, and Sejnowski 1985; Hinton, Sejnowski, and 
Ackley 1984).20 Then came the real tipping point of this neural network 
revival, with the design of a stochastic gradient retropropagation algorithm 
(called “backprop”) that could calculate the derivative of the network loss 
function and back- propagate the error to correct the coefficients in the lower 
layers, ultimately allowing it to learn nonlinear functions (Rumelhart, Hin-
ton, and Williams 1986).21 This was followed by a difficult period for this 
inventive and cohesive research community, who was once again gradually 
marginalized.22 But this did not include the increasing computerization of 
the collective world from the 2000s and the development of web ser vices, 
both of which led to an explosion of neural networkable data (yet often at 
the expense of invisibilized on- demand microlabor). Krizhevsky, Sutskever, 
and Hinton’s (2012) paper is one expression, among many  others, of this 
renewed interest in neural networks, which goes hand in hand with the 
provision of large ground truths such as ImageNet. Yet besides big data-
based labeled data, Krizhevsky, Sutskever, and Hinton could also rely on a 
stack of well- discussed algorithms (e.g., perceptron, learning for Boltzmann 
machines, backprop) to build their model; they  were able to delegate a 
significant part of their formulating work to other neural network- related 
algorithms considered standard by the connectionist community in 2012.

What about the term “convolutional”? In this specific context, it is 
largely derived from a successful application of the backpropagation algo-
rithm for optimizing neural networks to address an industrial issue: the 
recognition of handwritten postal codes. It was developed by LeCun et al. 
(1989) and aimed to exploit the potential of data expressed as multiple 
arrays— such as RGB digital images “composed of three colour 2D arrays 
containing pixel intensities in the three colour channels” (LeCun, Bengio, 
and Hinton 2015)—to minimize the number of neural network par ameters 
as well as the time and cost of learning. In a nutshell, the operation consists 
of reducing the matrix image into a matrix of lower dimension using a con-
volution product— a classical operator in functional analy sis dating back, 
at least, to the work of Laplace, Fourier, and Poisson.  These convolutional 
layers are then followed by pooling layers, aimed to “merge semantically 
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similar features into one” (LeCun, Bengio, and Hinton 2015, 439)— a typi-
cal way of  doing this operation being, at the time of Krizhevsky, Sutskever, 
and Hinton’s study, to use an algorithm called “max- pooling” (Nagi et al. 
2011). And when Krizhevsky, Sutskever, and Hinton used convolutional 
neural networks, they effectively mobilized  these convolution and pooling 
methods— integral parts of the standard algorithm “library”—to be used at 
their disposal.

Fi nally, what about the term “deep”? When convolutional layers, activa-
tion functions, and max- pooling layers are repeated several times to form 
a network of networks, this qualifies as “deep.” In this case, AlexNet—as 
the algorithm presented in Krizhevsky, Sutskever, and Hinton ended up 
being called— was the very first neural network to integrate five convolu-
tional layers in conjunction with three fully connected layers (Krizhevsky, 
Sutskever, and Hinton 2012, 2).

Though impor tant, the technical features of the algorithm developed by 
Krizhevsky, Sutskever, and Hinton are not central to the proposition I wish 
to make  here. It is more impor tant to grasp the overall algorithmic machin-
ery that they mobilized to formulate the relationships between their input- 
data and output- targets. Consider Boltzmann machines, backpropagation, 
convolutional networks, and max- pooling: although  these algorithms  were 
not mainstream in the image- processing and recognition community—as 
they came from an often marginalized connectionist tradition— they none-
theless constituted a relatively stable infrastructure that could be mobilized 
to find approximations of functions within large, yet reliable, training sets. 
The work of Krizhevsky, Sutskever, and Hinton was undoubtedly impressive 
in many re spects. Nonetheless, they  were able to capitalize on a modular 
algorithmic infrastructure capable of operating, at least theoretically, as a for-
mulating machine (see figure 6.9).

Yet one impor tant question remains: How did Krizhevsky, Sutskever, and 
Hinton actually get their input- data pro cessed by their audacious yet stan-
dard algorithmic machinery? How did they effectively produce a function 
approximation? This is where another crucial ingredient emerges (in addi-
tion to the ImageNet ground truth and the more or less ready- to- use pack-
age of connectionist algorithms): Graphics Processing Units (GPUs). Indeed, 
the machinery of deep convolutional neural networks requires a lot of 
computing power. However, as Krizhevsky, Sutskever, and Hinton  were pro-
cessing images— that is, arrays containing pixel intensities— they  were able 
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to get some help from specially designed integrated cir cuits called GPUs 
(in this case, two NVIDIA GTX 580 3GB GPUs). It was necessary, however, 
to interact with  these computing systems in such a way that allowed them 
to adequately express convolutional neural networks (and their  whole 
algorithmic apparatus). This may be Krizhevsky, Sutskever, and Hinton’s 
most impressive achievement, and it should not be underestimated. They 
may have had a large and trustworthy ground truth made by  others, and 
they may also have had a rich and modulatory algorithmic infrastructure 
progressively designed by a vivid and supportive community of connec-
tionists; all of  these ele ments had yet to be rendered compatible with the 
ascetic environment of computers. And, if we refer to Cardon, Cointet, and 
Mazières’s interview of a well- respected researcher in computer vision:

[Alex Krizhevsky] ran huge machines, which had GPUs that at the time  were 
not  great, but that he made communicate with each other to boost them. It was 
a completely crazy machinery  thing. Other wise, it would never have worked, a 
geek’s skill, a programming skill that is amazing (Cardon, Cointet, and Mazières 
2018; my translation).

Besides the ground- truthing efforts made by Fei- Fei Li’s team and the algo-
rithmic infrastructure implemented by previous connectionist researchers, 
Krizhevsky, Sutskever, and Hinton also had to engage themselves in tre-
mendous programming efforts to propose their deep learning algorithm: 
an “amazing” venture. Yet,  after  these efforts, and prob ably many retrofit-
ting operations, they did manage to formulate a monster function with 
sixty million par ameters (Krizhevsky, Sutskever, and Hinton 2012, 5).

When we compare the not quite machine learning of the Group’s Gauss-
ian fit with the real machine learning of Krizhevsky, Sutskever, and Hinton’s 
deep convolutional neural networks, what do we see? Beyond the obvious 
differences, notably in terms of algorithmic complexity, an impor tant simi-
larity stands out: both lead to a roughly similar result; that is, an approxi-
mation of their respective assumed ground- truth functions. The function 
produced by the machine learner invoked by the Group may only have 
four small par ameters, but it ends up transforming inputs into operands 
and outputs into results of an operation, just like Krizhevsky, Sutskever, 
and Hinton’s sixty- million- parameter function does. Both machine learners 
approximate the assumed function organ izing the data of their respective 
ground truths, thus remaining subordinate to them.
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However, despite this impor tant similarity, the two machine learners dif-
fer in that they emanate from differentiated pro cesses; while the Gaussian 
fit takes over for only a brief moment, following manual translations that 
can be followed and accounted for, the machinery of Krizhevsky, Sutskever, 
and Hinton takes over much of the formulation of the training set. Whereas 
the Group must assume dependent variables, then translate/reduce its train-
ing sets according to  these assumptions to progressively access a certified 
mathematical statement— here, a 2D Gaussian— Krizhevsky, Sutskever, and 
Hinton can delegate this formulating work to an algorithmic infrastructure. 
Yet again, if  there has been automation of a significant part of the formulating 
activities, it is crucial to remember that this was at the cost of a symmetrical 
heteromation of the ground- truthing and programming activities. More than 
five years of ground- truthing ventures by Fei- Fei Li and her team as well 
as countless hours of programming work undertaken by Alex Krizhevsky 
(according to Cardon, Cointet, and Mazières 2018) have made it pos si ble 
to automate the formulation of the relationship between input- data and 
output- targets, thereby rendering the former operands and the latter the 
results of an operation.

Speculating on  these ele ments, we might be tempted to address machine 
learning— despite its  great diversity—as unfolding along a continuum (figure 
6.10). Machine learners make approximations of functions, but perhaps, the 
more their invocation relies on the stacking of other algorithms— operating 
as an infrastructure that automates the formulating activities— the more 
they constitute machine learning. According to this perspective, the term 
“machine learning” no longer refers only to a class of statistical techniques 
but now also includes a practice (and perhaps, sometimes, a habit) of del e ga-
tion, requiring an appropriate infrastructure that itself touches on ground- 
truthing and programming issues.

This tentative requalification of machine learning, as a par tic u lar instance 
of formulating activities, may allow us to appreciate the issue of inscruta-
bility in an innovative way. Instead of regarding the growing difficulty in 
accounting for the pro cesses that have led to the formation of a machine- 
learned approximation of a ground- truth function as a limit, this conception 
of machine learning may see it as consubstantial with real machine learn-
ing: the more machine learning, the more del e ga tion, and the more difficult 
it becomes to inspect what has led to the formation of the mathematical 
operation allowing the transformation of inputs into outputs. Yet— and this 
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is the real promise of my speculative proposition— real machine learning’s 
native inscrutability may have to be paid for by more ground- truthing and 
programming efforts, both of which are scrutable activities (as we saw in 
part I and part II).

I certainly do not  here aspire to enunciate general facts;  these tentative 
propositions are mainly intended to suggest further inquiries. This is even 
truer given that machine learning is both much discussed and very  little 
studied, at least historically and so cio log i cally. Yet as suggested by Jones 
(2018) and Plasek (2018), given machine learning’s growing importance in 
the formation of algorithms, it is more crucial than ever to investigate the 
historical and con temporary  drivers of this latest expression of formulating 
activities.

* * *

 Here in part III, I tried to document the progressive shaping of a compu-
tational model in the light of the ele ments presented in part I and part II. 
Given that what I ended up calling “formulating practices” dealt with the 
manipulation of mathematical propositions, we first had to better under-
stand mathematical facts and their correlated objects. Where do they come 
from? How are they assembled, and why do computer scientists need them? 
To answer  these preliminary questions, we had to temporarily distance our-
selves from many accounts of mathe matics: our tribulations in chapters 3 
and 4 taught us indeed to be suspicious of terms such as “thoughts,” “mind,” 
or “abstraction.” In chapter 5, inspired by several STS on mathe matics, we 
privileged a down- to- earth starting point: at some point in their existence, 
mathematical propositions can be regarded as written claims that try to 
convince readers. This initial assumption allowed us to consider the striking 

Group’s Gaussian fit Krizhevsky et al.’s deep ConvNets

Reality of machine learning

Inscrutability of the operative function

Required ground-truthing efforts

Required programming efforts

Automation of the formulating activities

Delegation to an algorithmic infrastructure– +

Figure 6.10
Schematic of machine learning considered a continuous phenomenon.



280 Chapter 6

similarity between mathe matics and the other sciences; the written claims 
made by both mathematicians and scientists must overcome many  trials to 
become, eventually, accepted facts. Instead of existing as some fundamen-
tal ingredient of thought, mathematical knowledge progressively emerged 
as a huge, honorable, and evolving body of certified propositions.

We then had to consider the objects that  these certified mathematical 
propositions deal with: Are they similar to scientific objects? By fictitiously 
comparing the work carried out in a laboratory for biomedicine with the work 
carried out in a laboratory for algebraic geometry, we realized that, yes, scien-
tific and mathematical objects can be considered quite similar. In both cases, 
despite topological differences (the mathematical laboratory being often 
“flatter” and “dryer” than the biomedical one), experiments, instruments, 
and alignments of inscriptions—in short, laboratory practices— progressively 
led to the shaping of scientific objects, the properties and contours of which 
became, in turn, topics of papers aimed to convince skeptical readers.

The striking similitude between scientific and mathematical objects 
prompted us, in turn, to consider why mathematical objects often partici-
pate in the shaping of nonmathematical scientific objects. Still supported 
by STS works on mathe matics, we realized that the combinatorial strength 
of mathe matics derives largely from mundane translation practices that 
progressively reduce entities to make them fit with the flat and dry ecol ogy 
of mathematical knowledge. By means of such reductions, scientists render 
the entities they try to characterize as easier to  handle, more sharable, more 
comparable, more malleable, and more enrollable within written claims try-
ing to convince colleagues of their reified existence.  These ele ments fi nally 
allowed us to define formulating practices as the empirical pro cess of trans-
lating undefined entities to assign them the same form as already defined 
mathematical objects.

We then tried to use  these introductory ele ments to analyze a formulat-
ing episode that took place within the Lab. We started by considering how 
ground- truthing practices— especially the initial collection of the dataset— 
may sometimes function as a preparatory step for forthcoming formulat-
ing practices. This first ele ment made us appreciate the need for a close 
articulation between the “problem- oriented perspective on algorithms” we 
initiated in chapter 2 and the “axiomatic perspective on algorithms” we 
expanded on in chapter 6.
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We then inquired into the formation of one of the Group’s computa-
tional models. We first documented the many translations and reductions 
of the Group’s training set; from a messy Matlab database, the training set 
progressively evolved into a list of single values that the Group could trans-
late into a scatterplot whose shape expressed a singular phenomenon. The 
Group’s strong intuition that this phenomenon looked like a Gaussian func-
tion supported the further translation of the scatterplot into a graph that 
could, in turn, be expressed as a parametrized formula, thanks to centuries 
of certified mathematical propositions, among many other  things.

We then saw that, although mathematical inscriptions describing com-
putational models in academic papers cannot, of course, trigger electric 
pulses capable of making computers compute  actual data,  these mathemati-
cal inscriptions can nonetheless institute transposable scenarios for computer 
programming episodes. This ele ment was crucial as it completed the con-
nections among the three gerund- parts of this inquiry. Indeed, it seems that 
formulating practices rely on, and sometimes influence, ground- truthing 
practices that themselves are supported by programming practices that are 
themselves, sometimes, irrigated by the results of formulating practices. A 
 whole action- oriented conception of algorithms started to unfold; what we 
like to call an algorithm may sometimes be the result of  these three inter-
related activities I  here call ground- truthing, programming, and formulating.

Speculating on this, we fi nally addressed the widely discussed yet socio-
logically little- investigated topic of machine learning. Based on some (few) 
empirical clues regarding the varying real ity of machine learning, I made 
the following, tentative, proposition: it may be that machine learning, once 
considered a lived experience, consists of the audacious capacity to automate 
formulating pro cesses. However, this recently acquired habit may rely on 
increasing ground- truthing and programming efforts, the springs of which 
would benefit from further so cio log i cal studies.





If you want to understand the big issues, you need to understand the everyday 
practices that constitute them.

— Suchman, Gerst, and Krämer (2019, 32)

Constituent power thus requires understanding constitution not as a noun but a 
verb, not an immutable structure but an open procedure that is never brought to 
an end.

— Hardt (1999, xii)

 There was a follow-up of the work required to ground the veracity of a 
computational model for digital image pro cessing whose academic article 
was provisionally rejected (chapter 2), a description of the actions deployed 
to write a short Matlab program (chapter 4), and an analy sis of the shaping 
of a four- parameter formula abstracted from a small training dataset (chap-
ter 6).  These empirical ele ments might seem quite tenuous when compared 
with the ogre to whom this book is explic itly addressed: algorithms and 
their growing contribution to the shaping of the collective world.

And yet, this book is nonetheless driven by a certain confidence. If I 
did not believe in its con ve nience, I simply would not have written (or at 
least published) it. What justifies such confidence? Which way of thinking 
supports such a presumption of relevance? In this conclusion, it is time to 
consider this inquiry’s half- hidden assumptions regarding the po liti cal sig-
nificance of its results, however provisional they may be.

Catching a Glimpse, Inflating the Unknown

In the introduction, I mentioned some of the many con temporary so cio log i-
cal works on the effects of algorithms, and I assumed  these works progressively 

Conclusion
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contributed to making algorithms become  matters of public concern. I then 
suggested that the current controversies over algorithms call for composition 
attempts. As algorithms are now central to our computerized socie ties while 
engaging in moral and ethical issues, their very existence entails constructive 
negotiations. I then suggested that the ground for  these contentious com-
promises needs to be somewhat prepared or, at least, equipped. As it stands, 
the negative invisibility (Star and Strauss 1999) of the practices under lying the 
constitution of algorithms prevents from grasping  these entities in a compre-
hensive way; it is difficult, indeed, to make changes on pro cesses that have 
no material thickness. I then suggested that one way— among other pos si ble 
ones—to propose refreshing theoretical equipment was to conduct so cio log i-
cal inquiries in collaboration with computer scientists and engineers in order 
to document their work activities. This may lead to a better understanding 
of their needs, attachments, issues, and values that could help disputing par-
ties to start negotiate, as Walter Lippmann (1982, 91) said, “ under their own 
colors.”

This was an unpre ce dented effort. While I could build on several STS 
authors dealing, among other  things, with scientific and mathematical 
practices, I have most often, to be fair, been left to my own devices. How-
ever, it was a formative exercise that forced me, beyond the general frame-
work proposed by the “laboratory study” genre, to propose methodologies 
and concepts— especially in chapters 1, 3, and 5— that I believe are well 
adapted to the analy sis of computer science work. The careful and fastidi-
ous unfolding of courses of action allowed me to document the progressive 
formation of entities— ground truths, programs, and formulas— aggregating 
choices, habits, objects, and desires. Moreover, it seemed that the congru-
ence of  these entities and the practices involved in their shaping form, at 
least sometimes and partially, other entities we tend to call algorithms.

Nevertheless, this analytical gesture suffers from a certain asymmetry: on 
the one hand, a small ethnographic report resulting from a PhD thesis, and 
on the other hand, a  whole industry that is constantly growing and innovat-
ing. With such  limited means, the pre sent investigation could only glimpse 
the irrigation system of algorithms in their incredible diversity. Worse, by 
shedding new light on a very  limited part of the constituent relationships of 
algorithms, this inquiry suggested a continent without saying much about it. 
What about the courses of action involved in getting algorithms out of the 
laboratories, incorporating them into commercial arrangements, integrating 
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them into software infrastructures, modifying their inner components, main-
taining them, improving them, or cursing or loving them? By the very fact 
of showing that it was pos si ble to bring algorithms back to the ground and 
consider them products of mundane amendable pro cesses, this investigation 
prob ably promised more than it delivered. What value can be attributed to 
an inquiry that suggests more than asserts?

An Insurgent Document

One can start by stressing the protesting subtext of this investigation. Even 
if it did not wish to criticize con temporary social studies on algorithms— 
because they help us to be concerned by our “algorithmic lives” (Mazzotti 
2017)— the pre sent inquiry’s approach and results nonetheless take a stand 
against a habit of thought  these studies sometimes tend to instill.

This habit, briefly mentioned in the introduction, consists in consider-
ing algorithms from an external position and in the light of their effects. 
I have said it over and over again, this posture is impor tant as it creates 
po liti cal affections. However, by becoming generalized, it also comes up 
against a limit that takes the form of a looping drama. The argument, ini-
tially developed by Ziewitz (2016), is the following: while salutary in many 
ways, the recent proliferation of studies of the effects of algorithms insidi-
ously tends to make them appear autonomous. Increasingly considered 
from afar and in terms of the differences they produce, algorithms slowly 
start to become stand- alone influential entities. This is the first act of the 
algorithmic drama, as Ziewitz calls it: algorithms progressively become, at 
least within the social science lit er a ture, power ful floating entities.

Moreover, once the networks allowing them to deploy and persevere are 
overlooked, algorithms also become more and more mysterious. Indeed, 
according to this risky standpoint, what can  these power ful entities be made 
of? As the study of the effects of algorithms tends to be privileged to the 
study of what supports and makes them happen,  these entities appear to be 
made of theoretical, immaterial, and abstract ingredients, loosely referred 
to as mathe matics, code, or a combination of both. Having no grip on what 
 these packages contain, complexity is easily called for help: What ever the 
mathe matics or the code that form algorithms may refer to, algorithms 
have to be highly complex entities since they are abstract and power ful. 
How can something be distributed, evanescent, and influential at the same 



286 Conclusion

time? This is the kind of question induced—in hollow—by the multiplica-
tion of studies on the effects of algorithms, surreptitiously introducing the 
second act of the algorithmic drama: algorithms become inscrutable. The end 
result is a disempowering loop, for as Ziewitz (2016, 8) wrote, “the opacity 
of operations tends to be seen as a new sign of their influence and power.” 
The algorithmic drama surreptitiously unfolding within the social science 
landscape is thus circular: algorithms are power ful  because they are inscru-
table,  because they are power ful,  because they are inscrutable  …

The pre sent investigation goes against this trend (which yet remains 
impor tant and valuable). Instead of considering algorithms from a distance 
and in light of their effects, this book’s three case studies— with their theo-
retical and methodological complements— show that it is in fact pos si ble 
to consider algorithms from within the places in which they are concretely 
 shaped. It is therefore a fundamental, yet fragile, act of re sis tance and organ-
ization. It challenges the setup of an algorithmic drama while proposing 
ways to renew and sustain this challenge. As it aims to depict algorithms 
according to the collective pro cesses that make them happen, this inquiry 
is also a constituent impetus that challenges a constituted setup. Again, 
 there is no innocence.

All the credit, in my opinion, goes to phi los o pher Antonio Negri for 
having detected the double aspect of insurgent acts. In his book Insurgen-
cies: Constituent Power and the Modern State, Negri (1999) nicely identifies 
a fundamental characteristic of critical gestures: they are always, in fact, 
the  bearers of articulated visions. It is only from the point of view of the 
constituted setup and by virtue of the constitutionalization pro cesses that 
 were put it in place that insurgent impulses seem disjointed, incomplete, 
and utopian. Historically, and philosophically, the opposite is true: beyond 
the appearances, the constituted power is quite empty as it mainly falls 
back on and recovers the steady innovations of the constituent forces that 
are opposed to it. This argument allows Negri to affirm, in turn, that far 
from representing marginal and disordered forces to which it is necessary, 
at some point, to put an end—in the manner of a Thermidor— constituent 
impetuses are topical and coherent and represent the permanent bedrock 
of demo cratic po liti cal activities.

Though this book does not endorse all of Negri’s claims regarding the 
concept of constituent power,1 it is well in line with Negri’s strong proposi-
tion that the po liti cal, in the sense of politicization pro cesses, cannot avoid 
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insurgent moves. By suggesting in ter est ing, and surprising, bridges with the 
pragmatist tradition,2 Negri (1999, 335) indeed affirms that “the po liti cal 
without constituent power is like an old property, not only languishing but 
also ruinous, for the workers as well as for its owner.” And that is where the 
po liti cal argument of this book lies; it offers an alternative insurgent view 
on the formation of algorithms in order to feed arguments and suggest 
renovative modes of organ ization.

But if this book can be seen as an act of re sis tance and organ ization that 
intends to fuel and lubricate public issues related to algorithms by propos-
ing an alternative account of how they come into existence, why not call 
it “the constituent of algorithms”? Why did I deliberately choose the term 
“constitution,” seemingly antithetical to the insurgent acts that feed politi-
cization pro cesses? This is where we must also consider this investigation as 
what it is materially: an inscription that circulates more or less. We find  here 
a notion that has accompanied us throughout the book. Thanks to their 
often durable, mobile, and re- presentable characteristics, inscriptions con-
tribute greatly to the continuous shaping of the collective world. And like 
any inscription, due to what I have called “Dorothy Smith’s law” (cf. intro-
duction), this inscribed volume seeks to establish one real ity at the expense 
of  others. Once again, as always,  there is no innocence: by expressing realities 
by means of texts, inscriptions also enact  these realities. A text, however 
faithful— and some texts are definitely more faithful than  others—is also a 
wishful accomplishment.

The fixative aspect of this investigation, which comes from its very 
scriptural form, should not be underestimated. This is even a limit, in my 
opinion, to Negri’s work on constituent power, however in ter est ing and 
thorough it may be. Although insurrectional impetuses form the driving 
force of po liti cal history—we can keep that— they are nonetheless, very 
often, scriptural acts that contain a foundational character.3 The term “con-
stitution” thus appears the most appropriate; if this inquiry participates in 
the questioning of a constituted setup, it remains constitutive, in its capac-
ity as an inscription, of an affirmation power.

An Impetus to Be Pursued

However, nothing prevents this insurgent document from also being com-
plemented and challenged by other insurgent documents. It is even one of 
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its main ambitions: to inspire a critical dynamic capable of making algo-
rithms ever more graspable. This was the starting point of this investiga-
tion, and it is also its end point: to learn more about algorithms by living 
with them more intimately. And  there are certainly many other ways to do 
just that.

Such alternative paths have been suggested throughout the book in both 
its theoretical and empirical chapters. Chapter 1, in introducing the meth-
odology of the inquiry, also indicated ways of organ izing other inquiries 
that are grounded in other places and situations. For example, it would be 
im mensely in ter est ing if an ethnographer integrated the team of a start-
up trying to design and sell algorithm- related products.4 With regard to 
chapter 2, systematic investigations on the work required for the concep-
tion, compilation, and aggregation of academic and industrial ground 
truths would certainly help to link algorithms with more general dynamics 
related, for example, to the emergence of new forms of on- demand  labor. 
Such an investigative effort could also build analytical bridges between cur-
rent network technologies that support the commodification of personal 
data and, for example, blockchain technology which is precisely based 
on a harsh criticism of this very possibility.5 In chapter 3, when it came 
to the progressive setting aside of programming practices from the 1950s 
onward, more systematic sociohistorical investigations of early electronic 
computing proj ects could ignite a fresh new look at “artificial intelligence,” 
a term that, perhaps, has built on other similar invisibilizations of work 
practices.6 With regard to chapter 4 and the situated practices of computer 
programming, conducting further so cio log i cal investigations on the orga-
nizational and material devices mobilized by programmers in their daily 
work could contribute to better appreciating this specialized activity that is 
central to our contemporary societies. Programming prac ti tion ers may, in 
turn, no longer be considered an esoteric community with its own codes 
but also, and perhaps above all, differentiated groups constantly exploring 
alternative ways to interact with computers by means of numbered lists of 
instructions. In chapter 5, although it was about operationalizing a spe-
cific understanding of mathematical knowledge, the reader  will certainly 
have noticed the few sources on which my propositions  were based. It 
goes without saying that more so cio log i cal analyses of the theoretical work 
under lying the formation of mathematical statements is, in our increas-
ingly computerized world, more impor tant than ever. Fi nally, concerning 
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formulating practices, as outlined at the end of chapter 6, analyzing the 
recent dynamics related to machine learning in light of the practical pro-
cesses that make them exist could lead to considering the resurrected prom-
ises of artificial intelligence through a new lens: What are the costs of this 
intelligence? How is it artificial? What are its inherent limits?  These are 
urgent topics to be considered at the ground level, not only to fuel contro-
versies but also, perhaps (and always temporarily), to close them.

For now, we are still far from such a generalized sociology of algorithms 
this book hopes to suggest. We are only at the very beginning of a road that, 
if we want to demo cratically integrate the ecol ogy of algorithms into the 
collective world, is a very long one. With this book, beyond the presented 
ele ments that, I hope, have some value in themselves, one can also see an 
invitation to pursue the investigation of the mundane work under lying the 
formation and circulation of algorithms—an open- ended and amendable 
constitution, in short.





actant designates any par tic u lar  human or nonhuman entity. The notion was devel-
oped by semiotician Algirdas Julien Greimas before being taken up by Bruno Latour 
(2005) to expand agency to nonhuman actors and ground his so cio log i cal theory, 
often labeled “actor- network theory.”

algorithm is what this book tries to define in an action- oriented way. In view of the 
inquiry’s empirical results, algorithms may be considered, but certainly not reduced 
to, uncertain products of ground- truthing, programming, and formulating activities.

algorithmic drama refers to the impasse threatening critical studies of algorithms. 
By mainly considering algorithms from a distance and in terms of their effects,  these 
studies take the risk of being stuck in a dramatic loop: Algorithms are power ful  because 
they are inscrutable,  because they are power ful,  because they inscrutable, and so on. 
The term “algorithmic drama” was initially proposed by Malte Ziewitz (2016).

association refers to a connection, or a link, made between at least two actants. An 
association is an event from which emanates a difference that a text can, sometimes, 
partially account for.

BRL is the acronym of Ballistic Research Laboratory, a now- dismantled center dedi-
cated to ballistics research for the US Army that was located at Aberdeen Proving 
Ground, Mary land. The BRL played an impor tant role in the history of electronic 
computing  because the ENIAC proj ect was initially launched to accelerate the analy-
sis of ballistic trajectories carried out within the BRL’s premises—in collaboration 
with the Moore School of Electrical Engineering at the University of Pennsylvania.

CCD and CMOS are acronyms for charge- coupled device and complementary metal- oxide 
semiconductor, respectively. Through the translation of electromagnetic photons into 
electron charges as well as their amplification and digitalization,  these devices enable 
the production of digital images constituted of discrete square ele ments called pixels. 
Or ga nized according to a coordinate system allowing the identification of their loca-
tions within a grid,  these discrete pixels—to which are typically assigned eight- bit 
red, green, and blue values in the case of color images— allow computers equipped 
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with dedicated programs to pro cess them. Both CCD and CMOS are central parts of 
digital cameras. Although they are still the subject of many research efforts, they are 
now industrially produced and supported by many norms and standards.

chain of reference is a notion initially developed by Bruno Latour and Steve Wool-
gar (1986) to address the construction of scientific facts. Closely linked with the 
notion of inscription, a chain of reference allows the maintenance of constants, 
thus sometimes providing access to that which is distant. Making chains of refer-
ence vis i ble, for example, by describing scientific instrumentations in laboratories 
allows appreciation of the materiality required to produce certified information 
about remote entities.

cognition is an equivocal term, etymologically linked with the notion of knowledge 
as it derives from the Latin verb cognōscere (get to know). To deflate this notion, 
which has become hegemonic largely for po liti cal reasons, this inquiry—in the wake 
of the work of Simon Penny (2017)— prefers to attribute to it the more general pro-
cess of making sense.

cognitivism is a specific way to consider cognition. For contingent historical rea-
sons, the general pro cess of making sense has progressively been affiliated with the 
pro cess of gaining knowledge about remote entities without taking into account the 
instrumentation enabling this gain. The metaphysical division between a knowing 
subject and a known object is a direct consequence of this nonconsideration of the 
material infrastructure involved in the production of knowledge. This, in turn, has 
forced cognitivism to amalgamate knowledge and real ity, thus making the adaequa-
tio rei et intellectus the unique, though nonrealistic, yardstick of valid statements and 
be hav iors.

collective world is the immanent pro cess of what is happening. It is close to Wittgen-
stein’s definition of the world as “every thing that is the case” (Wittgenstein 1922). 
The adjective “collective” seeks to underlie the multiplicity of entities involved in 
this generative pro cess.

Command Win dow is a space within the Matlab integrated development environment 
(IDE) that allows programmers to see the results of their programming actions on 
their computer terminal.

composition is the focus of this inquiry; that in which it is trying, at its own level, 
to participate. Close to compromise, composition expresses a desire for commonal-
ity without ignoring the creative readjustments such a desire constantly requires. 
Composition is an alternative to modernity in that its desire for universality is based 
on comparative anthropology, thus avoiding—at least potentially— the traps of 
ethnocentrism.

computationalism is a type of cognitivist metaphysics for which perceptual inputs 
take the shape of ner vous pulses pro cessed by  mental models that, in turn, output 
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a dif fer ent numerical value to the ner vous system. According to computationalism, 
agency is considered the output of both perception and cognition pro cesses and 
takes the form of bodily movements instructed by ner vous pulses. This conception of 
cognition is closely related to the computational meta phor of the mind that establishes 
an identity relationship between the  human mind and (programmed) computers.

constitution refers to both a pro cess and a document. The notion is  here preferred to 
the more traditional one of construction  because it preserves a fundamental tension 
of so cio log i cal ventures: to describe and contest. The term “constitution” reminds us 
that a real ity comes into being to the detriment of another.

course of action is an accountable sequence of gestures, looks, speeches, move-
ments, and interactions between  human and nonhuman actants whose articulations 
sometimes end up producing something (a piece of steel, a plank, a court decision, an 
algorithm,  etc.). Following the seminal work of Jacques Theureau, courses of action 
are the building blocks of this inquiry. The notion is closely linked to that of activity 
that, in this book, is understood as a set of intertwining courses of actions shar-
ing common finalities. The three parts of this book are all adventurous attempts to 
pre sent activities taking part in the formation of algorithms; hence their respective 
gerund titles: ground- truthing, programming, formulating.

CSF is the acronym of Computer Science Faculty. It is the department to which the 
Lab belongs. The CSF is part of what I call, for reasons of anonymity, the Eu ro pean 
technical institute (ETI).

digital signal is, in its technical understanding, represented by n number of dimen-
sions depending on the in de pen dent variables used to describe the signal. A sampled 
digital sound is, for example, typically described as a one- dimensional signal whose 
dependent variables— amplitudes— vary according to time (t); a digital image is typi-
cally described as a two- dimensional signal whose dependent variables— intensities— 
vary according to two axes (x, y) while audiovisual content  will be described as a 
three- dimensional signal with in de pen dent variables (x, y, t).

Editor is a space within the Matlab integrated development environment (IDE) allow-
ing a programmer to inscribe characters capable of triggering— with the help of an 
interpreter— electric pulses to compute digital data in desired ways. It is part of the 
large  family of source- code editors that can be stand- alone applications or functional-
ities built into larger software environments.

EDVAC is the acronym of Electronic Discrete Variable Automatic Computer. This clas-
sified proj ect was launched in August 1944 as the direct continuation of the ENIAC 
proj ect at the Moore School of Electrical Engineering. The EDVAC played an impor-
tant role in the history of electronic computing  because it was the subject of an 
influential report written by John von Neumann in 1945. This unfinished report, 
entitled First Draft of a Report on the EDVAC, laid the foundations for what would 
 later be called the von Neumann architecture.
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ENIAC is the acronym of Electronic Numerical Integrator and Computer. This classi-
fied proj ect was launched in April 1943  under the direction of John Mauchly and 
John Presper Eckert at the Moore School of Electrical Engineering. It initially aimed 
to accelerate the production of firing  tables required for long- distance weapons by 
solving large iterative equations at electronic speed. Although innovative in many 
ways, the limitations of ENIAC prompted Mauchly, Eckert, and  later von Neumann 
to launch another electronic computing proj ect: the EDVAC.

flat laboratory is a figure of style aiming to address the physical locations in which 
mathematicians work to produce certified statements. Compared with, for example, 
laboratories of molecular biology or high- energy physics, the instrumentation of 
mathematical laboratories tends to take up less space. It is impor tant  here not to con-
fuse flatness with the mathematical concept of dimensionality often used to capture 
and qualify the experience of flatness (or bulkiness). According to the point of view 
 adopted in this book, dimensionality should be considered a product of the relative 
flatness of mathematical laboratories’ equipment.

formula is a mathematical operation expressed in a generic scriptural form. The prac-
tical pro cess of enrolling a formula to establish antecedence and posteriority among 
sets of data is  here called formulating.

ground truth is an artifact that typically takes the shape of a digital database. Its 
main function is to relate sets of input- data— images, text, audio—to sets of output- 
targets— labeled images, labeled text, labeled audio. As ground truths institute prob-
lems that not- yet- designed algorithms  will have to solve, they also establish their 
veracity. As this book indicates, many ground truths do not preexist and thus need to 
be constructed. The collective pro cesses leading to the design and shaping of ground 
truths heavi ly impact the nature of the algorithms they help constitute, evaluate, 
and compare.

image pro cessing is a subfield of computer science that aims to develop and pub-
lish computerized methods of calculation capable of pro cessing CDD-  and CMOS- 
derived pixels in meaningful ways.  Because digital images can be described as 
two- dimensional signals whose dependent variables— intensities— vary according 
to two axes (x, y), image pro cessing is also sometimes called “two- dimensional sig-
nal pro cessing.” When it focuses on recognition tasks, it is generally called “image 
recognition.”

inscription is a special category of actant that is durable (it lives on beyond the  here and 
now of its instantiation), mobile (it can move from one place to another without being 
too much altered), and re- presentable (it can— together with suitable infrastructures— 
carry, transport, and display properties that are not only its own). Due to  these capaci-
ties, inscriptions greatly participate in shaping the collective world.

INT is the abbreviation for interpreter, a complex computer program that translates 
inscriptions written in high- level programming language into an abstract syntax tree 
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before establishing communication with the computer’s hardware. Whenever an 
interpreter cannot complete its translation, the high- level program cannot perform 
fully.

Lab stands for the computer science academic laboratory that is the field site of the 
present ethnographic inquiry. The Lab specializes in digital image pro cessing, and 
its members— PhD students, postdocs, invited researchers, professors— spend a sig-
nificant amount of their time trying to shape new algorithms and publish them in 
peer- reviewed journals and conferences.

laboratory study is an STS- inspired genre of ethnographic work that consists in 
accounting for the mundane work of scientists and technologists. Borrowing from 
anthropology, it implies staying within an academic or industrial laboratory for a 
relatively long period of time, collaborating with its members, becoming somewhat 
competent, and taking a lot of notes on what is  going on. At some point, eventu-
ally, it also implies leaving the laboratory—at least temporarily—to further compile 
and analyze the data before submitting, fi nally, a research report on the scrutinized 
activity.

machine learning is not only a class of statistical methods but also, and perhaps 
above all, a lived experience consisting of automating parts of formulating activities. 
However, this algorithmic del e ga tion for algorithmic design relies on increasing, and 
often invisibilized, ground- truthing and programming efforts.

mathe matics is, in this book, considered integral part of scientific activity. It thus 
typically consists of producing certified facts about objects  shaped or discovered 
with the help of instruments and devices within (flat) laboratories.

Matlab is a privately held mathematical software for numerical computing built 
around its own interpreted high- level programming language.  Because of its agil-
ity in designing prob lems of linear algebra, Matlab is widely used for research and 
industrial purposes in computer science, electrical engineering, and economics. Yet 
as Matlab works mainly with an interpreted programming language, its programs 
have to be translated by an interpreter (INT) before interacting with the hardware. 
This interpretative step makes it less efficient for pro cessing heavy matrices than, for 
example, programs directly written in compiled languages such as C or C++.

model is a term that is close to an algorithm. In this book, the distinction between 
an algorithm and a model can only be retrospective: If what is called a “model” 
derives from, at least, ground- truthing, programming, and formulating activities, it 
is considered an algorithm.

problematization is, in this book, the collective pro cess of establishing the terms of 
a prob lem. Building on Science and Technology Studies, analyzing problematization 
implies describing the way questions are framed, or ga nized, and progressively trans-
formed into issues for which solutions can be proposed.
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pro cess thought is an ontological position supported by a wide and heterogeneous 
body of philosophical works that share similar sensibilities  toward associations— 
sometimes also called relations. For pro cess thinkers, what  things are is what they 
become in association to other entities, the association itself being part of the pro-
cess. The emphasis is put on the “how” rather than the “what”: instead of asking 
what is something, pro cess thinkers would rather ask how something becomes. This 
ontology is about continuous per for mances instead of binary states.

PROG specifically refers, in this book, to a Matlab computer program aiming to cre-
ate matrices whose pixel-values correspond to the number of rectangles drawn by 
 human crowdworkers on pixels of digital images.

program is a document whose structure and content, when adequately articulated, 
makes computers compute data. The practical pro cess of writing a computer program 
is called programming.

re- presentation is the pre sen ta tion of something again. Inscriptions are common re- 
presentations in that they display properties of other entities over. Re- presentations, 
in this book, should not be confused with repre sen ta tions (without the hyphen), a 
term that refers to the solution found by cognitivist authors to overcome the distinc-
tion between extended  things (res extensa) and thinking  things (res cogitans).

saliency detection is a subfield of image pro cessing that aims to detect what attracts 
 people’s attention within digital images.  Because the topic of  these detection efforts 
is extremely equivocal, saliency detection is a field of research that shows dynam-
ics that may go unnoticed in more traditional subfields such as facial or object 
recognition.

scenario refers to a narrative operating a  triple shifting out  toward another place, 
another time, and other actants while having a hold on its enunciator. As performa-
tive narrative resources, scenarios are of crucial importance for programming activities 
 because they institute horizons on which programmers can hold— while being held 
by them— and establish, in turn, the bound aries of computer programming episodes.

Science and Technology Studies (STS) are a subfield of social science and sociology 
that aims to document the co- construction of science, technology, and the collec-
tive world. What loosely connects the prac ti tion ers of this heterogeneous research 
community is the conviction that science is not just the expression of a logical 
empiricism, that knowledge of the world does not preexist, and that scientific and 
technological truths are dependent on collective arrangements, instrumentations, 
and dynamics.

script commonly refers to a small computer program. Many interlinking scripts and 
programs calling on each other typically form a software. The notion should not be 
confused with Madeleine Akrich’s (1989) “scripts” that, in this book, are close to the 
notion of scenario.
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sociology is, in this book, the activity of describing associations (socius) by means of 
specialized texts (log os). It aims to help understand what is  going on in the collective 
world and better compose with the heterogeneous entities that populate/shape it. In 
this book, sociology is differentiated from social science that is considered the scien-
tific study of an a priori postulated aggregate, generally called the social (or society).

technical detour is a furtive and difficult- to- record experience that takes the form 
of a zigzag: Thanks to unpredictable detours, a priori distant entities become the 
missing pieces in the realization of a proj ect. Technical detours—as conceptualized 
by Bruno Latour (2013)— involve a form of del e ga tion to newly enrolled entities. 
They also imply forgetting their brief passages once the new composition has been 
established.

translation is a work by which actants modify, move, reduce, transform, and articu-
late other actants to align them with their concerns. This is a specific type of asso-
ciation that produces differences that can, with an appropriate methodology, be 
reflected in a text. The notion was initially developed by Michel Serres (1974) before 
being taken up by Madeleine Akrich, Michel Callon, and Bruno Latour to ground 
their sociologie de la traduction, which I call sociology  here.

trial is a testing event whose outcome has a strong impact on the becoming of an 
actant. If the trial is overcome, the actant may manage to associate with other actants, 
with this new association becoming, in turn, more resistant. If the trial is not over-
come, the actant  will lose some of its properties, sometimes to point of disappearing.

visibility/invisibility are relative states of work practices.  These variable states are 
products of visibilization, or invisibilization, pro cesses. If complete invisibility of 
work practices is not desirable, complete visibility is not  either. In this book, I have 
chosen public controversies as indicators of negative invisibilities, suggesting in 
turn the launching of visibilization pro cesses by means of, for example, so cio log i cal 
inquiries.





Introduction

1.  Pro cess thought refers to a wide and heterogeneous body of philosophical works 
that share similar sensibilities  toward associations, sometimes also called relations 
(Barad 2007; Butler 2006; Dewey [1927] 2016; James [1912] 2003; Latour 1993b, 2013; 
Mol 2002; Pickering 1995; Serres 1983; Whitehead [1929] 1978). For pro cess thinkers, 
as Introna put it (2016, 23), “relations do not connect (causally or other wise) pre- 
existing entities (or actors), rather, relations enact entities in the flow of becoming.” 
What  things are is what they become in association to other entities, the association 
itself being part of the pro cess. The emphasis is then put on the “how” rather than the 
“what”: instead of asking what is something, pro cess thinkers would rather ask how 
something becomes. This ontology is then about continuous per for mances instead of 
binary states. The pre sent volume embraces this ontology of becoming.

2.  At the end of the book, a glossary briefly defines technical terms used for this 
investigation (e.g., actant, collective world, constitution, course of action).

3.  This unconventional conception of the social has been initially developed and 
pop u lar ized by Madeleine Akrich, Michel Callon, and Bruno Latour at the Centre 
de Sociologie de l’Innovation (Akrich, Callon, and Latour 2006; Callon 1986). It is 
impor tant to note that even though this theoretical standpoint has somewhat made 
its way through academic research, it remains shared among a minority of scholars.

4.  As pointed out by Latour (2005, 5–6), the Latin root socius that denotes a com-
panion—an associate— fits well with the conception of the social as what emanates 
from the association among heterogeneous entities.

5.  What connects the prac ti tion ers of the heterogeneous research community of 
Science and Technology Studies is the conviction that science is not just the expres-
sion of a logical empiricism; that knowledge of the world does not preexist; and 
that scientific and technological truths are dependent on collective arrangements, 
instrumentations, and dynamics (Dear and Jasanoff 2010; Jasanoff 2012). For a com-
prehensive introduction to STS, see Felt et al. (2016).

Notes
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6.  It is impor tant to note that this lowering of capacity to act does not concern 
the sociology of attachments that precisely tries to document the appearance of 
delighted objects, as developed by Antoine Hennion (2015, 2017). At the end of 
chapter 5, I  will discuss the impor tant notion of attachment.

7.  The notion of “composition”—at least as proposed by Latour (2010a)—is, in 
my view, an elegant alternative to the widely used notion of “governance.” Both 
nonetheless share some characteristics. First, both notions suppose heterogeneous 
ele ments put together— collectives of  humans, machines, objects, companies, and 
institutions trying to collaborate and persevere on the same boat. Second, they 
share the desire of a common world while accepting the irreducibility of its parts: 
for both notions, the irreducible entities that constitute the world would rather live 
in a quite informed community aware of dif fer ent and competitive interests than 
in a distrustful and whimsical wasteland. Both composition and governance thus 
share the same basic topic of inquiry: how to step- by- step transform heterogeneous 
collectives into heterogeneous common worlds? Third, they both agree that traditional 
centralized decisional powers can no longer achieve the constitution of common 
worlds; to the verticality of  orders and injunctions, composition and governance 
prefer the horizontality of compromises and negotiations. Yet they nonetheless 
differ on one crucial point: if governance still carries the hope of a smooth— yet 
heterogeneous— cosmos, composition promotes the need of a laborious and con-
stantly readjusted kakosmos (Latour 2010a, 487). In other words, if control is still an 
option for governance, composition is committed to the always surprising “made to 
do” (Latour 1999b). It is this emphasis on the constant need for creative readjust-
ments that makes me prefer the notion of “composition” over “governance.”

8.  The next two paragraphs derive from Jaton (2019, 319–320).

9.  The single term “algorithm” became increasingly common in the Anglo- American 
critical lit er a ture from the 2000s onward. It would be in ter est ing to learn more about 
the ways by which the term “algorithm” has come to take over other alternative terms 
(such as “software,” “code,” or “software- algorithm”) that  were also synonymously 
used in the past, especially in the 1990s.

10.  In Jaton and Vinck (submitted), we closely consider the specific dynamic of the 
recent politicization of algorithms.

11.  This controversy has been thoroughly analyzed in Baya- Laffite, Beaude, and 
Garrigues (2018).

12.  As we  will see in the empirical chapters of this book, it is not clear  whether we 
should talk about computer scientists or engineers. But as the academic field of com-
puter science is now well established, I choose to use the generic term “computer 
scientist” to refer to  those who work  every day to design surprising new algorithms.

13.  For thorough discussions on this topic, see Denis (2018, 83–95).
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14.  Does it mean that “objective knowledge” is impossible? As we  will see in chap-
ters 4, 5, and 6, drawing such a conclusion is untenable: despite the irremediable 
limits of the inscriptions on which scientific practices heavi ly rely,  these practices 
nonetheless manage to produce certified objective knowledge.

15.  In their 2004 paper, Law and Urry build upon an argument initially developed 
by Haraway (1992, 1997).

16.  This partly explains some hostile reactions of scientists regarding STS works on 
the “construction of scientific facts.” On this topic, see Latour (2013, 151–178).

17.  For recent examples, see Cardon (2015) and Mackenzie (2017).

18.  In chapter 5, I  will discuss at greater length the crucial importance of scientific 
lit er a ture for the formation of certified knowledge.

19.  The term “infra- ordinary,” as opposed to “extra- ordinary,” was originally pro-
posed by Pérec (1989). The term was  later taken up in Francophone sociology, nota-
bly by Lefebvre (2013).

20.  See, for example, Bishop (2007), Cormen et al. (2009), Sedgewick and Wayne 
(2011), Skiena (2008), and Wirth (1976). I  will discuss some of  these manuals in 
chapter 1.

21.  However, it is crucial to remain alert to the performative aspects of manuals 
and classes. This topic is well studied in the sociology of finance; see, for example, 
MacKenzie, Muniesa, and Siu (2007) and Muniesa (2015).

22.  This also often concerns social scientists interviewing renowned computer scien-
tists (e.g., Seibel 2009; Biancuzzi and Warden 2009). As  these investigations mainly 
focus on well- respected figures of computer science whose proj ects have largely 
succeeded, their results tend to be retrospective, summarized narratives occluding 
uncertainties and fragilities. On some limitations of biographic interviews, see Bour-
dieu (1986). On the problematic habit of reducing ethnography to interviews, see 
Ingold (2014).

23.  For a pre sen ta tion of some of the reasons why scholars started to inquire within 
scientific laboratory, see  Doing (2008), Lynch (2014), and Pestre (2004).

24.  On some of the problematic, yet fascinating, dynamics of this rapprochement 
between computer science and the humanities (lit er a ture, history, linguistics,  etc.) 
that gave rise to digital humanities, see Gold (2012), Jaton and Vinck (2016), and 
Vinck (2016).

25.  Among the rare attempts to document computer science work are Bechmann 
and Bowker (2019), Button and Sharrock (1995), Grosman and Reigeluth (2019), 
Henriksen and Bechmann (2020), and Mackenzie and Monk (2004). I  will come 
back to some of  these studies in the empirical chapters of the book.
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26.   After a thorough review of the con temporary critical studies of algorithms, 
Ziewitz (2016) warned that they could be about to reach a problematic impasse. 
Roughly put, the argument goes as follows: by mainly considering algorithms from 
a distance and in terms of their effects, critical studies are taking the risk of being 
stuck in a dramatic loop, constantly rehashing that algorithms are power ful  because 
they are inscrutable,  because they are power ful,  because they inscrutable, and so on. 
The pre sent volume can be considered an attempt at somewhat preventing such a 
drama from taking hold. In the conclusion, when I clarify the po liti cal aspect of this 
inquiry, I come back to this notion of algorithmic drama.

27.  Theureau’s work is unique in many ways. Building on the French ergonomics 
tradition (Ombredane and Faverge 1955) and critical readings of Newell and Simon’s 
(1972) cognitive behaviorism as well as Varela’s notion of “enactive cognition” 
(discussed in chapter  3), he has gradually proposed a  simple yet effective defini-
tion of a course of action as an “observable activity of an agent in a defined state, 
actively engaged in a physically and socially defined environment and belonging to 
a defined culture” (Theureau 2003, 59). His analyses of courses of action involved in 
traffic management (Theureau and Filippi 2000), nuclear reactor control (Theureau 
et al. 2001), and musical composition (Donin and Theureau 2007) has led him to 
propose the notion of “courses- of- action centered design” for ergonomic studies.

28.  At the beginning of chapter 4, I  will briefly consider the prob lem of “representa-
tiveness.”

Chapter 1

1.  The general issue subtending my research has not fundamentally changed since 
the date at which I was awarded the research grant.

2.  One of the particularities of the CSF was its international focus. During the official 
events I attended, deans regularly put forward the CSF’s capacity to attract foreign 
students and researchers. This was especially true in the case of the Lab where I was 
the only “indigenous” scientific collaborator for nearly a year. The lingua franca was 
in line with this international environment; even though the Lab was located in 
a French- speaking region, most interactions, pre sen ta tions, and documents  were in 
En glish.

3.  The history of the development of the charge- coupled device has been docu-
mented, though quite partially, in Seitz and Einspruch (1998, 212–228) and Gertner 
(2013, 250–265).

4.  For an accessible introduction to CCDs and image sensors, see Allen and Trian-
taphillidou (2011, 155–173).

5.  CMOS is a more recent variant of CCD where each pixel contains a photodetector 
and an amplifier. This feature currently allows significant size and power reduction 
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of image sensors. This is one of the reasons why CMOSs now equip most portable 
devices such as smartphones and compact cameras.

6.  It is commonly assumed that the term pixel, as a contraction of “picture ele-
ment,” first appeared in a 1969 paper from Caltech’s Jet Propulsion Lab (Leighton 
et al. 1969). The story is more intricate than that as the term was regularly used in 
emergent image- processing communities thoughout the 1960s. For a brief history of 
the term pixel, see Lyon (2006).

7.  A digital signal is represented by n number of dimensions depending on the 
in de pen dent variables used to describe the signal. A sampled digital sound is, for 
example, typically described as a one- dimensional signal whose dependent variables— 
amplitudes— vary according to time (t); a digital image is typically described as a two- 
dimensional signal whose dependent variables— intensities— vary according to two 
axes (x, y), whereas audio- visual content  will be described as a three- dimensional signal 
with in de pen dent variables (x, y, t). For an accessible introduction to digital signal 
pro cessing, see Vetterli, Kovacevic, and Goyal (2014).

8.  It was not the only research focus of the Lab. Several researchers also worked on 
CCD/CMOS architectures and sensors.

9.  It is impor tant to note that for digital image pro cessing and recognition to become 
a major subfield of computer science, digital images first had to become stable enti-
ties capable of being pro cessed by computer programs— a long- standing research 
and development endeavor. Along with the development, standardization, and 
industrial production of image sensors such as CCDs and,  later, CMOSs, theoretical 
works on data compression— such as  those of O’Neal Jr. (1966) on differential pulse 
code modulation; Ahmed, Natarajan, and Rao (1974) on cosine transform; or Gray 
(1984) on vector quantization— have first been necessary. The  later enrollment of 
 these works for the definition of the now- widespread International Organ ization for 
Standardization norm JPEG, approved in 1993, was another decisive step: from that 
moment, telecommunication providers, software developers, and hardware manu-
facturers could rely on and coordinate around one single photographic coding tech-
nique for digitally compressed repre sen ta tions of still images (Hudson et al. 2017). 
During the late 1990s, the growing distribution of microcomputers, their gradual 
increase in terms of pro cessing power, and the development and maintenance of 
web technologies and standards have also greatly contributed to establishing digital 
image pro cessing as a mainstream field of study. The current popularity of image 
pro cessing for research, industry, and defense is thus to be linked with the progres-
sive advent of multimedia communication devices and the blackboxing of their fun-
damental components operating now as standard technological infrastructure.

10.  According to Japan- based industry association Camera & Imaging Products 
Association (to which, among  others, Canon, Nikon, Sony, and Olympus belong), 
sales of digital cameras have dropped from 62.9 million in 2010 to fewer than 
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24.25 million in 2017 (Statista 2019). However, according to estimates generated by 
InfoTrends and Bitkom, the number of pictures taken worldwide increased from 660 
billion to 1,200 billion over the same period (Richter 2017). This discrepancy is due, 
among other  things, to the increasing sophistication of smartphone cameras as well 
as the popularity and sharing functionalities of social- media sites such as Instagram 
and Facebook (Cakebread 2017).

11.  For example, Google, Amazon, Apple, Microsoft, and IBM all propose applica-
tion programming interface products for image recognition (respectively, Cloud 
Vision, Amazon Rekognition, Apple Vision, Microsoft Computer Vision, and Watson 
Visual Recognition).

12.  According to 2011 documents obtained by Edward Snowden, the National 
Security Agency intercepted millions of images per day throughout the year 2010 to 
develop computerized tracking methods for suspected terrorists (Risen and Poitras 
2014). Chinese authorities also heavi ly invest in facial recognition for security and 
control purposes (Mozur 2018).

13.  See, for example, International Journal of Computer Vision, IEEE Transactions on 
Pattern Analy sis and Machine Intelligence, IEEE Transactions on Image Pro cessing, or Pat-
tern Recognition.

14.  See, for example, IEEE Conference on Computer Vision and Pattern Recogni-
tion, Eu ro pean Conference on Computer Vision, IEEE International Conference on 
Computer Vision, or IEEE International Conference on Image Pro cessing.

15.  Giving an example of the close relationships between academic and industrial 
worlds regarding image- processing algorithms, Jordan Fisher— chief executive officer 
of Standard Cognition, a start-up that specializes in image recognition for autono-
mous checkout— says in a recent TechCrunch article (Constine 2019): “It’s the wild 
west— applying cutting- edge, state- of- the- art machine learning research that’s hot 
off the press. We read papers then implement it weeks  after it’s published, putting 
the ideas out into the wild and making them production- worthy.”

16.  In 2016 and 2017, papers from Apple and Microsoft research teams won the 
best- paper award of the IEEE Conference on Computer Vision and Pattern Recogni-
tion, the most prestigious conference in image pro cessing and recognition. More-
over, in 2018, Google launched Distill Research Journal, its own academic journal 
aiming at promoting machine learning in the field of image and video recognition.

17.  This is for example the case in Knuth (1997a) where the author starts by recall-
ing that “algorithm” is a late transformation of the term “algorism” that itself 
derives from the name of famous Persian mathematician Abū ‘Abd Allāh Muham-
mad ibn Mūsa al- Khwārizmi— literally, “ Father of Abdullah, Mohammed, son of 
Moses, native of Khwārizm,” Khwārizm referring in this case to a region south of 
the Aral Sea (Zemanek 1981). Knuth then specifies that from its initial acceptation 
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as the pro cess of  doing arithmetic with Arabic numerals, the term algorism gradually 
became corrupted: “as explained by the Oxford En glish Dictionary, the word ‘passed 
through many pseudo- etymological perversions, including a recent algorithm, in 
which it is learnedly confused’ with the Greek root of the word arithmetic” (Knuth 
1997a, 2).

18.  See, for example, the (very) temporary definition of algorithms by Knuth (1997, 
4): “The modern meaning for algorithm is quite similar to that of  recipe, pro cess, 
method, technique, procedure, routine, rigmarole.”

19.  See, for example, Sedgewick and Wade’s (2011, 3) definition of algorithms as 
“methods for solving prob lems that are suited for computer implementation.”

20.  See also Cormen et al.’s (2009, 5) definition: “A well- defined computational pro-
cedure that takes some value, or set of values, as input and produces some value, or 
set of values, as output [being] thus a sequence of computational steps that transform 
the input into the output.”

21.  See also Dasgupta, Papadimitriou, and Vazirani’s (2006, 12) phrasing: “When-
ever we have an algorithm,  there are three questions we always ask about it: 1. Is it 
correct? 2. How much time does it take, as a function of n? 3. And can we do better?” 
And also Skiena (2008, 4): “ There are three desirable properties for a good algorithm. 
We seek algorithms that are correct and efficient, while being easy to implement.”

Chapter 2

1.  This chapter expands Jaton (2017). I thank Geoffrey Bowker, Roderic Crooks, and 
John Seberger for fruitful discussions about some of its topics.

2.  Excerpts in quotes are literal transcriptions from audio recordings, slightly reworked 
for reading comfort. Excerpts not in quotes are retranscriptions from written notes 
taken on the fly.

3.  In chapter  3, I critically discuss the computational meta phor of the mind on 
which many cognitive studies rely.

4.  Studies on attention had already been engaged before the 1970s, notably through 
the seminal work of Neisser (1967) who suggested the existence of a pre- attentive 
stage in the  human visual pro cessing system.

5.  Another impor tant neurobiological model of selective attention method was pro-
posed by Wolfe, Cave, and Franzel (1989). This model of selective attention method 
 later inspired competing low- level feature computational models (e.g., Tsotsos 1989; 
Tsotsos et al. 1995).

6.  The class of algorithms that calculates on low- level features quickly became 
in ter est ing for the development of autonomous vehicles for which real- time image 
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pro cessing was sought (Baluja and Pomerleau 1997; Grimson 1986; Mackworth and 
Freuder 1985).

7.  Dif fer ent high- level detection algorithms can nonetheless be assembled as mod-
ules in one same program that could, for example, detect  faces and cars and dogs, 
and so on.

8.  At that time, only two saliency- detection algorithms  were published, in Itti, Koch, 
and Niebur (1998) and Ma and Zhang (2003). But the ground truths used for the 
design and evaluation of  these algorithms  were similar to  those used in laboratory 
cognitive science. The images of  these ground truths  were, for example, sets of dots 
disrupted by a vertical dash. As a consequence, if  these first two saliency- detection 
algorithms could, of course, pro cess natu ral images, no evaluations of their per for-
mances on such images could be conducted.

9.  Ground truths assembled by computer science laboratories are generally made 
available online in the name of reproducible research (Vandewalle, Kovacevic, and 
Vetterli 2009). The counterpart to this  free access is the proper citation of the papers 
in which  these ground truths  were first presented.

10.  An API, in its broadest sense, is a set of communication protocols that act as an 
interface among several computer programs. If APIs can take many dif fer ent forms 
(e.g., hardware devices, web applications, operating systems), their main function 
is to stabilize and blackbox ele ments so that other ele ments can be built on top of 
them.

11.  For a condensed history of contingent work, see Gray and Suri (2019, 48–63). 
On what crowdsourcing does to con temporary capitalism, see also Casilli (2019).

12.  As Gray and Suri (2019, 55–56) put it: “Following a largely untested manage-
ment theory, a wave of corporations in the 1980s cut anything that could be defined 
as ‘non- essential business operations’— from cleaning offices to debugging software 
programs—in order to impress stockholders with their true value, defined in terms 
of ‘return on investment’ (in industry lingo, ROI) and ‘core competencies.’ … Stock-
holders rewarded  those corporations that  were willing to use outsourcing to slash 
costs and reduce full- time- employee ranks.”

13.  It is impor tant to note, however, that on- demand work is not necessarily alien-
ating. As Gray and Suri (2019, 117) noted: “[on- demand work] can be transformed 
into something more substantive and fulfilling, when the right mixture of work-
ers’ needs and market demands are properly aligned and matched. It can rapidly 
transmogrify into ghost work when left unchecked or hidden  behind software 
rather than recognized as a rapidly growing world of global employment.” Concrete 
ways to make crowdsourcing more sustainable have been proposed by the National 
Domestic Workers Alliance and their “Good Work Code” quality label. On this 
topic, see Scheiber (2016).
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14.  However, this shared unawareness  toward the under lying pro cesses of crowd-
sourcing may be valued and maintained for identity reasons, for as Irani (2015, 58) 
noted: “The transformation of workers into a computational ser vice … serves not 
only employers’  labor needs and financial interests but also their desire to maintain 
preferred identities; that is, rather than understanding themselves as man ag ers of 
information factories, employers can continue to see themselves as much- celebrated 
programmers, entrepreneurs, and innovators.”

15.  Matlab is a privately held mathematical software for numerical computing built 
around its own interpreted high- level programming language.  Because of its agility 
to design prob lems of linear algebra— all integers being considered scalars— Matlab 
is widely used for research and industrial purposes in computer science, electri-
cal engineering, and economics. Yet, as Matlab works mainly with an interpreted 
programming language— just like the language Python that is now Matlab’s main 
competitor for applied research purposes— its programs have to be translated into 
machine- readable binary code by an interpreter in order to make the hardware effec-
tively compute data. This complex interpretative step makes it less efficient for pro-
cessing heavy matrices than, for example, programs directly written in compiled 
languages such as C or C++. For a brief history of Matlab, see Haigh (2008).

16.  In chapter 6, we  will more thoroughly consider the relationship between ground- 
truthing and formulating activities.

17.  The ser vices of the crowdsourcing com pany costed the Lab around US$950.

18.  The numerical features extracted from the training set  were related, among 
 others, to “2D Gaussian function,” “spatial compactness,” “contrast- based filtering,” 
“high- dimensional Gaussian filters,” and “ele ment uniqueness.” In chapter 6, using 
the case of the “2D Gaussian function,” I  will deal with  these formulating practices.

19.  This can be read as a mild critique of the recent, growing, and impor tant lit er-
a ture on algorithm biases. Authors such as Obermeyer et al. (2019), Srivastava and 
Rossi (2018), and Yapo and Weiss (2018), among  others, show that the results of 
many algorithms are indeed biased by the preconceptions of  those who built them. 
Though this statement is, I believe, completely correct— algorithms derive from 
problematization practices influenced by habits of thought and action—it also runs 
the risk of confusing premises with consequences: biases are not the consequences 
of algorithms but, perhaps, are one of the  things that make them come into exis-
tence. Certain biases expressed and materialized by ground truths can and, in my 
opinion, should be considered harmful, unjust, and wrong; racial and gender biases 
have, for example, to be challenged and disputed. However, the outcome of  these 
disputes may well be other biases expressed in other potentially less harmful, unjust, 
and incorrect ground truths. As far as algorithms are concerned, one bias calls for 
another; hence the importance of asserting their existence and making them vis i ble 
in order to, eventually, align them with values one wishes algorithms to promote.



308 Notes

20.  Edwards (2013) uses the term “data image” instead of “ground truth.” But I 
assume that both are somewhat equivalent and refer to digital repositories or ga nized 
around data whose values vary according to in de pen dent variables (that yet need to 
be defined).

21.  At the end of chapter 6, I  will come back to the topic of machine learning and 
its con temporary labeling as “artificial intelligence.”

22.  This discussion has been reconstructed from notes in Logbook 3, May– October 2014.

23.  However, it is in ter est ing to note that BJ blames the reviewers of impor tant 
conferences in image pro cessing. According to him, the reviewers tend to privilege 
papers that make “classical improvement” over  those that solve— and thus define— 
new prob lems. At any rate,  there was obviously a prob lem in the framing of the 
Group’s paper as the reviewers  were not convinced by its line of argument. As a con-
sequence, the algorithm could not circulate within academic and industrial com-
munities and its existence remained, for a while, circumscribed to the Lab’s servers.

II

1.  In computer science and engineering, it is indeed well admitted that computer 
programming practices are difficult to conduct and their results very uncertain. On 
this well- documented topic, see Knuth (2002), Rosenberg (2008), and in a more lit-
erary way, Ullman (2012a, 2012b).

Chapter 3

1.  My point of departure is arbitrary in the sense that I could have started some-
where  else, at a dif fer ent time. Indeed, as Lévy (1995) showed, the premises of what 
 will be called “von Neumann  architecture of electronic computers” can be found 
not only in Alan Turing’s 1937 paper but also in the development of the office- 
machine industry during the 1920s, but also in the mechanic- mathematical works 
of Charles Babbage during the second half of the nineteenth  century, but also in 
eigh teenth  century’s looms programmed with punched cards, and so on, at least 
 until Leibniz’s work on binary arithmetic and Pascal’s calculating machine. The 
history of the computer is fuzzy. As it only appears “ after a cascade of diversions 
and reinterpretations of heterogeneous materials and devices” (Lévy 1995, 636), it 
is extremely difficult—in fact, almost impossible—to propose any unentangled filia-
tion. Fortunately, this section does not aim to provide any history of the computer: 
It “just” tries to provide ele ments that, in my view, participated in the formation of 
one specific and influential document: von Neumann’s report on the EDVAC.

2.  For a more precise account of the design of firing  tables in the United States during 
World War II, see Haigh, Priestley, and Rope (2016, 20–23) and Polachek (1997).
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3.  More than their effective computing capabilities— they required up to several 
days to be set up (Haigh, Priestley, and Rope 2016, 26) and their results  were often 
less accurate than  those provided by hand calculations (Polachek 1997, 25–27)—an 
important characteristic of differential analyzers was their capacities to attract com-
puting experts around them. For example, by 1940, MIT, the University of Penn-
sylvania, and the University of Manchester,  England— three impor tant institutions 
for the  future development of electronic computing— all possessed a differential 
analyzer (Campbell- Kelly et al. 2013, 45–50; Owens 1986). On the role of differential 
analyzers in early US- based computing research, see also Akera (2008, 38–45).

4.  The assembling of the numerous  factors affecting the projectiles started at the test 
range in Aberdeen where the velocities of the newly designed shells  were mea sured 
(Haigh, Priestley, and Rope 2016, 20).

5.  Although the differential equations defining the calculation of shells’ trajectories 
are mathematically quite  simple, solving them can be very complicated as one needs 
to model air re sis tance varying in a nonlinear manner. As Haigh, Priestley, and 
Rope (2016, 23) put it: “Unlike a calculus teacher, who selects only equations that 
respond to elegant methods, the mathematicians at the BRL  couldn’t ignore wind 
re sis tance or assign a dif fer ent prob lem. Like most differential equations formulated 
by scientists and engineers, ballistic equations require messier techniques of numeri-
cal approximation.”

6.  In ter est ing to note that delay- line storage is originally linked to radar technology. 
More precisely, one prob lem of the radar technology in 1942 was that cathode- ray 
tube displays showed moving and stationary objects. Consequently, radar screens 
translated the positions of planes, buildings, or forests in one same messy picture 
extremely difficult to read. MIT’s radiation laboratory subcontracted the develop-
ment of a moving target indicator (MTI) to the Moore School in order to develop 
a system that could filter radar signals according to their changing positions. This 
was the beginning of delay- line storage technology at the Moore School, that at 
first had nothing to do with computing (Akera 2008, 84–86; Campbell- Kelly et al. 
2013, 69–74). Radar technology also significantly helped the design of British highly 
confidential Colossus computer in 1943–1944 (Lévy 1995, 646).

7.  By 1942, in order to speed up the resolution of ballistic differential equations, 
only a  limited range of  factors tended to be considered by  human computers at the 
BRL. By simplifying the equations, more firing  tables could be produced and distrib-
uted, but the drawback was that their precision tended to decrease (Polachek 1997). 
Of course, on the war front, once soldiers realized that the first volley was not ade-
quately defined, they could still slightly modify the par ameters of the long- distance 
weapon to increase its precision. Yet— and this is the crucial point— in between the 
first volley and the subsequent ones, the opposite side had enough time to take 
cover, hence making the overall long- distance shooting enterprise less effective. The 
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nerve of war was precisely the first long- distance volleys that, when accurate, could 
lead to many casualties. By extension, then, the nerve of war was also, to a certain 
extent, the ability to include more  factors in the differential equations whose solu-
tions  were printed out in firing  table booklets (Haigh, Priestley, and Rope 2016, 25).

8.  Created in 1940, the National Defense Research Committee (NDRC) united the 
research laboratories of the US Navy and the Department of War with hundreds of 
US universities’ laboratory. The NDRC initially had an impor tant bud get to fund 
applied research projects that could provide significant advantages on  future battle-
fields. It also operated as an advisory organ ization as in the case of the ENIAC that 
was considered nearly infeasible due to the important amount of unreliable vacuum 
tubes it would require. On this topic, see Campbell- Kelly et al. (2013, 70–72).

9.  The history of this contract could be the topic of a  whole book. For a nice pre sen-
ta tion of its most impor tant moments, see Haigh, Priestley, and Rope (2016, 17–33).

10.  Based on a proposal by Howard Aiken, the Harvard Mark 1 was developed by 
IBM for Harvard University between 1937 and late 1943. Though computationally 
slow, even for the standards of the time, it was an impor tant computing system as 
it expressed an early convergence of scientific calculation and office- machine tech-
nologies. For a more in- depth history of the Harvard Mark 1, see Cohen (1999).

11.  Though its shape varied significantly throughout its existence, the ENIAC was 
fundamentally a network of dif fer ent units (accumulators, multipliers, and function 
 tables). Each unit had built-in dials and switches. If adequately configured,  these dials 
and switches could define one single operation; for example, “clear the values of the 
accumulator,” “transmit a number to multiplier number 3,” “receive a number,” and 
so on. To start pro cessing an operation, each configuration of dials and switches had to 
be triggered by a “program line” wired directly to the specific unit. All  these “program 
lines” formed a network of wires connecting all the units for one specific series of oper-
ations. But as soon as another series of operations was required, the network of wires 
had to be rearranged in order to fit the new configurations of dials and switches. For 
more ele ments about the setup of ENIAC, see Haigh, Priestley, and Rope 2016 (35–57).

12.  Von Neumann tried to hire Alan Turing as a postdoctoral assistant at Prince ton. 
Turing refused as he wanted to return to  England (MacRae 1999, 187–202).

13.  The Manhattan Proj ect was, of course, highly confidential and this prevented 
von Neumann from specifying his computational needs with the ENIAC team.

14.  As suggested by Akera (2008, 119–120) and Swade (2011), and further demon-
strated by Haigh, Priestley, and Rope (2014; 2016, 231–257), the notion of “stored 
program” is a historical artifact: “the ‘stored program concept’ was never proposed 
as a specific feature in the agreed source, the First Draft, and was only retroactively 
 adopted to pick out certain features of the EDVAC design” (Haigh, Priestley, and 
Rope 2016, 256).
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15.  Shortly  after the distribution of von Neumann’s First Draft, Eckert and Mauchly 
distributed a much longer— and far less famous— counter- report entitled Automatic 
High- Speed Computing: A Pro gress Report on the EDVAC (Eckert and Mauchly 1945) 
in which they put the emphasis on the idealized aspect the First Draft. The stakes 
 were indeed high for Eckert and Mauchly: if the idealized depiction of the EDVAC 
by von Neumann was considered a realistic description of the engineering proj ect, 
no patent could ever be extracted from it. And this is exactly what happened. In 
1947, the Ordnance Department’s  lawyers de cided that the First Draft was the first 
publication on the proj ect EDVAC, hence canceling the patents submitted by Eckert 
and Mauchly in early 1946 (Haigh, Priestley, and Rope 2016, 136–152).

16.  This consideration of programming as an applicative and routine activity can 
also be found in the more comprehensive reports von Neumann coauthored in 1946 
and 1947 with Arthur  W. Burks and Herman  H. Goldstine at Prince ton Institute 
for Advanced Study (Burks, Goldstine, and von Neumann 1946; Goldstine and von 
Neumann 1947). In  these reports, and especially in the 1947 report entitled Planning 
and Coding of Prob lems for an Electronic Computing Instrument, the implementation of 
instruction sequences for scientific electronic calculations is carefully considered. 
But while the logico- mathematical planning of prob lems to be solved is presented 
as complex and “dynamic,” the further translation of this planning is mainly con-
sidered trivial and “static” (Goldstine and von Neumann 1947, 20). Programming 
is presented, in  great detail, as a linear pro cess that is problematic during its initial 
planning phase but casual during its implementation phase. What the report does 
not specify— but this was not its purpose—is that errors in the modeling and plan-
ning phases become manifest in the implementation phase (as it was often the case 
when the ENIAC was put in action), making empirical programming pro cesses more 
whirlwind than linear.

17.  In 1955, to alleviate the operating costs of the IBM 701 and the soon- to- be- 
released IBM 704, several of IBM’s customers— among them Paul Armer of the RAND 
Corporation, Lee Amaya of Lockheed Aircraft, and Frank Wagner of North American 
Aviation— launched a cooperative association they named “Share.” This customer 
association, and the many  others that followed, greatly participated in the early cir-
culation of basic suites of programs. On this topic, see Akera (2001; 2008, 249–274).

18.  For a fine- grained historical account of this real- time computing proj ect named 
“Whirlwind” that was initially designed as a universal aircraft simulator, see Akera 
(2008, 184–220).

19.  For more thorough accounts of the SAGE proj ect, see Redmond and Smith 
(1980, 2000), Jacobs (1986), Edwards (1996, 75–112), and Campbell- Kelly et  al. 
(2013, 143–166).

20.  According to Pugh (1995), this contract gave IBM a significant advantage on the 
early computer market.
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21.  In a nutshell, Thurstone Primary  Mental Abilities (PMA) test was proposed 
in 1936 by Louis Leon Thurstone, by then the first president of the Psychometric 
Society. Originally intended for  children, the test sought to mea sure intelligence 
differentials using seven  factors: word fluency, verbal comprehension, spatial visual-
ization, number fa cil i ty, associative memory, reasoning, and perceptual speed. For a 
brief history of the PMA test and psychometrics, see Jones and Thissen (2007).

22.  One impor tant insight of the EDSAC proj ect was to use the new concept of 
 program to initialize the system and make it translate further programs from non-
binary instructions into binary strings of zeros and ones. David Wheeler, one of 
Maurice Wilkes’ PhD students, wrote in 1949 such very first program he called 
“Initial  Orders” (Richards 2005). This type of program whose function was to 
transform other programs into binary (the only code cathode- ray tubes, magnetic 
core, or  micropro cessors can interact with)  were soon called “assemblers” and 
cast to linguistic terms such as “translation” and “language” (Nofre, Priestley, and 
Alberts 2014). During the 1950s, as multiple manufacturers invested in the elec-
tronic computer market, many dif fer ent assemblers  were designed, thereby creating 
impor tant prob lems of compatibility: as (almost)  every new computer or ga nized the 
accumulator and multiplier registers slightly differently, a new assembler was gener-
ally required. The prob lem lay in the one- to- one relationship between an assembler 
and its hardware. Since an assembler had one instruction for one hardware opera-
tion,  every modification in the operational organ ization of the hardware required 
a new assembler. Yet— and this was the crucial insight of Grace Hopper and then 
John Backus from IBM (Campbell- Kelly et al. 2014, 167–188)—if, instead of a pro-
gram with a one- to- one relationship with the hardware, one could provide a more 
complex program that would transform lines of code into another program with 
somehow equivalent machine- instructions, one may be able to stabilize computer 
programming languages since any substantial modification of the hardware could 
be integrated within the “transformer” program that lay in between the program-
mer’s code and the hardware. This is the fundamental idea of compilers, programs 
that take as input a program written in so- called high- level computer language 
and outputs another program— often called “executable”— whose content can 
interact with specific hardware. In the late 1950s, besides their greater readability, 
a tremendous advantage of the first high- level computer programming languages 
such as FORTRAN or COBOL over assembly language lay in their compilers whose 
constant maintenance could compensate and “absorb” the frequent modifications 
of the hardware. For example, if two dif fer ent computers both had a FORTRAN 
compiler— a crucial and costly condition— the same FORTRAN program could be 
run on both computers despite their dif fer ent internal organ izations.

23.  Between 1964 and 1967, IBM invested heavi ly in the development of an operating 
system for its computer System 360. The impressive backlogs, bugs, and overheads 
of this colossal software proj ect made Frederick Brooks— its former man ag er— call it 
“a multi- million- dollar  mistake” (Brooks 1975).
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24.  In 1968, an article by cofounder of Informatics General Corporation Werner 
Frank pop u lar ized the idea that the cost of software production  will outpace the cost 
of computer hardware in the near  future (Frank 1968). Though speculative in many 
re spects, this claim was fairly reused and embellished by commentators  until the 
1980s. Though Frank himself  later acknowledged that he unintentionally generated 
a myth (Frank 1983), this story “reinforced a popu lar perception that programmer 
productivity was lagging, especially compared to the phenomenal advances in com-
puter hardware” (Abbate 2012, 93).

25.  The topic of “logical statement per for mances” is recurrent in behavioral studies 
of computer programming, especially during the 1970s. This has to do with a con-
troversy initiated by Edsger Dijkstra over the GOTO statement as allowed by high- 
level computer programming languages such as BASIC or early versions of FORTRAN 
(Dijkstra 1968). According to Dijkstra,  these branch statements that create “jumps” 
inside a program make the localization of errors extremely tedious and should thus 
be avoided. He then proposed “structured programming,” a methodology that con-
sists in subdividing programs in shorter “modules” for more efficient maintenance 
(Dijkstra 1972). Behavioral studies of computer programming in the 1970s typically 
tried to evaluate the asserted benefits of this methodology.

26.  To prove his second incompleteness theorem, Gödel first had to show that any 
syntaxic proposition could be expressed as a number. Turing’s 1937 demonstration 
highly relied on this seminal insight. On the links between Gödel’s incompleteness 
theorem and Turing’s propositions regarding the Entscheidungsproblem, see Dupuy 
(1994, 22–30).

27.  Neural networks, particularly  those defined as “deep” and “convolutional,” 
have recently been the focus of much attention. However, it is impor tant to note 
that the notion of neural networks as initially proposed by McCulloch and Pitts 
(who preferred to use the notion of “networks of neurons”) in their 1943 paper, and 
 later taken up by von Neumann in his 1945 report, is very dif fer ent from its current 
ac cep tance. As Cardon, Cointet, and Mazières (2018) have shown, McCulloch and 
Pitts’s neural networks that  were initially logical activation functions  were worked 
on by Donald O. Hebb (1949) who associated them with the idea of learning, which 
was itself reworked by, among  others, Frank Rosenblatt (1958, 1962) and his notion 
of Perceptron. The progressive probabilization of the inference rules suggested by 
Marvin Minsky (Minsky and Papert 1970), the works on the back- propagation algo-
rithm (Werbos 1974; LeCun 1985; Rumelhart, Hinton, and Williams 1986) and on 
Boltzmann machines (Hinton, Sejnowski, and Ackley 1984) then actively partici-
pated in the association of the notions of “convolution” (LeCun et al. 1989) and, 
more recently, “depth” (Krizhevsky, Sutskever, and Hinton 2012). The term “neural 
network” may have survived this translation pro cess but it now refers to very dif-
fer ent world- enacting procedures. At the end of chapter 6, I  will consider this topic 
related to machine learning and artificial intelligence.
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28.  The division between “extended  things” and “thinking  things” derives, to a 
large extent, from Cartesian dualism. For thorough discussions of Descartes’s aporia, 
see the work of Damasio (2005).

29.  As we saw in chapter 2, saliency detection in image pro cessing is directly con-
fronted with this issue. Hence the need to carefully frame and constrict the saliency 
prob lem with appropriate ground truths.

30.  One may trace  these critics back to the Greek Sophists (Cassin 2014). James 
(1909) and Merleau- Ponty (2013) are also impor tant opposition figures. In develop-
mental psy chol ogy, the “social development theory” proposed by Vygotsky (1978) 
is also a fierce critic of cognitivism.

Chapter 4

1.  To conduct this proj ect, I had to become competent in Python, PHP, JavaScript, 
and Matlab programming languages.

2.  It is impor tant to note that this line- by- line translation is what is experienced by 
the programmer. In the trajectory of INT and most other interpreters, the numbered 
list of written symbols is translated into an abstract syntax tree that does not always 
conserve the line- by- line repre sen ta tion of the Editor.

3.  It is difficult to know exactly how INT managed to deal with  these three values 
at T1. It may by default consider that only the first two values of image- size— width 
and height— generally  matter.

4.  In the Matlab programming language,  every statement that is not conditional 
and that does not end with an semicolon is, by default, printed by the interpreter in 
the Command Win dow. This is dif fer ent from many other high- level programming 
languages for which printing operations should be specified by an instruction (typi-
cally, the instruction “print”).

5.  In chapter 5, where I  will consider the formation of mathematical knowledge, 
I  will more thoroughly examine the shaping of scientific facts as proposed by STS.

6.  This may be a limitation of Software Studies, as for example presented in Fuller 
(2008) and in the journal Computational Culture. By considering completed code, 
 these studies tend to overlook the practical operations that led to the completion 
of the code. Of course, this glance remains impor tant as it allows us to consider 
the performative effects of software- related cultural products, something my action- 
oriented method is not quite able to do.

7.  The successive operations required to assem ble chains of reference in the case of 
program- testing are well documented, though in a literary way, by Ullman (2012b).

8.  It is in ter est ing to note that DF’s alignment practices would have been greatly 
facilitated by the next version of Matlab. Indeed, the 2017 version of Matlab’s 
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interpreter automatically recognizes this type of dimension error during matrix 
incrementation pro cesses and directly indicates the related breakpoint, the line at 
which the prob lem occurred (in our case, at line 9).

9.  Donald Knuth, one of the most prominent programming theorists, stressed the 
importance of program intelligibility by proposing the notion of literate programming: 
a computer programming method that primarily focuses on the task of explaining 
programs to fellow programmers rather than “just” instructing computers.

10.  To my knowledge,  there are only three exceptions: Vinck (1991), Latour (2006), 
and Latour (2010b).

11.  This discussion has been reconstructed from notes in Logbook 8, November 2015– 
March 2016.

12.  Some STS authors use the term “script” to define  these par tic u lar narratives that 
engage  those who enunciate them (Akrich 1989; Latour 2013). If I use the term “sce-
nario,” it is mainly for sake of clarity as “script” is often used by computer scientists 
and programmers— and myself in this book—to describe small programs such as 
PROG.

Chapter 5

1.   Here, my style of pre sen ta tion and use of scenes are greatly inspired by Latour 
(1987).

2.  I am following  here Rosental’s (2003) book.

3.  I am following  here the work of MacKenzie (1999).

4.  This is taken from Logbook 1, October 2013– February 2014.

5.  With their distinction between apodeixis (rigorous demonstration) and epideixis 
(rhetorical maneuvering), Platonists phi los o phers may have initiated such  grand 
narratives (Cassin 2014; Latour 1999). According to Leo Corry (1997), this way of 
presenting mathe matics culminated with Bourbaki’s structuralist conception of 
mathematical truth. On this topic, see also Lefebvre (2001, 56–68). For a philosophi-
cal exploration of  grand narratives, see the classic book by Lyotard (1984).

6.  Yet “likes” and “retweets” that support claims published on Facebook or Twitter 
may, sometimes, work as significant external allies. On this topic, see Ringelhan, 
Wollersheim, and Welpe (2015).

7.  Before the 1878 foundation of the American Journal of Mathe matics (AJM),  there 
was no stable academic fa cil i ty for the publication of mathematical research in the 
United States (Kent 2008). The situation in  England was a bit dif fer ent: built on the 
ashes of the Cambridge and Dublin Mathematical Journal, the Quarterly Journal of Pure 
and Applied Mathe matics (QJPAM) published its first issue in 1855 (Crilly 2004). Yet 
for both Kempe’s and Heawood’s papers, the editorial boards of their journals—as 
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indicated on their front  matters— were rather small compared with  today’s stan-
dards: five members for AJM in 1879 (J. J. Sylvester, W. E. Story, S. Newcomb, H. A. 
Newton, H. A. Rowland) and four members for QJPAM in 1890 (N. M. Ferrers, A. 
Cayley, J. W. L. Glaisher, A. R. Forsyth).

8.  According to the document in American Association for Artificial Intelligence 
(1993).

9.  See, for example, the Journal of Informetrics.

10.  In a nutshell, Kempe circumscribed the prob lem to maps drawn on a plane that 
contain at least one region called “country” with fewer than six neighbors. He could 
then limit himself to five cases, countries from one to up to five neighbors. Proving 
that “four colorability” is preserved for countries with three neighbors was, obviously, 
not a prob lem. Yet in order to prove it for countries with four neighbors, Kempe used 
an argument known as the “Kempe chains” (MacKenzie 1999, 19–20). This argument 
stipulates that for a country X with four neighbor countries A, B, C, D, two opposite 
neighbor countries, say A and C, are  either joined by a continuous chain of, say, red 
and green countries, or they are not. If they are joined by such a red- green chain, A can 
be colored red and C can be colored green. But as we are dealing with a map drawn on 
a plane, the two other opposite neighbor countries of X— B and C— cannot be joined 
by a continuous chain of blue and yellow countries (one way or another, this chain is 
indeed interrupted by a green or red country). As a consequence,  these two opposite 
neighbor countries can be colored blue and X can be colored yellow. Four colorability 
is thus preserved for countries with four neighbors. Kempe thought that this method 
also worked for countries with five neighbors. But Heawood’s figure shows a case of 
failure of this method where E’s red- green region (vertically cross- hatched in figure 5.1) 
intersects B’s yellow- red region (horizontally cross- hatched), thus forcing both coun-
tries to be colored red. Consequently, X has to be colored differently than red, blue, 
yellow, and green. In such a case, four colorability is not preserved.

11.  On this topic, see the work of Lefebvre (2001).

12.  For rhetorical habits in the life sciences, see Latour and Woolgar (1986, 119–
148) and Knorr- Cetina (1981, 94–130). For a thorough comparison among scientific 
disciplines— excluding mathe matics— see Penrose and Katz (2010).

13.  Despite the efforts made by Serres (1995, 2002).

14.   There was, of course, no scientific institution at that time; experimental proto-
cols, peer witnessing, and,  later, academic papers are products of the seventeenth 
 century (Shapin and Shaffer 1989). Yet, as Netz (2003, 271–312) showed, theorems 
written on wax tablets and parchments did circulate among a restricted audience of 
(very!) skeptical readers.

15.  This is at least Netz’s (2003, 271–304) hypothesis, supported by the work of 
Lloyd (1990, 2005). As Latour summarized it: “It is precisely  because the public life in 
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Greece was so invasive, so polemical, so inconclusive, that the invention, by ‘highly 
specialized networks of autodidacts’, of another way to bring an endless discussion to 
a close took such a tantalizing aspect” (Latour 2008, 449).

16.  So surprising that this careful and highly specialized method of conviction 
mastered by a peripheral community of autodidacts who took  great care to stick to 
forms was soon “borrowed” by Plato and extended to content in order to, among 
other  things, silence the Sophists. This is at least the argument made by Cassin 
(2014), Latour (1999b, 216–235), and Netz (2004, 275–282).

17.  Aristotle seems to be one of the first to compile geometrical texts and systematize 
their logical arguments (Bobzien 2002). During late antiquity, commentators such 
as Eutocius annotated many geometrical works and compiled their main results to 
facilitate their systematic comparisons (Netz 1998). According to Netz (2004),  these 
collections of standardized geometrical compilations further helped Islamic math-
ematicians such as al- Kwarizmi and Khayyam to constitute the algebraic language.

18.  During the late nineteenth  century’s so- called crisis of foundations in mathe-
matics, the formalist school— headed by David Hibert— tried to establish the 
foundations of mathe matics on logical princi ples (Corry 1997). This led to famous 
failures such as Russell and Whitehead’s three volumes of Principia Mathematica 
(Whitehead and Russell 1910, 1911, 1913). Thanks to the philological work of Netz, 
we now better understand why such an endeavor has failed: it was the very practice 
of mathe matics— lettered diagrams carefully indexed to small Greek sentences— that 
led to the formulation of the rules of logic and not the other way round.

19.  Except, to a certain extent, Lefebvre (2001) and Mialet (2012). It seems then 
that Latour’s remark remains true: few scholars have had the courage to do a careful 
anthropological study of mathe matics (Latour 1987, 246).

20.  This is taken from Latour (1987, chapter 2) and Wade (1981, chapter 13).

21.  This is taken from Pickering and Stephanides (1992) and Hankins (1980, 280–312).

22.  Very schematically, peptides are chemical ele ments made of chains of amino 
acids. They are known for interacting intimately with hormones. As  there are many 
dif fer ent amino acids (twenty for the case of  humans),  there exists— potentially— 
billions of dif fer ent peptides made of combinations of two to fifty amino- acids. It 
is impor tant to note that in 1972, at the time of Guillemin’s experiment, peptides 
could already be assembled— and probed— within well- equipped laboratories.

23.  At the time of Hamilton, the standard algebraic notation for a complex number— 
so- called absurd quantities such as square roots of negative numbers— was x + iy, where 
i2 = –1 and x and y are real numbers.  These advances in early complex algebra  were 
problematic to geometers: if positive real numbers could be considered mea sur able 
quantities, negative real numbers and their square roots  were difficult to represent 
as shapes on a plane. A way to overcome this impasse was to consider x and y as 
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coordinates of the end point of a segment terminating at the origin. Therefore, “the 
x- axis of the plane mea sured the real component of a given complex number repre-
sented as such a line segment, and the y axis the imaginary part, the part multiplied 
by i in the algebraic expression” (Pickering and Stephanides 1992, 145). With this 
visualization of complex numbers, algebraic geometers such as Hamilton could relate 
complex geometrical operations on segments and complex algebraic operations on 
equations. A bridge between geometry and complex algebra was thus built. Yet geom-
etry is not confined to planes: if a two- dimensional segment [0, x + iy] can represent 
a complex number,  there is a priori no reason why a three- dimensional segment 
[0, x + iy + jz] could not represent another complex number. Characterizing the be hav-
ior of such a segment was the stated goal of Hamilton’s experiment.

24.  Hamilton’s inquiry into the relationships between complex number theory 
and geometry was not a purely exploratory endeavor. As Pickering and Stephanides 
noted, “the hope was to construct an algebraic replica of transformations of line 
segments in three- dimensional space and this to develop a new and possibly useful 
algebraic system appropriate to calculations in three- dimensional geometry” (Picker-
ing and Stephanides 1992, 146).

25.  Contrary to Hamilton, ancient Greek geometers could only refer to their let-
tered diagrams with short but still cumbersome Greek sentences (Netz 2003, 127–
167). Along with Greek geometers’ emphasis on differentiation, the absence of a 
condensed language such as algebra— that precisely required compiled collections 
of geometrical works in order to be constituted (Netz 1998)— may have participated 
in limiting the scope of ancient Greek geometrical propositions (Netz 2004, 11–54).

26.  Regarding  these instruments, it is worth mentioning that  here we retrieve what 
we  were discussing about in the last section: all of them— except, perhaps, noncom-
mutative algebra— are blackboxed polished facts that  were, initially, written claims. 
Rat pituitary cell cultures, algebraic notations, radioimmunoassays, coordinate 
spaces and even Pythagoras’s theorem all had to overcome  trials in order to gain 
conviction strength and become established, certified facts.

27.  This topological characteristic of mathematical laboratories may be a reason 
why they have rarely been sites for ethnographic inquiries (Latour 2008, 444).

28.  Of course, as we saw in chapter 4, such inscriptions are meaningless without 
the  whole series of inscriptions previously required to produce them. It is only by 
aligning the “final” inscriptions to former ones, thus creating a chain of reference, 
that Guillemin can produce information about his peptide (Latour 2013, chapter 3).

29.   Here we retrieve something we already encountered in chapters 3 and 4: the “cog-
nitive” practice of aligning inscriptions. Just as DF in front of his computer terminal, 
Brazeau, Guillemin, and Hamilton never stop grasping inscriptions they acquire from 
experiments.  These inscriptions can, in turn, be considered takes suggesting further 
actions.
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30.  Again, this is taken from Latour (1987, chapter 2) and Wade (1981, chapter 13).

31.  Again, this is taken from Pickering and Stephanides (1992) and Hankins (1980, 
280–312).

32.  Brazeau and Guillemin published their results in Science (Brazeau et al. 1973). 
 After having presented his results at the Royal Irish Acad emy in November 1843, 
Hamilton published a paper on quaternions in The London, Edinburg and Dublin 
Philosophical Magazine and Journal of Science (Hamilton 1844). An impor tant  thing 
to note about quaternions is that  after Hamilton named them that way, he still had 
to define the complex quantities k2, ik, kj, and i2 in order to complete his system. 
According to a letter Hamilton wrote in 1865, the solution to this prob lem— the 
well- known i2 = j2 = k2 = ijk = −1— appeared to him as he was walking along the Royal 
Canal in Dublin. If this moment was indubitably impor tant, it would be erroneous 
to call it “the discovery of quaternions” (Buchman 2009). As shown by Pickering 
and Stephanides (1992), quaternions  were already defined as objects before the attri-
bution of values to the imaginary quantities’ products. In fact, when compared with 
the experimental work required to define the prob lem of  these products’ values, 
what happened on Dublin’s Royal Canal appears relatively minor.

33.  This is the recurrent prob lem of biographies of impor tant mathematicians; as 
they tend to use nature to explain  great achievements, they often ignore the many 
instruments and inscriptions that  were needed to shape the “discovered” objects. 
Biographies of  great mathematicians are thus often— yet not always (see the amazing 
comic strip Logicomix [Doxiàdis et al. 2010])— unrealistic stories of solitary geniuses 
chosen by nature.

34.  Accepting the dual aspect of nature— the consequence of settled controversies as 
well as the retrospective cause of noncontroversial facts— provides a fresh new look at 
the classical opposition between Platonism and Intuitionism in the philosophy of 
mathe matics. It seems indeed that the oddity of both Platonism— for which math-
ematical objects come from the outer world of ideas— and Intuitionism— for which 
mathematical objects come from the inner world of  human consciousness— comes 
from their shared starting point: they both consider certified noncontroversial 
mathematical facts. Yet as soon as one accounts for controversies in mathe matics— 
that is, mathe matics in the making— nature from above (the outer- world of ideas) or 
nature from below (the inner- world of  human consciousness) cannot be considered 
resources anymore as both are precisely what is at stake during the controversies. 
It is in ter est ing to note, however, that both antagonist unempirical conceptions of 
the origin of mathe matics led to impor tant performative disagreements about the 
practice of mathe matics, notably through the ac cep tance, or refusal, of the law of 
excluded  middle. On this fascinating topic, see Rotman (2006) and Corry (1997).

35.  According to Netz (2004, 181–186), the constant search for differentiation and 
originality in ancient mathematical texts had the effect of multiplying individual 
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proofs of similar prob lems stated differently. In short, Greek geometers  were not 
interested in systems; they  were interested in au then tic proofs with a specific “aura” 
(Netz 2004, 58–63).

36.  Netz suggests that the polemical dynamics of ancient mathematical texts pre-
vented Greek mathematicians from normalizing their works, demonstrations, and 
prob lems. As he noted: “The strategy we have seen so far—of the Greek mathemati-
cian trying to isolate his work from its context—is seen now as both prudent and 
effective. It is prudent  because it is a way of protecting the work, in advance, from 
being dragged into inter- textual polemics over which you do not have control. And 
it is effective  because it makes your work shine, as if beyond polemic. When Greek 
mathematicians set out the ground for their text, by an explicit introduction or, 
implicitly, by the mathematical statement of the prob lem, what they aim to do is to 
wipe the slate clean: to make the new proposition appear, as far as pos si ble, as a sui 
generis event— the first genuine solution of the prob lem at hand” (Netz 2004, 62–63).

37.  To a certain extent, as we  will  shall see in chapter 6, mathematical software such 
as Wolfram Mathematica and Matlab can be considered repositories of polished, 
compiled, and standardized mathematical certified knowledge.

38.  Very schematically, a neuron cell is made of three parts.  There is first the “den-
drite”: the structure that allows a neuron to receive an electro-chemical signal.  There 
is then the “cell body”: the  spherical part of the neuron that contains the nucleus 
of the cell and reacts to the signal.  There is fi nally the “axon”: the extended cell 
membrane that sends information to other dendrites.

39.  It is impor tant to note that the inevitable losses that go along with reduction 
pro cesses can be used to criticize the products of  these reductions. This is exactly 
what I did in chapter 3 when I was dealing with the computational meta phor of the 
mind. I used what some reductions did not take into account in order to criticize the 
product of  these reductions.

Chapter 6

1.  BJ’s face- detection algorithm computes the size of a face as the ratio of the area of 
the face- detection rectangle to the size of the image; hence the very small size- values 
of  faces in figure 6.3.

2.  Remember that this comparison exercise was the main reason why the Group’s 
paper on the algorithm was initially rejected by the committee of the image- 
processing conference (see chapter 2).

3.  It is impor tant to note that this spreadsheet form required not so trivial Matlab 
parsing scripts written by the Group. The construction of a ground- truth database thus 
also sometimes requires computer programming practices as described in chapter 4.
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4.  Napier initiated the theory of logarithms mainly to facilitate manual numerical 
calculations, notably in astronomy. On this topic, see the old but enjoyable work by 
Cajori (1913).

5.  This discussion was reconstructed from notes in Logbook 2, February  2014– 
May 2014.

6.  With lower- level programming languages such as C or C++, it might be trickier to 
transform this scenario into a completed program.

7.  If it is not time consuming to approximate square roots of positive real numbers, 
it is more complicated to get precise results. Nowadays, computers start by express-
ing the positive real number in floating point notation m * 2e where m is a number 
between 1 and 2 and e is its exponent (MacKenzie 1993). Thanks to this initial trans-
lation, computer languages can then use the Newton- Raphson iteration method to 
calculate the reciprocal of square root before fi nally multiplying this result with the 
initial real number to get the final answer. Calculating k-means of five clusters is also 
not that trivial. It can be summarized by a list of six operations: (1) place five arbitrary 
random centroids within the given dataset; (2) compute the distances of  every point 
of the dataset from all centroids; (3) assign  every point of the dataset to its nearest 
centroid; (4) compute the center of gravity of  every centroid- assigned group of points; 
(5) assign each centroid to the position of the center of gravity of its group; and 
(6) reiterate the operation  until no centroid changes its assignment anymore.

8.  Remember that INT stands for the Matlab interpreter that translates instructions 
written in the Editor into machine code, the only language that can make pro cessors 
trigger electric pulses.

9.  Information retrieved from Matlab Central Community Forum (MATLAB Answers 
2017)

10.  This discussion has been reconstructed from notes in Logbook 3, February– 
May 2014.

11.  This discussion has been reconstructed from notes in Logbook 3, February– 
May 2014.

12.  Fei- Fei Li is now a professor at Stanford University. Between 2017 and 2018, she 
was chief scientist at Google Cloud.

13.  Image classification in digital image pro cessing consists of categorizing the 
content of images into predefined labels. For an accessible introduction to image 
classification, see Kamavisdar, Saluja, and Agrawal (2013).

14.  The beginnings of the ImageNet ground truth proj ect  were difficult. As Gersh-
gorn noted it: “Li’s first idea was to hire undergraduate students for $10 an hour to 
manually find images and add them to the dataset. But back- of- the- napkin math 
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quickly made Li realize that at the undergrads’ rate of collecting images it would take 
90 years to complete.  After the undergrad task force was disbanded, Li and the team 
went back to the drawing board. What if computer- vision algorithms could pick the 
photos from the internet, and  humans would then just curate the images? But  after 
a few months of tinkering with algorithms, the team came to the conclusion that 
this technique  wasn’t sustainable  either— future algorithms would be constricted to 
only judging what algorithms  were capable of recognizing at the time the dataset 
was compiled. Undergrads  were time- consuming, algorithms  were flawed, and the 
team  didn’t have money— Li said the proj ect failed to win any of the federal grants 
she applied for, receiving comments on proposals that it was shameful Prince ton 
would research this topic, and that the only strength of proposal was that Li was a 
 woman” (Gershgorn 2017).

15.  To minimize crowdworkers’ labeling errors, Fei- Fei Li and her team asked dif fer-
ent workers to label the same image— one label being considered a vote, the majority 
of votes “winning” the labeling task. However, depending on the complexity of the 
labeling task— categories such as “Burmese cat” being difficult to accurately identify— 
Fei- Fei Li and her team have varied the levels of consensus required. To determine 
 these content- related required levels of consensus, they have developed an algorithm 
whose functioning is, however, not detailed in the paper (Deng et al. 2009, 252).

16.  Once assembled, the ImageNet dataset and ground truth did not generate 
immediate interest among the image recognition community. Far from it: the first 
publication of the proj ect in the 2009 Computer Vision and Pattern Recognition 
(Deng et al. 2009) was taken from a poster stuck in a corner of the Fontainebleau 
Resort at Miami Beach (Gershgorn 2017).

17.  In a nutshell, ILSVRC challenges, in the wake of PASCAL VOC challenges, 
consist of two related components: (1) a publicly available ground truth and (2) 
an annual competition whose results are discussed during dedicated workshops. As 
Russakovsky et al. summarized it: “The publically released dataset contains a set of 
manually annotated training images. A set of test images is also released, with the 
manual annotations withheld. Participants train their algorithms using the training 
images and then automatically annotate the test images.  These predicted annota-
tions are submitted to the evaluation server. Results of the evaluation are revealed 
at the end of the competition period and authors are invited to share insights at 
the workshop held at the International Conference on Computer Vision (ICCV) or 
Eu ro pean Conference on Computer Vision (ECCV) in alternate years” (Russakovsky 
et al. 2015, 211).

18.  AlexNet, as the algorithm presented in Krizhevsky, Sutskever, and Hinton 
(2012) ended up being called, has brought back to the forefront of image pro cessing 
the convolutional neural network learning techniques developed by Joshua Bengio, 
Geoffrey Hinton, and Yann LeCun since the 1980s.  Today, convolutional neural 
networks for text, image, and video pro cessing are ubiquitous, empowering products 
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distributed by large tech companies such as Google, Facebook, or Microsoft. More-
over, Bengio, Hinton, and LeCun received the Turing Prize Award in 2018, generally 
considered the highest distinction in computer science.

19.   These criticisms  were summarized by Marvin Minsky, the head of the MIT Arti-
ficial Intelligence Research Group, and Seymour Papert in their book Perceptrons: An 
Introduction to Computational Geometry (1969).

20.  Boltzmann machines are expansions of spin glass- inspired neural networks. By 
including a stochastic decision rule, Ackley, Hinton, and Sejnokwski (1985) could 
make a neural network reach an appreciable learning equilibrium. As Domingos 
explained, “the probability of finding the network in a par tic u lar state was given by 
the well- known Boltzmann distribution from thermodynamics, so they called their 
network a Boltzmann machine” (Domingos 2015, 103).

21.  As noted in Cardon, Cointet, and Mazières (2018),  there is a debate regarding 
the anteriority of backprop algorithm: “This method has been formulated and used 
many times before the publication of [Rumelhart Hinton, and Williams 1986]’s arti-
cle, notably by Linnainmaa in 1970, Werbos in 1974 and LeCun in 1985” (Cardon, 
Cointet, and Mazières 2018, 198; my translation).

22.  This second marginalization of connectionists during the 1990s can be related 
to the spread of Support Vector Machines (SVMs), audacious learning techniques 
that are very effective on small ground truths. Moreover, while SVMs manage to 
find, during the learning of the loss function, the global error minimum, convo-
lutional neural networks can only find local minimums (a limit that  will prove to 
be less problematic with the advent of large ground truths, such as ImageNet, and 
the increase in the computing power of computers). On this specialized topic, see 
Domingos (2015, 107–111) and Cardon, Cointet, and Mazières (2018, 200–202).

Conclusion

1. Though, like Negri, this book is drawn to the idea of contributing to founding a 
philosophy capable of going beyond modernity understood as “the definition and 
development of a totalizing thought that assumes human and collective creativity 
in order to insert them into the instrumental rationality of the capitalist mode of 
production” (Negri 1999, 323).

2.  Curiously, even though Negri explic itly positions himself as an opponent of 
the Anglo- American liberal tradition, his conclusions regarding the dual aspect of 
insurrectional acts are quite aligned with propositions made by American pragmatist 
writers such as Walter Lipp mann and John Dewey. Indeed, whereas for  these two 
authors, the po liti cal can only be expressed by means of issues that redefine our 
 whole living together (Dewey [1927] 2016; Lipp mann [1925] 1993; Marres 2005), for 
Negri, the po liti cal, as Michael Hardt notes, “is defined by the forces that challenge 
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the stability of the constituted order … and the constituent pro cesses that invent 
alternative forms of social organ ization.  … The po liti cal exists only where innova-
tion and constituent pro cesses are at play” (Hardt 1999, ix).

3.  This, I believe, is a potential way of somewhat reconciling Negri—at least, his 
writings— with the  great German  legal tradition that he is also explic itly opposed 
to. If Negri is certainly right to refuse the exteriority of constituent power vis- à- vis 
constituted power, thus emptying  legal constitutions of any power of po liti cal inno-
vation, he is prob ably wrong to dismiss Georg Jellinek’s and Hans Kelsen’s proposi-
tions as to the scriptural, and therefore ontological, weight of constituent texts. On 
this tension between Sollen (what  ought to be) and Sein (what is) within constitutive 
pro cesses, see Negri (1999, 5–35) as well as Jellinek ([1914] 2016) and Kelsen (1991).

4.  This is the topic of Anne Henriksen’s and Cornelius Heimstädt’s PhD  theses (cur-
rently being conducted at Aarhus University and Mines ParisTech, respectively), as 
well as Nick Seaver’s forthcoming book (Seaver forthcoming).

5.  The moral economy of blockchain technology is the topic of Clément Gasull’s 
PhD thesis, currently being conducted at Mines ParisTech.

6.  This is part of Vassileios Gallanos’s PhD thesis, currently being conducted at the 
University of Edinburgh.
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THE CONSTITUTION OF ALGORITHMS
GROUND-TRUTHING, PROGRAMMING, FORMULATING

FLORIAN JATON   foreword by Geoffrey C. Bowker

Algorithms—often associated with the terms big data, machine learning, or 
artificial intelligence—underlie the technologies we use every day, and disputes 
over the consequences, actual or potential, of new algorithms arise regularly. 
In this book, Florian Jaton offers a new way to study computerized methods, 
providing an account of where algorithms come from and how they are constituted, 
investigating the practical activities by which algorithms are progressively 
assembled rather than what they may suggest or require once they are assembled.

Drawing on a four-year ethnographic study of a computer science laboratory 
that specialized in digital image processing, Jaton illuminates the invisible 
processes that are behind the development of algorithms. Tracing what he terms 
a set of intertwining courses of action sharing common finalities, he describes 
the practical activity of creating algorithms through the lenses of ground-truthing, 
programming, and formulating. He describes courses of action that successfully 
formulated some of the relationships among the data of a ground-truth database, 
revealing the links between ground-truthing, programming, and formulating 
activities—entangled processes that lead to the shaping of algorithms. 

FLORIAN JATON is a Postdoctoral Researcher at the STS Lab at the University 
of Lausanne.
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“A provocative and skillful study of how algorithms come into the world—and 
inevitably shape it. Jaton performs the daring feat of offering an empirically rich 
analysis of algorithms without taking them for granted.”

—MALTE ZIEWITZ, Assistant Professor, Mills Family Faculty Fellow, Cornell 
University

“This is a remarkable study of the spaces where algorithms are made: at once 
an ethnographic and theoretical intervention, illuminating the birthplaces of 
algorithmic systems and the collective processes that shape them.” 

—KATE CRAWFORD, author of Atlas of AI
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