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Abstract
This article documents the practical efforts of a group of scientists designing an image-
processing algorithm for saliency detection. By following the actors of this computer science 
project, the article shows that the problems often considered to be the starting points of 
computational models are in fact provisional results of time-consuming, collective and highly 
material processes that engage habits, desires, skills and values. In the project being studied, 
problematization processes lead to the constitution of referential databases called ‘ground truths’ 
that enable both the effective shaping of algorithms and the evaluation of their performances. 
Working as important common touchstones for research communities in image processing, 
the ground truths are inherited from prior problematization processes and may be imparted to 
subsequent ones. The ethnographic results of this study suggest two complementary analytical 
perspectives on algorithms: (1) an ‘axiomatic’ perspective that understands algorithms as sets of 
instructions designed to solve given problems computationally in the best possible way, and (2) 
a ‘problem-oriented’ perspective that understands algorithms as sets of instructions designed 
to computationally retrieve outputs designed and designated during specific problematization 
processes. If the axiomatic perspective on algorithms puts the emphasis on the numerical 
transformations of inputs into outputs, the problem-oriented perspective puts the emphasis on 
the definition of both inputs and outputs.
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Introduction: Bringing algorithms down to the ground

Reacting against the depiction of algorithms as both powerful and inscrutable,1 recent 
publications in Science and Technology Studies (STS) have portrayed them as uncer-
tain socio-material configurations. Inspired by approaches for which relations do not 
connect but ‘enact entities in the flow of becoming’ (Introna, 2016: 23), case studies 
such as those of the computerization of the Arizona Stock Exchange in the 1990s 
(Muniesa, 2011), the performativity of a text-matching program for academic essays 
(Introna, 2016) and the implementation of an airport security system (Neyland, 2016) 
participate in deflating the ‘algorithmic drama’ (Ziewitz, 2016) and challenging it with 
more nuanced and grounded narratives. Instead of questioning the effects algorithms 
may have on society – thus excluding these technical artefacts from the common world 
(Simondon, 2017) – these studies explore the co-constitution of algorithms and society 
(Ananny, 2016; Crawford, 2016; Zarsky, 2016). By understanding algorithms as 
assemblages embedded in mundane practices (the surveillance habits of airport secu-
rity crews, the academic duties of undergraduate students in Modern History, the 
doubts of a EU Data Protection officer), these case studies around algorithms bring to 
light new suggestions for innovative modes of design and cooperation (Jackson et al., 
2014; Knobel and Bowker, 2011). In short, by examining how algorithms are brought 
into existence, this STS research program helps to better compose (Latour, 2010) com-
mon worlds with algorithms.

In order to participate in these stimulating efforts to bring algorithms ‘down to earth’ 
(Bogost, 2015) and know them better (Seaver, 2013), this exploratory article reports on 
an ethnographic inquiry into the constitution of an image-processing algorithm. Inspired 
by 1980s laboratory studies and their attempts to deflate elusive aspects of scientific facts 
by accounting for mundane practices of scientists (Fujimura, 1987; Knorr-Cetina, 1981; 
Latour and Woolgar, 1986; Lynch, 1985), this article examines a computer science labo-
ratory where researchers manufacture algorithms. In an attempt to learn more about com-
putation on the ground, this study accounts for instruments, habits, intuitions, desires, 
duties and skills that participate in the shaping of algorithms.

Specifically, this case study accounts for the constitution of an image-processing 
algorithm for saliency detection (described in detail below). It documents the practical 
efforts of a group of young researchers designing and publishing a new algorithm or, as 
computer scientists usually put it, a new computational model. By following the actors 
of this project, we see that the problems computational models are intended to solve are 
in fact provisional results of time-consuming and highly material processes that engage 
habits, desires, skills and values. During such problematization processes (Callon, 1986), 
the inputs upon which a desired algorithm will work and the outputs that it is supposed 
to produce are both manually shaped and gathered in databases that computer scientists 
called ‘ground truths’. These ground truths are used both to define the numerical features 
of the algorithm and to evaluate its performances. Working as expansive common touch-
stones for research communities in computer science, these ground truths also inherit 
from prior problematization processes and engender subsequent ones. The centrality of 
ground truths for the design and evaluation of algorithms strongly suggests that, to a 
certain extent, we get the algorithms of our ground truths.
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Building upon these ethnographic insights, I tentatively propose two complementary 
analytical perspectives on algorithms. A first perspective would see algorithms as sets of 
instructions designed to computationally solve problems in the best possible way 
(Cormen et al., 2009). By considering problems to be given, this axiomatic way of seeing 
algorithms effectively facilitates inquiries into the capabilities of numbers – a fascinating 
research topic. Yet, a second and equally legitimate perspective could consider algo-
rithms to be sets of instructions designed to computationally retrieve in the best possible 
way what have been designed as outputs during specific problematization processes. I 
assume that if this problem-oriented way of seeing algorithms manages to coexist with 
its axiomatic counterpart, it could pave the way for refreshing human-algorithm recon-
figurations (Suchman, 2007). Indeed, if ground truths define the problems that algo-
rithms are supposed to solve computationally, the construction processes of these ground 
truths might be important situations to be investigated critically and creatively.

The lab

The main setting of my case study is a European technical institute with a quite renowned 
computer science (CS) faculty. On the third floor of the CS faculty’s main building, scat-
tered in six offices along one of the four hallways that surround the central patio, lies 
what I will call ‘the Lab’: a well-respected laboratory of computational photography. 
Computational photography is a broad research area linked to the Charge-Coupled 
Device (CCD) developed in the late 1960s (Seitz and Einspruch, 1998). Through the 
translation of electromagnetic photons into electron charges that can be amplified and 
digitalized, CCDs enable the production of pixel images constituted of discrete elements. 
Organized in grids, these discrete signals possess the ability to be processed automati-
cally by computer programs that are themselves non-trivial expressions of mathematical 
algorithms.2 In the Lab, colors, shadows, smiles or elephants can also be considered 
‘two-dimensional digital signals’3 upon which automated calculations can be processed, 
mostly by means of linear algebra. The creation of new algorithms and their translation 
into computer programs able to compute the constitutive elements of digital photographs 
(often called ‘natural images’) is one of the research foci of the Lab. This area of practice 
is also called ‘two-dimensional digital signal processing’ or, more succinctly, ‘image 
processing’.

Some image-processing algorithms designed by computational photography labora-
tories are quite specialized and intended for specific purposes (e.g. superpixel segmenta-
tion algorithms), whereas others are widespread and industrially implemented in broader 
assemblages such as digital cameras (e.g. red-eye removal programs), expensive soft-
ware, and large information systems (e.g., text-recognition programs, compression 
schemes and feature clustering). Whether widespread or specialized, these algorithms 
first need to be trained, nurtured, evaluated, and compared in places such as the Lab.

The Lab was the setting, with the support of its interdisciplinary collaborative direc-
tor, of my two-year ethnographic inquiry into the constitution of image-processing algo-
rithms. In order to conduct the investigation and collect data, I stayed with the Lab 
between November 2013 and December 2015, participating in its projects, seminars, 
meetings and social events. This paper draws upon data I collected while participating in 
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a project run by three members of the Lab – two computer science PhD students (GY and 
BJ) and a post-doc (SL), who collectively I call ‘the Group’ – from November 2013 to 
June 2014. As we will see, the Group ultimately tried to introduce new research direc-
tions in a subfield of image processing called ‘saliency detection’. Yet in order to propose 
an innovative algorithm for saliency detection, the Group had to construct a new referen-
tial database – what computer scientists call a ‘ground truth’ – that could both provide the 
numerical features of their algorithm and attest to its reliability. Insofar as the Group’s 
final paper on the algorithm was rejected by the committee of an important European 
conference on image processing, we can assume that the project – at least in June 2014 
– failed to fulfil its initial ambitions.

My analysis is based mainly on excerpts of discussions recorded in the Lab’s cafeteria 
during weekly ‘Group meetings’, where the Group and I discussed the project’s framing, 
progress and issues. From these excerpts, as well as some other collected documents, I 
try to account for how the Group designed a new ground truth for saliency detection, and 
why this move was considered an essential step for the success of their project. These 
empirical elements further allow me to propose broader propositions about the relations 
between ground truths and algorithms.

Saliency detection and digital image processing, 1970–2013

‘Saliency’ for computer scientists in image processing is a blurry term with a difficult-to-
track history involving different – yet closely related – research areas. One possible point 
of departure in the 1970s is when explicative models in cognitive psychology and neuro-
biology started to schematize how the human brain could handle an amount of visual 
data far larger than its estimated processing capabilities. After many disputes and contro-
versies,4 a rough agreement about the overall process of humans’ ‘selective visual atten-
tion method’ has emerged, distinguishing between two neuronal processes of selecting 
and gating visual information (Heinke and Humphreys, 2005). On the one hand, there is 
a task-independent and rapid ‘bottom-up visual attention process’ that selects conspicu-
ous stimuli such as color contrasts, feature orientations or spatial frequency. On the other 
hand, there is a slower, selectively operating, task-based ‘top-down visual attention pro-
cess’. The term ‘saliency map’ was proposed by Koch and Ullman (1985) to define the 
final result of the brain’s bottom-up visual attention process.

In the 1980s, the two theorized different ‘paths’ for the brain to process analogical 
light signals – one fast and generic, the other slower and task-specific – inspired scien-
tists in computer vision whose machines face a similar problem, the stream of sampled 
digital signals that emanate from CCDs being too large to be processed all at once. Thus 
computer scientists have progressively shaped two different classes of image-processing 
detection algorithms. The first class is supposed to detect ‘low-level features’ inscribed 
within the pixels of a given image, such as intensity, color, orientation and texture. 
Through the efforts of Laurent Itti and Christof Koch in the 2000s5 the term ‘saliency’ 
was progressively assimilated into this first class of algorithms, which became ‘saliency-
detection algorithms’. The second class of image-processing detection algorithms is 
based on ‘high-level features’ that have to be learned by machines according to specific 
metrics (e.g. face or car detection). This often involves automated learning procedures 
and the management of increasingly large databases (Lowe, 1999).
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Despite differences in terms of substratum, both high-level and low-level detection 
algorithms were (and still are) bound to the same construction workflow, which consists 
of five interrelated and problematic steps: (1) the acquisition of a finite dataset, (2) on the 
data of this dataset, the manual labelling of clear targets, defined here as the elements 
(faces, cars, salient regions) that the desired algorithm will be asked to detect, (3) the 
construction of a database, usually called a ‘ground truth’ by the research community, 
gathering the unlabelled data and their manually labelled counterparts, (4) the design of 
the algorithm’s calculating properties and parameters based on a statistically representa-
tive part of the ground-truth database, and (5) the evaluation of the algorithm’s perfor-
mances based on the rest of the ground-truth database. Thus the very existence of a 
standard detection algorithm depends upon a finite set of digital images for which some 
human workers have previously labelled targets (e.g. faces, cars or salient regions). The 
unlabelled images and their manually labelled counterparts are then gathered together 
within a database to form the ground truth. In order to design and code the algorithm, the 
ground truth is randomly split into two parts: the ‘training set’ and the ‘evaluation set’. 
The designers would use the training set to extract formal information about the targets 
and translate them into mathematical expressions. Once formalized and implemented in 
machine-readable code, the algorithm is tested on the evaluation set to see how well it 
detects targets that were not used to design its properties. It produces a precise number 
of outputs that can be qualified as ‘true positives’, ‘false negatives’ or ‘false positives’, 
thanks to the previous human labelling work. Out of this comparison between manually 
designed targets and automatically produced outputs, statistical measures in terms of 
precision (the fraction of detected items that were previously defined as targets) and 
recall (the fraction of targets among the detected items) can be obtained in order to com-
pare and rank competing algorithms6 (see Figure 1).

One drawback of high-level detection algorithms is that they are task-specific and 
cannot by themselves detect different types of targets: a face-detection algorithm will 
detect faces, a car-detection algorithm will detect cars, etc.7 Yet, one of the benefits of 
such high-level detection algorithms is that the definition of their targets often involves 
only minor ambiguities for those who design them: cars and faces have rather unambigu-
ous characteristics that facilitate agreement. Ground truths can then be manually shaped 
by computer scientists in order to train high-level detection algorithms. Moreover, these 
ground truths can also serve as referees between competing high-level detection algo-
rithms since they provide precision and recall metrics. The sub-field of face-detection 
with its numerous ground truths and algorithmic propositions provides a paradigmatic 
example of a highly developed and competitive topic in image processing (Hjelmås and 
Low, 2001; Zhang and Zhang, 2010).

In the 2000s, unlike research in high-level detection, low-level saliency detection had 
no obvious ground truth allowing the design and evaluation of computational models.8 
At that time, if the task-independent and adaptive character of saliency detection was 
theoretically interesting for automatic image cropping (Santella et al., 2006), adaptive 
display on small devices (Chen et al., 2003), advertising design and image compression 
(Itti, 2000), the absence of any ground truth that could allow the training and evaluation 
of computational models prevented saliency detection from being an active topic in digi-
tal image processing. As Itti et al. (1998) confessed when they tested the very first sali-
ency-detection algorithm on natural images:
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With many such [natural] images, it is difficult to objectively evaluate the model, because no 
objective reference is available for comparison, and observers may disagree on which locations 
are the most salient. (Itti et al., 1998: 1258)

Saliency detection in natural images is an equivocal topic, not easily expressed in a uni-
vocal ground truth. If it is usually straightforward (yet time consuming) to define univo-
cal targets for training and evaluating high-level face or car detection algorithms, it is far 
more complex to do so for saliency-detection algorithms, because what is considered as 
salient in a natural image tends to change from person to person. While in the 2000s 
saliency-detection algorithms might have been promising for many industrial applica-
tions, nobody in the field of image processing had found a way to design a ground truth 
for natural images.

In 2007, Liu et al. proposed an innovative solution to this problem and created the 
very first ground truth for saliency detection in natural images. Their shift was smart, 
costly and contributed greatly to framing and establishing the subfield of saliency detec-
tion in the image-processing literature. Liu et al.’s first move was to propose one possible 
scope of saliency detection by incorporating concepts from high-level detection: Instead 
of trying to highlight salient areas within digital images, computational models for sali-
ency should detect ‘the most salient object’ within a given digital image. They thus 
framed the saliency problem as binary and object-related:

Figure 1. Schematic of precision and recall measures on φ. In this hypothetical example, φ 
(grey background) managed to detect 30 targets (true positives) but missed 18 of them (false 
negatives). This performance makes φ have a recall score of 0.62. φ also detected 12 elements 
that are not targets (false positives) and this makes it have a precision score of 0.71. From this 
point, other algorithms intended to detect the same targets can be tested on the same ground 
truth and may have better or worse precision and recall scores than φ.
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We incorporate the high-level concept of salient object into the process of visual attention in 
each respective image. We call them salient objects, or foreground objects that we are familiar 
with. … [W]e formulate salient object detection as a binary labelling problem that separates a 
salient object from the background. Like face detection, we detect a familiar object; unlike face 
detection, we detect a familiar yet unknown object in an image. (Liu et al., 2007: 1–2)

Thanks to this refinement of the concept of saliency (from ‘anything that first attracts 
attention’ to ‘the one object in a picture that first attracts attention’), Liu et al. could 
organize an experiment in order to construct legitimate targets to be retrieved by compu-
tational models. They first collected 130,099 random high-quality natural images from 
Internet forums and search engines. Then they manually selected 20,840 images that fit 
their definition of the saliency problem, images that, according to them, contained only 
one salient object. This initial selection operation was crucial, since it excluded images 
with several potentially salient objects.

For each image, three human workers then manually drew rectangles on what they 
thought was the most salient object. Liu et al. had thus obtained three different rectangles 
for each image, whose consistencies could be measured by the percentage of shared 
pixels. For a given image, if its three rectangles were more consistent than a chosen 
threshold (here, 80% of pixels in common), the image was considered to contain a 
‘highly consistent salient object’ (Liu et al., 2007: 2). After this first selection step, their 
dataset called α contained around 13,000 images.

Liu et al. then randomly selected 5000 highly consistent salient-object images from α 
to create a second dataset called β. They then asked nine other human workers to label 
the salient object of every image in β with a rectangle. This time, Liu et al. obtained for 
every image nine different yet highly consistent rectangles whose average surface was 
considered their ‘saliency probability map’ (Liu et al., 2007: 3). Thanks to this con-
structed social agreement, the 5000 saliency probability maps – from a computer-science 
perspective, tangible matrices constituted by specific numerical values – could then be 
considered the best solutions to the saliency problem as they framed it. The database 
gathering the natural images and their corresponding saliency probability maps became 
the material base upon which the desired algorithm could be developed. By constructing 
this ground truth, Liu et al. defined the terms of a new problem whose solutions could be 
retrieved by means of calculating methods.

By organizing this survey, inviting people into their laboratory, welcoming them, 
explaining the topic to them, writing the appropriate programs to make them label the 
images, and gathering the results in a proper database in order to statistically process 
them, Liu et al. transformed their initial reduced conception of saliency detection into 
workable and unambiguous targets with specific numerical values. At the end of this 
laborious process, Liu et al. could randomly select 2000 images from set α and 1000 
images from set β to construct a training set (Liu et al., 2007: 5–6) in order to analyze the 
shared features of their targets. Once the adequate numerical features were extracted 
from the targets of the training set and implemented in machine-readable language, they 
used the 4000 remaining images from set β to measure the performances of their algo-
rithm. Furthermore, and for the very first time, they also could compare the detection 
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performances of their algorithm with two competing algorithms already proposed by 
other laboratories but that could not have been evaluated on natural images, due to the 
lack of any ‘natural’ targets related to saliency (see Figure 2). Besides the actual comple-
tion of their saliency-detection algorithm, the innovation of Liu et al. was to redefine the 
saliency problem so that it could allow performance evaluations.

By publishing their paper and also publicly providing their ground truth online, it is 
not an exaggeration to say that Liu et al. established a newly assessable research direc-
tion in image processing. A costly infrastructure had been put together, ready to be 
reused in order to support competing algorithmic propositions. Their publication was 
more than a paper: It was a paper that allowed other papers to be published, as they had 
provided a ground truth that could be used by other researchers who would quote the 
seminal paper and accept the ground truth’s restricted – yet operational – definition of 
saliency.9

Another important paper for saliency detection – and therefore also for the Group’s 
project we shall soon start to follow – was published in 2008 by Wang and Li. To them, 
even though Liu et al. were right to frame the saliency problem as a binary problem, their 
bounding-box ground truth remained unsatisfactory, since it could well evaluate inac-
curate results (see Figure 3). In order to refine the measures of Liu et al.’s first ground 
truth for saliency detection, Wang and Li randomly selected 300 images from the β data-
set and used a segmentation tool to manually label the contours of each of the 300 salient 
objects. What they proposed and evaluated then was a saliency detection algorithm that 
‘not only captures the rough location and region of the salient objects, but also roughly 
keeps the contours right’ (Wang and Li, 2008: 965).

From this point, saliency detection in image-processing was almost set: Even though 
many algorithms exploiting different low-level pixel information were later proposed,10 
they were all bound to the saliency problem as defined by Liu et al. (2007). And even 
though other ground truths have since been proposed in published papers (Judd et al., 
2012; Movahedi and Elder, 2010), in order to widen the scope of saliency detection 
(notably by proposing images with two objects that could be decentered), Liu et al.’s 
framing of saliency detection as a binary object-related problem remained unchallenged. 
And when the Group started their project in November 2013, Liu et al.’s problematiza-
tion of the saliency problem was continuing to support a competition between algorithms 
that differentiated themselves by speed and accuracy (see Figure 4).

With this brief history in mind, we are now ready to follow the Group as it tries to 
constitute its own innovative saliency-detection algorithm.

Reformulating the saliency problem

Around 3 pm on November 7, 2013, I entered the Lab’s cafeteria for the first Group 
meeting. Previous discussions in the Lab had led to an agreement to work on a new col-
lective publication on saliency detection, and had identified the particular expertise of 
CL, GY, and BJ as relevant. The day before the Group meeting, I had attempted to read 
some papers on saliency detection that GY had sent me earlier, but I was confused by 
their tacit postulates. How would it be possible to detect saliency, since what is important 
in an image certainly varies from person to person? And what is this strange notion of 
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Figure 4. Comparison table taken from Jiang et al. (2013: 1672). The number of competing 
algorithms has increased since 2007. Here, three ground truths are used for performance 
evaluations: ASD (Achanta et al., 2009), SED (Alpert et al., 2007) and SOD (Movahedi and Elder, 
2010). Beneath, a table comparing the execution time of each implemented algorithm.
Source: reproduced with permission from Elsevier, Feb 02, 2015, 35609059883, Bowen Jiang; Lihe Zhang; 
Huchuan Lu; Chuan Yang; Ming-Hsuan Yan, Dec. 2013.

Figure 3. Taken from Wang and Li (2008: 968): (a) is an unlabelled image of Liu et al.’s ground 
truth database; (b) is the result of Wang & Li’s saliency-detection algorithm; (c) is the imaginary 
result of some other saliency-detection algorithm on (a); (d) is the bounding-box target as 
provided by Liu et al.’s ground truth database. As we can see, even though (b) is more accurate 
than (c), it will obtain a lower statistical evaluation if compared to (d). That is why Wang & Li 
propose (e), a binary target that matches the contours of the already-defined salient object.
Source: reproduced with permission from Elsevier, Feb 02, 2015, 3560760282261, Zheshen Wang; Baoxin 
Li, March-April 2008.
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‘ground truth’ on which the papers’ algorithms seem to rely? For an STS scholar, the 
notion sounded highly problematic.

As soon as I entered the Lab’s cafeteria, the Group presented me with an overview of 
the ambitions of the project and how it intended to run it.

Group meeting, Lab’s cafeteria, 7 November 2013. After saluting the Group, FJ sits at its table:

CL: Have you heard about saliency?
FJ: Well, I’ve read some stuff.
CL:  Huge topic but basically, when you look at an image, not everything is important usually, 

and you focus only on some elements. … What we try to do basically, it’s like a model 
that detects elements in an image that should attract attention. … GY’s worked on a 
model that uses contrasts to segment objects and BJ has a model that detects faces. We’ll 
use them as a base. … For now, most saliency models only detect objects and don’t pay 
attention to faces. But what we say is that faces are also important and usually attract 
directly the attention. … And that’s the point: We want to include faces to saliency, 
basically.

GY:  And segment faces. Because face-detectors output only rectangles. … There can be 
many applications [for the model], like in display or compression for example.

According to the Group, saliency detection models should also take human faces into 
account as faces are important in human attention mechanisms. Moreover, investing in 
this project within saliency detection would be a good opportunity to merge some of the 
Group’s research on both low-level segmentation and high-level face detection. The idea 
to combine high-level face detection with low-level saliency detection has already been 
proposed in image-processing papers (Borji, 2012; Karthikeyan et al., 2013). But the 
Group’s ambition here is to go further in the saliency direction as framed by Wang and 
Li (2008), after Liu et al. (2007), by proposing an algorithm capable of detecting and 
segmenting the contours of faces. In order to accomplish such subtle results, the previous 
work done by GY on segmentation and BJ on face detection constitutes capital with 
which to work.

The Group also wanted to construct a saliency-detection model that could effectively 
process a larger range of natural images:

Group meeting, Lab’s cafeteria, November 7, 2013:

GY:  But you know [to FJ], we hope the algorithm could detect multiple objects and faces. 
Because in saliency detection, models can only detect like one or two objects on simple 
images. They don’t detect multiple salient objects in complex images. … But the 
problem is that there’s no ground truth for that. There’s only ground truth with like one 
or two objects, and not that many faces.

Pictures produced by users of digital cameras – according to the Group – are generally 
more cluttered than those used to train and evaluate saliency-detection algorithms. 
Indeed, at least in November 2013, saliency detection is a research area in which algo-
rithms are increasingly efficient only on those rare natural images with clear and untan-
gled features. But the Group also knew that this issue is intimately related to the current 
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ground truths for saliency detection, which are all bound to Liu et al’s initial definition 
of the saliency problem. If the Group wants to propose a model that could detect a differ-
ent and more subtle saliency, it must construct the targets of such saliency. If it wants to 
propose a model that can calculate and detect multiple salient features (objects and faces) 
in more complex and ‘realistic’ images, it must construct a new ground truth that would 
gather complex images and their corresponding multiple salient features.

The Group’s desire to redefine the terms of the saliency problem did not come ex 
nihilo. When Liu et al. did their research on saliency in 2007, it was difficult for com-
puter scientists to organize a large social survey on complex images. But in November 
2013, the wide distribution of crowdsourcing services enabled new possibilities:

Group meeting, Lab’s cafeteria, 7 November 2013:

GY: But we want to use crowdsourcing to do a new ground truth and ask people to label 
features they think are salient. … And then we could use that for our model and compare the 
results, you see?

As defined by Estellés-Arolas and González-Ladrón-de-Guevara (2012), crowdsourcing is

a type of participative online activity in which an individual, an institution, a non-profit 
organization, or a company proposes to a group of individuals of varying knowledge, 
heterogeneity, and number, via a flexible open call, the voluntary undertaking of a task. (p. 195)

In November 2013, there were multiple available crowdsourcing services, such as 
ShortTasks and Amazon’s Mechanical Turk.11 For the Group, the estimated benefits were 
huge: Once the desired web application was coded and set with a clear instruction, such 
as ‘please highlight the features that directly attract your attention’, the Group would be 
able to pay a crowdsourcing company that will take charge of linking the application to 
dozens of paid workers. In turn, these workers would feed the Group’s server with label-
ling coordinates that can be processed on basic yet powerful software such as Matlab.12 
For our story, crowdsourcing – as a rather easily available paid service – creates a differ-
ence (Latour, 2005): The gathering of many manually labelled salient features would 
become more manageable for the Group than it had been for Liu et al. and an extension 
of the notion of saliency to multiple features would become doable (Fujimura, 1987).

Another difference effected by crowdsourcing was a potential redefinition of the sali-
ency problem as continuous:

Group meeting, Lab’s cafeteria, 7 November 2013:

FJ: So basically you want many labels?
GY:  Yeah because you know, in the state-of-the-art face detection or saliency, models only 

detect things in a binary way, like face/no face, salient/not salient. What we also try to do 
is a model that evaluates the importance of faces and objects and segments them. Like 
‘this face is more important than this other face which is more important than that object’ 
and so on. … But anyways, to do that [a ground truth based on the results of a 
crowdsourcing experiment], we first need a dataset with many images with different 
contents.
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CL:  Yeah, we thought about something like 1000 images at least, to train and evaluate. But it 
has to be images with different objects and faces with different sizes.

GY:  And we have to select the images; good images to run the survey. … We’ll try to propose 
a paper in Spring so it would be good to have finished crowdsourcing in January I guess.

If the images used to construct the ground truth contained only one or two objects and 
were labelled by only several individuals, no relational values between the labelled fea-
tures could be calculated. In this situation, defining saliency as a binary problem in the 
manner of Liu et al. makes complete sense. Yet if the Group could afford to launch a social 
survey that asked for many labels on a dataset with complex images containing many 
features, it would become methodologically possible to assign relative importance values 
to the different labelled features. This was a question of arithmetic values: If one feature 
were manually labelled as salient, one could only obtain a binary value (foreground and 
background). But if several features were labelled as more or less salient by many work-
ers, one could obtain a continuous subset of results. For the Group, crowdsourcing once 
again creates a difference, by making it possible to create new types of targets with rela-
tively continuous values. It was difficult at this point to predict if the Group’s algorithm 
would be effectively able to approach these subtle results. Nevertheless, the ground truth 
the Group wanted to constitute would enable the development of such an algorithm by 
providing targets that the model should try to retrieve in the best possible way.

Even though the Group had managed to build upon previous work in saliency detection 
and related fields in order to reformulate the saliency problem, it still lacked the ground truth 
that could effectively establish the terms of this new problem. Both the inputs on which the 
desired algorithm should work and the outputs (the ‘targets’) it should retrieve needed to be 
constructed. The Group was only at the beginning of the problematization process that could 
enable the construction of a new computational model. The Group’s reformulation of the sali-
ency problem still needed to be equipped (Vinck, 2011) with tangible elements (a new set of 
complex images, a crowdsourcing experiment, continuous values, segmented faces) in order 
to form a referential database that would in turn constitute the material base of the new com-
putational model. The new ground truth was an obligatory passage point (Callon, 1986) for 
the Group, and the Group also hoped that it would become an obligatory passage point for the 
research community. Without a new ground truth, saliency-detection models would still oper-
ate on unrealistic images, they would still be one-off object-related, they would still ignore 
the detection and segmentation of faces, and they would still, therefore, be irrelevant for real-
world applications. With the help of a new ground truth, these shortcomings the Group attrib-
uted to saliency detection might be overcome. In a similar vein, we can say that saliency 
detection was at this point doable (Fujimura, 1987) only at the level of the laboratory. Without 
a new ground truth, the Group had no tangible means to articulate this ‘laboratory level’ with 
the research community in image processing. It was only by constructing a database gather-
ing ‘input data’ and ‘output targets’ that the Group would be able to propose and publish an 
algorithm capable of solving the newly formulated saliency problem.

Constructing a new ground truth

In addition to working on the coding of the crowdsourcing Web application, the Group 
also dedicated November and December 2013 to the selection of images that echoed the 
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algorithm’s three expected performances: (1) detecting and segmenting the contours of 
salient features, including faces, (2) detecting and segmenting these salient features in 
complex images, and (3) evaluating the relative importance of the detected and seg-
mented salient features. These specifications led to several Group meetings specifically 
organized to discuss the content and distribution of the selected images:

Group meeting, Lab’s cafeteria, 21 November 2013:

BJ:  Well we may avoid this kind of basketball photo because these players may be famous-
like. They are good because the ball contrasts with faces but at least I know some of the 
players. And if I know, we include other features like ‘I know this face’ so I label it.

CL:  I think maybe if you have somebody that is famous, the importance of the face increases 
and then we just want to avoid modelling that in our method.

 …
CL: OK. And the distributions are looking better?
FJ: Yes definitely. BJ just showed me what to improve.
CL: OK. So what other variables do we consider?
GY: Like frontal and so on. But equalizing them is real pain.
CL:  But we can cover some of them; maybe not equalize. So there should be like the front 

face with images of just the front of the face and then there is the side face, and a mixture 
in between.

The Group’s anticipated capabilities for the algorithm oriented this manual selection 
process. As with Liu et al.’s efforts, but in a manner that made the Group include more 
complex ‘natural’ situations, the creation of a dataset was driven by the algorithm’s 
future tasks. By December 2013, 800 high-resolution images were gathered – mostly 
from Flickr – and stored in the Lab’s server. Because the Group considered the inclusion 
of faces the most significant contribution of the project, 632 of the selected images 
included human faces.

Running parallel to this problem-oriented selection of images, organizational work on 
the selected images had to be defined so that the Group would not be overloaded by the 
number of files and labelled results to be gathered through the crowdsourcing experi-
ment. This kind of organizational procedure was very close to data management and 
implied the realization of a whole new database for which information could be easily 
retrieved and anticipated. Moreover, the shaping of the crowdsourcing survey also 
required coordination and adjustments: What questions would be asked? How would 
answers be collected? How would answers be processed to fulfil the ambitions of the 
project? Those were crucial issues because the ‘raw’ labelled answers obtained via 
crowdsourcing could only be rectangles, not precise contours.

Group meeting, Lab’s cafeteria, 12 December 2013:

CL: But for the database, do we rename the images so that we have a consistency?
BJ:  Hum… I don’t think so because now we can track the files back to the website with their 

ID. And with Matlab you can like store the jpg files in one folder and retrieve all of them 
automatically
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…

CL: What do you think, GY? Can we ask people to select a region of the image or to do 
something like segmenting directly on it?

GY: I don’t think you can get pixel-precision answers with crowdsourcing. We’ll need to do the 
pixel-precision [in the Lab] because if we ask them, it’s gonna be a very sloppy job. Or too slow 
and expensive anyway.

CL: So what do you want? There is your Matlab code to segment features, right?

GY: Yes but that’s low-level stuff, pixel-precision [segmentation]. It’s gonna be for later, after 
we collect the coordinates I guess. I still need to finish the scripts [to collect the coordinates] 
anyway. Real pain… But what I thought was just like ask people to draw rectangles on the 
salient things, then collect the coordinates with their ID and then use this information to deduce 
which feature is more salient than the other on each image. Location of the salient feature is a 
really fuzzy decision but cutting up the edges it’s not that dependent. … You know where the 
tree ends, and that’s what we want. Nobody will come and say ‘No! The tree ends here!’ There 
is not so many variance between people I guess in most of the cases.

CL: OK, let’s code for rectangles then. If that’s easy for the workers, let’s just do that.

The IDs of the selected images made it easy for the Group to put the images in a 
Matlab database. But within the images, the salient features labelled by the partici-
pants of the crowdsourcing experiment were more difficult to handle, since GY’s 
interactive tool to get the precise boundaries of image-contents was based on low-
level information. As a consequence, segmenting the boundaries of low-contrast fea-
tures such as faces could take several minutes, whereas affordable crowdsourcing 
(crowdsourcing services cost the Lab approximately US $950) is about small and 
quick tasks. The labelled features would thus have to be post-processed within the 
Lab in order to obtain precise contours.

Moreover, another potential point of failure of the project resided in the development 
of the crowdsourcing application. Getting people to draw rectangles around features, 
translating these rectangles into coordinates and storing them in files in order to process 
them statistically require non-trivial programming skills. By January 2014, when the 
crowdsourcing application was made fully operational, it comprised seven different 
scripts (around 1000 lines of code) written in HTML, PHP and JavaScript, that responded 
to each other depending on the workers’ inputs (see Figure 5). Yet if computer scientists 
in image processing tend to be at ease with numerical computing and programming lan-
guages such as Matlab, C or C++, web designing and social pooling are not competen-
cies for which they are necessarily trained.

Once coded and debugged, the different scripts were stored in one public section 
of the Lab’s server whose address was made available in January 2014 to 30 external 
paid workers of a crowdsourcing company. By February 2014, tens of thousands of 
rectangles’ coordinates were stored in the Group’s database as TXT files, ready to be 
processed thanks to the previous preparatory steps. At this point, each image of the 
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previously collected dataset was linked with many different rectangles drawn by the 
workers. By superimposing all the coordinates of the different rectangles on Matlab, 
the Group created for each image a ‘weight map’ with varying intensities that indi-
cated the relative consensus on salient regions (see Figure 6). The Group then applied 
to each image a widely used threshold taken from Otsu (1979) – included in Matlab’s 
library – to keep only weighty regions considered salient by the workers. In a third 
step that took an entire week, the Group manually segmented the contours of the 
salient elements within the salient regions to obtain ‘salient features’. Finally, the 
Group assigned the mean value of the salient regions’ map to the corresponding sali-
ent features in order to obtain the final targets capable of defining and evaluating a 
new class of saliency-detection algorithms. This laborious process took place 
between February and March 2014; almost a month was dedicated to the post-pro-
cessing of the coordinates produced by the workers and collected by the HTML-
JavaScript-PHP scripts and database.

By March 2014, the Group had successfully managed to create targets with relative sali-
ency values. The selected images and their corresponding targets could then be gathered in 
a single database that finally constituted the new ground truth. At this point, the Group had 
managed to redefine the terms of the saliency problem: The transformations that the desired 
algorithm should conduct were materially defined. Thanks to the definition of inputs (the 

Figure 6. Matlab table summarizing the different steps required for the processing of the 
coordinates produced by the participants in the crowdsourcing experiment. The first row 
shows examples of images and rectangular labels collected from the crowdsourcing experiment. 
The second row shows the weight maps obtained from the superposition of the labels. The 
third row shows the salient regions produced by using Otsu’s (1979) threshold. The last row 
presents the final targets with relative saliency values. If the first three steps can be automated, 
the last segmentation step must be done manually. At the end of this process, the images (first 
row, without the labels) and their corresponding targets (last row) are gathered in a single 
database that constitutes the Group’s ground truth.
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selected images) and the definition of outputs (the targets), the Group finally possessed a 
problem that linear algebra and numerical computing could potentially solve.

Of course, establishing the terms of a problem with a new ground truth was not 
enough: In order to propose an actual algorithm, the Group also had to design and code 
lists of instructions that could effectively transform input data into output targets. In 
order to design and code these lists of instructions, the Group randomly selected 250 
images out of the ground truth to form a training set. After formal analysis of the relation-
ships between the inputs and the targets of this training set, the Group extracted several 
numerical features that expressed – though not completely – these input-target relation-
ships.13 The whole process of extracting and verifying numerical features and parameters 
from the training set and implementing them sequentially in the Matlab programming 
language took almost a month. But at the end of this process, the Group possessed a list 
of Matlab instructions that were able to transform the input values of the training set into 
values relatively close to those of the targets.

By the end of March 2014, the Group used the remainder of its ground truth database 
to evaluate the algorithm and compare it with available saliency-detection algorithms in 
terms of precision and recall measures (see Figure 7). The results of this confrontation 
being satisfactory, the features and performances of the Group’s algorithm were sum-
marized in a draft paper and submitted to an important European Conference on image 
processing.

The finalization of Matlab lists of instructions capable of solving the newly defined 
problem of saliency followed the problematization process in which the Group was 
engaged. The theoretical reformulation of saliency, the selection of specific images on 

Figure 7. Two Matlab graphs that compare the performances of the Group’s algorithm 
(‘Ours’) to already published ones (‘AMC’, ‘CH’, etc.). The evaluation set of the new ground 
truth defines the referential space of both graphs. In the graph on the left, the curves represent 
the variation of precision (‘y’ axis) and recall (‘x’ axis) scores for all the images in the ground 
truth when processed by each algorithm. In the graph on the right, histograms measure the 
same data while also including F-measures, the weighted average of precision and recall values. 
Both graphs indicate that, according to the evaluation set of the new ground truth, the Group’s 
algorithm perform significantly better than all state-of-the-art saliency-detection algorithms.
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Flickr, the coding of a web application, the creation of a Matlab database, the processing 
of the users’ coordinates, all of these practices were required in order to design the ground 
truth that allowed the creation and evaluation of the algorithm. Of course, the work 
required for the construction of the ground truth was not sufficient: Critical mathematical 
choices also needed to be articulated and expressed in machine-readable format. Yet by 
providing the training set to extract the numerical features of the algorithm and by pro-
viding the evaluation set to measure the algorithm’s performances, the ground truth – and 
the process that led to its realization – contributed to the completion of the algorithm.

This characteristic of computational models, being bound to manually gathered and 
processed data, is not limited to the field of digital image processing. In climatology, 
the tedious collection, standardization and compilation of weather data in order to 
produce accurate ground truths – ‘data images’ – of the Earth’s climate are crucial for 
the both the parametrization and evaluation of General Circulation Models (Edwards, 
2013). In the case of machine-learning algorithms for handwriting recognition or spam 
filtering, ‘test data’ is important for setting the learning parameters of these algorithms, 
as well as for evaluating their performances (Burrell, 2016: 5). In computational 
finance, detailed analysis of former financial transactions as well as the authoritative 
literature of neoclassical financial economics constitute crucial empirical bases for the 
shaping and evaluation of ‘execution’ and ‘proprietary trading’ algorithms (MacKenzie, 
2014: 17–31).14 Thus behind many algorithms lies a ground truth database that has 
been used to extract relevant numerical features and evaluate the accuracy of the auto-
mated transformations of inputs into targets. Consequently, as soon as such algorithms 
– ‘in the wild’, outside of their production sites – automatically process some new data, 
their respective ground truths are invoked and, to a certain extent, reproduced. Studying 
the performative effects of such algorithms in the light of the collective processes that 
constituted the targets that these algorithms try to retrieve could be in turn a stimulat-
ing research agenda. This idea that ground truths – and the problematization processes 
they result from – could be interesting for the study of algorithms will be further devel-
oped in the discussion part of this paper.

Almost accepted (yet rejected)

June 19, 2014: The reviewers rejected the Group’s paper. The Group was greatly disap-
pointed to see several months of meticulous work unrewarded by a publication, one that 
they had hoped would launch new research lines and generate many citations. But the 
feeling was also one of incomprehension and surprise in view of the reasons provided by 
the three reviewers.

Along with doubts about the usefulness of incorporating face information within sali-
ency detection, the reviewers agreed on one seemingly key deficiency of the Group’s 
paper: The performance comparisons of the computational model were made only with 
respect to the Group’s new ground truth.

Assigned Reviewer 1:

The method does not show that the proposed method also performs better than other state-of-
the-art methods on public benchmark ground truths. … The experiment evaluation in this paper 
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is conducted only on the self-collected face images. More evaluation datasets will be more 
convincing. … More experiments need to be done to demonstrate the proposed method.

Assigned Reviewer 2:

The experiments are tested only on the ground truth created by the authors. … It would be more 
insightful if experiments on other ground truths were carried out, and results on face images 
and non-face images were reported, respectively. This way one can more thoroughly evaluate 
the usefulness of a face-importance map.

Assigned Reviewer 3:

The discussion is still too subjective and not sufficient to support its scientific insights. 
Evaluation on existing datasets would be important in this sense.

The reviewers found the technical aspects of the paper to be sound. But they questioned 
whether the new best saliency-detection model – as the Group presents it in the paper – 
could be evaluated with only the ground truth used to create it. Indeed, why not confront 
this new model with the already-available ground truths for saliency-detection? If the 
model were really ‘more efficient’ than the already published ones, it should also be 
more efficient on the ground truths used to shape and evaluate the performances of the 
previously published saliency-detection models. In other words, since the Group pre-
sented its model as commensurable with former models, the Group should have – accord-
ing to the reviewers – more thoroughly compared its performance with those others. But 
why did the Group stop halfway through its evaluation efforts and compare its model 
only with respect to the new ground truth?

Discussion with BJ, Lab’s cafeteria, 19 June 2014:

FJ: The committee didn’t like that we created our own ground truth?
BJ: No. I mean, it’s just that we tested on this one but we did not test on the other ones.
FJ: They wanted you to test on already existing ground truths?
BJ: Yes.
FJ: But why didn’t you do that?
BJ:  Well, that’s the problem: Why did we not test it on the others? We have a reason. Our 

model is about face segmentation and multiple features. But in the other datasets, most 
of them do not have more than ten face images. … In the saliency area, most people do 
not work on face detection and multiple features. They work on images where there is a 
car or a bird in the center. You always have a bird or something like this. So it just makes 
no sense to test our model on these datasets. They just don’t cover what our model does. 
… That’s the thing: If you do classical improvement, you are ensured that you will 
present something [at important conferences]. But if you have new things, then somehow 
people just misunderstand the concept.

It would not have been technically difficult for the Group to confront its model with the 
previous ground truths: They are available on the Internet and such performance evalua-
tions require roughly the same Matlab scripts as those used to produce the results shown 
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in Figure 7. The main reason the Group did not do such comparisons is that the earlier 
models deriving from earlier ground truths would have obtained better performance 
results: since the Group’s model was not designed to solve the saliency problem as 
defined by the previous ground truths, it would have been outperformed by these ground 
truths’ ‘native’ models.

The rejection of the Group’s paper shows again how image-processing algorithms are 
bound to their ground truths. An algorithm deriving from a ground truth constituted by 
images whose targets are centered contrastive objects will manage to retrieve these tar-
gets. But when tested on a ground truth constituted by images whose targets are multiple 
decentered objects and faces, the same algorithm may well produce statistically poor 
results. Similarly, another algorithm deriving from a ground truth constituted of images 
whose targets are multiple decentered objects and faces will manage to retrieve these 
targets. But when tested on a ground truth constituted of images whose targets are cen-
tered contrastive objects, it may well produce statistically poor results. The algorithms 
operate in different categories, and their limits lie in the ground truths used to define their 
range of actions. As BJ suggests, in a dramatic way, to a certain extent we get the algo-
rithms of our ground truths. Algorithms can be presented as statistically more efficient 
than others only when they derive from the same – or very similar – ground truths. As 
soon as two algorithms derive from two ground truths with different targets, they can 
only be presented as different. Qualitative evaluations of the different ground truths in 
terms of methodology, data selection, statistical rigor or industrial potential can be con-
ducted, but the two computational models themselves are irreducibly different and not 
commensurable. From the point of view of this study – which may differ from the point 
of view of the reviewers – the Group’s mistake may have been to mix up quantitative 
improvement of performances with qualitative refinement of ground truths.

Interestingly, one year after this rejection episode, the Group submitted another paper, 
this time to a smaller conference in image processing. The objects of this paper were 
rigorously the same as those of the paper that was previously rejected: the same ground 
truth and the same computational model. Yet instead of highlighting the statistical perfor-
mances of its model, the Group emphasized its ground truth and the fact that it allows the 
inclusion of face segmentation within saliency detection. In this second paper that won 
the ‘Best Short Paper Award’ of the conference, the computational model was presented 
as one example of the potential of the new ground truth.

Discussion

This case study – offered as a contribution to bringing algorithms ‘down to earth’ (Bogost, 
2015) and knowing them better (Seaver, 2013) – accounted for a four-month project in 
saliency detection run by a group of young computer scientists at a European technical 
institute. For the Group, since industrial applications of saliency-detection algorithms 
should mimic humans who – according to recent papers in cognitive science – consider 
faces to be salient features of images, saliency-detection algorithms should also take 
faces into account. Moreover, as suggested by recent studies in cognitive science col-
lected by the Group, saliency could be seen as a continuous problem, rather than a binary 
one. Two other elements further contributed to this initial reformulation of the saliency 
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problem: The Group’s previous design of computational models for image segmentation 
and face detection, and affordable crowdsourcing services that can facilitate social 
pooling.

Such a reformulation of the saliency problem required the construction of a ground 
truth database. Indeed, without operational targets of segmented faces and multiple 
objects, the Group could neither extract numerical features nor evaluate any computa-
tional model that might detect them. A new ground truth database gathering a new set of 
‘natural’ images – the inputs – and their manually labelled counterparts – the output 
‘targets’ – thus appeared as a prerequisite for the completion of the Group’s desired 
saliency-detection algorithm. The actual construction of this ground truth involved the 
selection of a dataset and the shaping and processing of a crowdsourcing experiment. 
Even though these mundane practices are usually not accounted for in computer science 
papers and presentations, they are crucial, allowing the constitution of a training set and 
an evaluation set. The training set was used to extract numerical features that partially 
expressed the relationships between the inputs and the targets. Once these features were 
implemented in the Matlab programming language, the whole list of instructions – the 
algorithm – could be evaluated thanks to the evaluation set. Even though the Group’s 
algorithm could not be reduced to its ground truth, the very existence of the algorithm 
depended on it.

Reviewers of the Group’s academic paper on the algorithm, for an important confer-
ence on image processing, were critical. According to them, since the algorithm was 
presented as more efficient than already published ones, the Group should have con-
ducted comparisons on the available ground truths. But since the available ground truths 
did not contain the targets that the Group’s model was designed to detect, confronting the 
model with these ground truths would have produced no meaningful results.

This case study suggests two complementary ways of seeing algorithms. First, an 
algorithm can be considered to be a set of instructions designed to solve a given problem 
computationally (Cormen et al., 2009). At the end of the Group’s project, once the 
numerical features were extracted from the training set and translated into machine-
readable language, several Matlab files with thousands of instructions were solving a 
given problem. In that sense, the study of such sets of instructions at a theoretical level is 
fully relevant: How should numbers and machine-readable languages be used to propose 
a solution to a given problem in the most efficient way?

At the same time, however, the problem an algorithm is designed to solve is the result 
of a problematization process: a succession of collective practices that aim at defining 
the terms of a problem to be solved. In my case study, the Group first reformulated the 
saliency problem as face-related and continuous. This first step of the Group’s problema-
tization process included mundane and problematic practices such as the critique of pre-
vious research results and the inclusion of some of the Lab’s recent projects. The second 
step of the Group’s problematization process demanded the constitution of a ground truth 
that could operationalize the newly formulated problem of saliency. This second step 
also included mundane and problematic practices, such as the collection of a dataset on 
Flickr, the organization of a database, the design of a crowdsourcing experiment, and the 
processing of the results. Only at the very end of this process – once the laboriously 
constructed targets have been associated with the laboriously constructed dataset to form 
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the final ground truth database – was the Group able to code and evaluate the set of 
Matlab instructions capable of transforming inputs into outputs by means of numerical 
computing techniques. In short, in order to design a numerical method that could solve 
the new saliency problem, the Group first had to define step by step the boundaries of 
this new problem.

Thus a first perspective might consider the Group’s algorithm as a set of instructions 
designed to computationally solve a new problem in the best possible way. This axio-
matic way of considering the Group’s algorithm would in turn put the emphasis on the 
mathematical choices and programming procedures the Group used in order to transform 
the input values of the new ground truth into their corresponding output values. Did the 
Group extract relevant numerical features for such task? Did the Group optimally imple-
ment the Matlab instructions? In short, this take on the Group’s algorithm would analyze 
it regarding its computational properties.

A second perspective on the Group’s algorithm might consider it as a set of instruc-
tions designed to computationally retrieve in the best possible way the outputs designed 
during a specific problematization process. This problem-oriented way of considering 
the Group’s algorithm would put the emphasis on the specific situations and practices 
that led to the definition of the terms of the problem the algorithm was designed to solve. 
How was the problem defined? How was the dataset collected? How was the crowd-
sourcing experiment conducted? In short, this take on the Group’s algorithm would ana-
lyze it with regard to the construction process of the ground truth from which the 
algorithm ultimately derived.

While the axiomatic and problem-oriented perspectives on algorithms are comple-
mentary and should thus be intimately articulated – specific numerical features being 
suggested by ground truths (and vice-versa) – they draw attention to different practices. 
By considering the terms of the problem at hand as given, the axiomatic way of consider-
ing algorithms may facilitate the definition of the mathematical and programming proce-
dures that end up transforming input sets of values into output sets of values in the best 
possible ways; by assuming that the transformation of the inputs into the outputs is desir-
able and relevant, a step-by-step scheme describing this transformation might be pro-
posed. In the case of computer science, different areas of mathematics with many 
different rules and theorems can be explored and adapted to automate the passage from 
given inputs to specified outputs: Linear algebra in the case of image processing, prob-
ability theory in the case of data compression, graph theory in the case of data structure, 
number theory in the case of cryptography, etc. Yet for each specific case, the definition 
of lists of instructions designed to computationally solve a problem will go along with 
the acceptance of the problem’s terms. Acceptance of the terms of a problem is precisely 
what enables the definition of mathematical procedures and their translation into 
machine-readable languages that, in the end, effectively transform inputs into outputs.

If the problem-oriented perspective on algorithms may not directly facilitate the  
completion of lists of instructions, it may contribute to ‘grounding’ discussions about  
the role of algorithms in public life. Considering algorithms as retrieving entities may put 
the emphasis in the referential databases that define what algorithms try to retrieve and 
reproduce. What ground truth defined the terms of the problem this algorithm tries to 
solve? How was this ground-truth database constituted? When, and by whom? 
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By pointing at moments and locations where outputs-to-be-retrieved were – or are being 
– constituted within ground-truths databases, this analytical look at algorithms may sug-
gest new ways of interacting with algorithms and those who design them. We saw that 
computer scientists rely in part on well-designed referential repositories in order to pro-
pose innovative algorithms. And while computer scientists use their intuitions, values, 
affects, intelligence, and technical skills to effectively define problems, gather orientated 
datasets and shape targets, some of these problematization processes may benefit from a 
broader inclusion of individuals who have invested years of efforts in similar topics 
(cognitive psychologists, linguists, political scientists, artists, citizen, activists, etc.).15 If 
we – computer scientists, artists, citizens, activists, consumers, social scientists – need 
algorithms to engage with the world, many algorithms – as performative retrieving enti-
ties – also need problematization practices and ground truths to come into existence. 
Next to the important questions of how to retrieve by means of numerical procedures lies 
an equally important question of what to retrieve by means of numerical procedures. If 
many algorithms derive from ground-truth databases, working collectively upon the lat-
ter may provide refreshing takes on the former.
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Notes

 1. Ziewitz (2016) provides a successful account of this depiction of algorithms as both powerful 
and inscrutable, setting up a real drama. This ‘algorithmic drama’ (p. 5) comes in two series 
of studies: the first series of studies presents algorithms as powerful value-laden actors (Beer, 
2009; Bucher, 2012; Gillespie, 2014; Hallinan and Striphas, 2016; Introna and Nissenbaum, 
2000; Introna and Wood, 2004; Kraemer et al., 2011; Kushner, 2013; Steiner, 2012); the 
second, symmetric, series of studies presents them as opaque and inscrutable (Anderson, 
2011; Diakopoulos, 2015; Graham, 2005). As Ziewitz (2016) puts it ‘[i]nterestingly, there is 
a certain recursiveness in this drama: opacity of operations tends to be read as another sign of 
influence and power’ (p. 6).

 2. In this paper, I do not discuss the problematic relationships between formal mathematical 
expressions and their machine-readable counterparts. The term ‘algorithm’ is highly equivo-
cal, especially among computer scientists: It sometimes refers to formal mathematical expres-
sions, other times to lines of code able to instruct electric pulses. The term ‘computational 
model’ is generally used by computer scientists to include these two aspects that are not 
strictly equivalent and that maintain complex links. For further discussions, see the instruc-
tive disputes in De Millo et al. (1979) and Dijkstra (1978), further analyzed in Fetzer (1988) 
and MacKenzie (1993, 1995).
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 3. A digital signal is represented by n dimensions depending on the independent variables used 
to describe the signal. A sampled digital sound is for example described as a one-dimensional 
signal whose dependent variables – amplitudes – vary according to time (t); a digital image is 
usually described as a two-dimensional signal whose dependent variables – intensities – vary 
on two axes (x, y), whereas an audio-visual content will be described as a three-dimensional 
signal with independent variables (x, y, t). For an accessible introduction to signal processing, 
see Vetterli et al. (2014).

 4. Another important neurobiological model of selective-attention method was proposed in 
Wolfe et al. (1989). This model later inspired competing low-level feature computational 
models (Tsotsos, 1989; Tsotsos et al., 1995).

 5. See Elazary and Itti (2008); Itti and Koch (2001); Itti et al. (1998, 2000); Zhao and Koch 
(2011).

 6. More generally, precision and recall measures are the two pillars of ‘information retrieval’. 
For an introduction to this field, see Manning et al. (2008).

 7. Different high-level detection algorithms can nonetheless be assembled as modules in a single 
program that could for example detect faces and cars and dogs, etc.

 8. At that time, only two saliency-detection algorithms were published, in Itti et al. (1998) and 
Ma and Zhang (2003). But the ground truths used for the design and evaluation of these 
algorithms were similar to those used in laboratory cognitive science. The images of these 
ground truths were, for example, sets of dots disrupted by a vertical dash. Consequently, if 
these first two saliency-detection algorithms could process natural images, no evaluations of 
their performances on such images could be conducted.

 9. Ground truths created by computer science laboratories are made available online in the name 
of reproducible research (Vandewalle et al., 2009). The counterpart to this free access is the 
proper citation of the papers in which these ground truths were first presented.

10. Other proposed algorithms included Achanta et al. (2009); Chang et al. (2011); Goferman 
et al. (2012); Shen and Wu (2012); Wang et al. (2010).

11. As Irani (2015) notes, large-scale microlabour is not new: Online chatroom moderators, 
‘Selectric’ typewriting secretaries, and even telegraph ‘messenger boys’ had participated in 
what is now called the ‘information economy’. Yet one undeniable novelty of crowdsourcing 
is that it allows ‘the distribution, collection, and processing of data work at high speeds and 
large scales’ (Irani, 2015: 226). This acceleration and volume growth of data work partici-
pates in creating emerging forms of the precariat. For a study of the demographics of crowd 
workers, see Ross et al. (2010).

12. Matlab is a privately held mathematical software for numerical computing built around its 
own interpreted high-level programming language. Because of its agility for problems of lin-
ear algebra – all integers being considered as scalars – Matlab is widely used for research and 
industrial purposes in computer science, electrical engineering and economics. Yet, as Matlab 
works mainly with an interpreted programming language, its programs have to be translated 
into machine-readable binary code by an interpreter in order to actually interact with the data. 
This additional step makes it less efficient for processing heavy matrices than, for example, 
programs directly written in C or C++. For a brief history of Matlab, see (Haigh, 2008).

13. The numerical features that were extracted from the training set were related, among others, 
to ‘spatial compactness’, ‘contrast-based filtering’, ‘high-dimensional Gaussian filters’ and 
‘element uniqueness’.

14. For a historical study of Automatic Trading Desk, one of the first high-frequency trading 
firms, see MacKenzie (2017).

15. Several studies have tentatively suggested the need for cooperative design of datasets and 
ground truths (e.g. Bechmann, 2017; Torralba and Efros, 2011; Vandewalle et al., 2009).
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